Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
---
Troubleshooting list to deal with any breakage seen with this patch:
1) The most likely effect one would see by this patch is a change in how
a type is printed. The type printer will, by design and default,
print types as written. There are customization options there, but
not that many, and they mainly apply to how to print a type that we
somehow failed to track how it was written. This patch fixes a
problem where we failed to distinguish between a type
that was written without any elaborated-type qualifiers,
such as a 'struct'/'class' tags and name spacifiers such as 'std::',
and one that has been stripped of any 'metadata' that identifies such,
the so called canonical types.
Example:
```
namespace foo {
struct A {};
A a;
};
```
If one were to print the type of `foo::a`, prior to this patch, this
would result in `foo::A`. This is how the type printer would have,
by default, printed the canonical type of A as well.
As soon as you add any name qualifiers to A, the type printer would
suddenly start accurately printing the type as written. This patch
will make it print it accurately even when written without
qualifiers, so we will just print `A` for the initial example, as
the user did not really write that `foo::` namespace qualifier.
2) This patch could expose a bug in some AST matcher. Matching types
is harder to get right when there is sugar involved. For example,
if you want to match a type against being a pointer to some type A,
then you have to account for getting a type that is sugar for a
pointer to A, or being a pointer to sugar to A, or both! Usually
you would get the second part wrong, and this would work for a
very simple test where you don't use any name qualifiers, but
you would discover is broken when you do. The usual fix is to
either use the matcher which strips sugar, which is annoying
to use as for example if you match an N level pointer, you have
to put N+1 such matchers in there, beginning to end and between
all those levels. But in a lot of cases, if the property you want
to match is present in the canonical type, it's easier and faster
to just match on that... This goes with what is said in 1), if
you want to match against the name of a type, and you want
the name string to be something stable, perhaps matching on
the name of the canonical type is the better choice.
3) This patch could expose a bug in how you get the source range of some
TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
which only looks at the given TypeLoc node. This patch introduces a new,
and more common TypeLoc node which contains no source locations on itself.
This is not an inovation here, and some other, more rare TypeLoc nodes could
also have this property, but if you use getLocalSourceRange on them, it's not
going to return any valid locations, because it doesn't have any. The right fix
here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
into the inner TypeLoc to get the source range if it doesn't find it on the
top level one. You can use getLocalSourceRange if you are really into
micro-optimizations and you have some outside knowledge that the TypeLocs you are
dealing with will always include some source location.
4) Exposed a bug somewhere in the use of the normal clang type class API, where you
have some type, you want to see if that type is some particular kind, you try a
`dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
Again, like 2), this would usually have been tested poorly with some simple tests with
no qualifications, and would have been broken had there been any other kind of type sugar,
be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.
5) It could be a bug in this patch perhaps.
Let me know if you need any help!
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
This reverts commit 7c51f02eff because it
stills breaks the LLDB tests. This was re-landed without addressing the
issue or even agreement on how to address the issue. More details and
discussion in https://reviews.llvm.org/D112374.
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
---
Troubleshooting list to deal with any breakage seen with this patch:
1) The most likely effect one would see by this patch is a change in how
a type is printed. The type printer will, by design and default,
print types as written. There are customization options there, but
not that many, and they mainly apply to how to print a type that we
somehow failed to track how it was written. This patch fixes a
problem where we failed to distinguish between a type
that was written without any elaborated-type qualifiers,
such as a 'struct'/'class' tags and name spacifiers such as 'std::',
and one that has been stripped of any 'metadata' that identifies such,
the so called canonical types.
Example:
```
namespace foo {
struct A {};
A a;
};
```
If one were to print the type of `foo::a`, prior to this patch, this
would result in `foo::A`. This is how the type printer would have,
by default, printed the canonical type of A as well.
As soon as you add any name qualifiers to A, the type printer would
suddenly start accurately printing the type as written. This patch
will make it print it accurately even when written without
qualifiers, so we will just print `A` for the initial example, as
the user did not really write that `foo::` namespace qualifier.
2) This patch could expose a bug in some AST matcher. Matching types
is harder to get right when there is sugar involved. For example,
if you want to match a type against being a pointer to some type A,
then you have to account for getting a type that is sugar for a
pointer to A, or being a pointer to sugar to A, or both! Usually
you would get the second part wrong, and this would work for a
very simple test where you don't use any name qualifiers, but
you would discover is broken when you do. The usual fix is to
either use the matcher which strips sugar, which is annoying
to use as for example if you match an N level pointer, you have
to put N+1 such matchers in there, beginning to end and between
all those levels. But in a lot of cases, if the property you want
to match is present in the canonical type, it's easier and faster
to just match on that... This goes with what is said in 1), if
you want to match against the name of a type, and you want
the name string to be something stable, perhaps matching on
the name of the canonical type is the better choice.
3) This patch could exposed a bug in how you get the source range of some
TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
which only looks at the given TypeLoc node. This patch introduces a new,
and more common TypeLoc node which contains no source locations on itself.
This is not an inovation here, and some other, more rare TypeLoc nodes could
also have this property, but if you use getLocalSourceRange on them, it's not
going to return any valid locations, because it doesn't have any. The right fix
here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
into the inner TypeLoc to get the source range if it doesn't find it on the
top level one. You can use getLocalSourceRange if you are really into
micro-optimizations and you have some outside knowledge that the TypeLocs you are
dealing with will always include some source location.
4) Exposed a bug somewhere in the use of the normal clang type class API, where you
have some type, you want to see if that type is some particular kind, you try a
`dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
Again, like 2), this would usually have been tested poorly with some simple tests with
no qualifications, and would have been broken had there been any other kind of type sugar,
be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.
5) It could be a bug in this patch perhaps.
Let me know if you need any help!
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
This reverts commit bdc6974f92 because it
breaks all the LLDB tests that import the std module.
import-std-module/array.TestArrayFromStdModule.py
import-std-module/deque-basic.TestDequeFromStdModule.py
import-std-module/deque-dbg-info-content.TestDbgInfoContentDequeFromStdModule.py
import-std-module/forward_list.TestForwardListFromStdModule.py
import-std-module/forward_list-dbg-info-content.TestDbgInfoContentForwardListFromStdModule.py
import-std-module/list.TestListFromStdModule.py
import-std-module/list-dbg-info-content.TestDbgInfoContentListFromStdModule.py
import-std-module/queue.TestQueueFromStdModule.py
import-std-module/stack.TestStackFromStdModule.py
import-std-module/vector.TestVectorFromStdModule.py
import-std-module/vector-bool.TestVectorBoolFromStdModule.py
import-std-module/vector-dbg-info-content.TestDbgInfoContentVectorFromStdModule.py
import-std-module/vector-of-vectors.TestVectorOfVectorsFromStdModule.py
https://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/45301/
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
Special classes such as accessor, sampler, and stream need additional
implementation when they are passed from host to device.
This patch is adding a new attribute “sycl_special_class” used to mark
SYCL classes/struct that need the additional compiler handling.
Adds diagnosing on attempt to use zero length arrays, pointers, refs, arrays
of them and structs/classes containing all of it.
In case a struct/class with zero length array is used this emits a set
of notes pointing out how zero length array got into used struct, like
this:
```
struct ContainsArr {
int A[0]; // note: field of illegal type declared here
};
struct Wrapper {
ContainsArr F; // note: within field of type ContainsArr declared here
// ...
}
// Device code
Wrapper W;
W.use(); // error: zero-length arrays are not permitted
```
Total deep check of each used declaration may result in double
diagnosing at the same location.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D114080
This patch attempts to fix a compiler crash that occurs when long
double type is used with -mno-x87 compiler option.
The option disables x87 target feature, which in turn disables x87
registers, so CG cannot select them for x86_fp80 LLVM IR type. Long
double is lowered as x86_fp80 for some targets, so it leads to a
crash.
The option seems to contradict the SystemV ABI, which requires long
double to be represented as a 80-bit floating point, and it also
requires to use x87 registers.
To avoid that, `long double` type is disabled when -mno-x87 option is
set. In addition to that, `float` and `double` also use x87 registers
for return values on 32-bit x86, so they are disabled as well.
Differential Revision: https://reviews.llvm.org/D98895
This was committed as ec6c847179, but then reverted after a failure
in: https://lab.llvm.org/buildbot/#/builders/84/builds/13983
I was not able to reproduce the problem, but I added an extra check
for a NULL QualType just in case.
Original comit message:
The patch adds missing diagnostics for cases like:
float F3 = ((__float128)F1 * (__float128)F2) / 2.0f;
Sema::checkDeviceDecl (renamed to checkTypeSupport) is changed to work
with a type without the corresponding ValueDecl. It is also refactored
so that host diagnostics for unsupported types can be added here as
well.
Differential Revision: https://reviews.llvm.org/D109315
After significant problems in our downstream with the previous
implementation, the SYCL standard has opted to make using macros/etc to
change kernel-naming-lambdas in any way UB (even passively). As a
result, we are able to just emit the itanium mangling.
However, this DOES require a little work in the CXXABI, as the microsoft
and itanium mangler use different numbering schemes for lambdas. This
patch adds a pair of mangling contexts that use the normal 'itanium'
mangling strategy to fill in the "DeviceManglingNumber" used previously
by CUDA.
Differential Revision: https://reviews.llvm.org/D110281
The patch adds missing diagnostics for cases like:
float F3 = ((__float128)F1 * (__float128)F2) / 2.0f;
Sema::checkDeviceDecl (renamed to checkTypeSupport) is changed to work
with a type without the corresponding ValueDecl. It is also refactored
so that host diagnostics for unsupported types can be added here as
well.
Differential Revision: https://reviews.llvm.org/D109315
I discovered when merging the __builtin_sycl_unique_stable_name into my
downstream that it is actually possible for the cc1 invocation to have
more than 1 Sema instance, if you pass it multiple input files, each
gets its own Sema instance and thus ASTContext instance. The result was
that the call to Filter the SYCL kernels was using an
ItaniumMangleContext stored via a 'magic static', so it had an invalid
reference to ASTContext when processing the 2nd failure.
The failure is unfortunately flakey/transient, but the test that fails
was added anyway.
The magic-static was switched to a unique_ptr member variable in
ASTContext that is initialized when needed.
The original version of this was reverted, and @rjmcall provided some
advice to architect a new solution. This is that solution.
This implements a builtin to provide a unique name that is stable across
compilations of this TU for the purposes of implementing the library
component of the unnamed kernel feature of SYCL. It does this by
running the Itanium mangler with a few modifications.
Because it is somewhat common to wrap non-kernel-related lambdas in
macros that aren't present on the device (such as for logging), this
uniquely generates an ID for all lambdas involved in the naming of a
kernel. It uses the lambda-mangling number to do this, except replaces
this with its own number (starting at 10000 for readabililty reasons)
for lambdas used to name a kernel.
Additionally, this implements itself as constexpr with a slight catch:
if a name would be invalidated by the use of this lambda in a later
kernel invocation, it is diagnosed as an error (see the Sema tests).
Differential Revision: https://reviews.llvm.org/D103112
Default address space (applies when no explicit address space was
specified) maps to generic (4) address space.
Added SYCL named address spaces `sycl_global`, `sycl_local` and
`sycl_private` defined as sub-sets of the default address space.
Static variables without address space now reside in global address
space when compile for SPIR target, unless they have an explicit address
space qualifier in source code.
Differential Revision: https://reviews.llvm.org/D89909
SYCL compilations initiated by the driver will spawn off one or more
frontend compilation jobs (one for device and one for host). This patch
reworks the driver options to make upstreaming this from the downstream
SYCL fork easier.
This patch introduces a language option to identify host executions
(SYCLIsHost) and a -cc1 frontend option to enable this mode. -fsycl and
-fno-sycl become driver-only options that are rejected when passed to
-cc1. This is because the frontend and beyond should be looking at
whether the user is doing a device or host compilation specifically.
Because the frontend should only ever be in one mode or the other,
-fsycl-is-device and -fsycl-is-host are mutually exclusive options.
Emit error for use of 128-bit integer inside device code had been
already implemented in https://reviews.llvm.org/D74387. However,
the error is not emitted for SPIR64, because for SPIR64, hasInt128Type
return true.
hasInt128Type: is also used to control generation of certain 128-bit
predefined macros, initializer predefined 128-bit integer types and
build 128-bit ArithmeticTypes. Except predefined macros, only the
device target is considered, since error only emit when 128-bit
integer is used inside device code, the host target (auxtarget) also
needs to be considered.
The change address:
1. (SPIR.h) Correct hasInt128Type() for SPIR targets.
2. Sema.cpp and SemaOverload.cpp: Add additional check to consider host
target(auxtarget) when call to hasInt128Type. So that __int128_t
and __int128() are allowed to avoid error when they used outside
device code.
3. SemaType.cpp: add check for SYCLIsDevice to delay the error message.
The error will be emitted if the use of 128-bit integer in the device
code.
Reviewed By: Johannes Doerfert and Aaron Ballman
Differential Revision: https://reviews.llvm.org/D92439
Summary:
SYCL and OpenMP prohibits thread local storage in device code,
so this commit ensures that error is emitted for device code and not
emitted for host code when host target supports it.
Reviewers: jdoerfert, erichkeane, bader
Reviewed By: jdoerfert, erichkeane
Subscribers: guansong, riccibruno, ABataev, yaxunl, ebevhan, Anastasia, sstefan1, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D81641
Summary:
Diagnostic is emitted if some declaration of unsupported type
declaration is used inside device code.
Memcpy operations for structs containing member with unsupported type
are allowed. Fixed crash on attempt to emit diagnostic outside of the
functions.
The approach is generalized between SYCL and OpenMP.
CUDA/OMP deferred diagnostic interface is going to be used for SYCL device.
Reviewers: rsmith, rjmccall, ABataev, erichkeane, bader, jdoerfert, aaron.ballman
Reviewed By: jdoerfert
Subscribers: guansong, sstefan1, yaxunl, mgorny, bader, ebevhan, Anastasia, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D74387
Summary:
User can select the version of SYCL the compiler will
use via the flag -sycl-std, similar to -cl-std.
The flag defines the LangOpts.SYCLVersion option to the
version of SYCL. The default value is undefined.
If driver is building SYCL code, flag is set to the default SYCL
version (1.2.1)
The preprocessor uses this variable to define CL_SYCL_LANGUAGE_VERSION macro,
which should be defined according to SYCL 1.2.1 standard.
Only valid value at this point for the flag is 1.2.1.
Co-Authored-By: David Wood <Q0KPU0H1YOEPHRY1R2SN5B5RL@david.davidtw.co>
Signed-off-by: Ruyman Reyes <ruyman@codeplay.com>
Subscribers: ebevhan, Anastasia, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D72857
Summary:
User can select the version of SYCL the compiler will
use via the flag -sycl-std, similar to -cl-std.
The flag defines the LangOpts.SYCLVersion option to the
version of SYCL. The default value is undefined.
If driver is building SYCL code, flag is set to the default SYCL
version (1.2.1)
The preprocessor uses this variable to define CL_SYCL_LANGUAGE_VERSION macro,
which should be defined according to SYCL 1.2.1 standard.
Only valid value at this point for the flag is 1.2.1.
Co-Authored-By: David Wood <Q0KPU0H1YOEPHRY1R2SN5B5RL@david.davidtw.co>
Signed-off-by: Ruyman Reyes <ruyman@codeplay.com>
Subscribers: ebevhan, Anastasia, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D72857
Signed-off-by: Alexey Bader <alexey.bader@intel.com>
SYCL is single source offload programming model relying on compiler to
separate device code (i.e. offloaded to an accelerator) from the code
executed on the host.
Here is code example of the SYCL program to demonstrate compiler
outlining work:
```
int foo(int x) { return ++x; }
int bar(int x) { throw std::exception("CPU code only!"); }
...
using namespace cl::sycl;
queue Q;
buffer<int, 1> a(range<1>{1024});
Q.submit([&](handler& cgh) {
auto A = a.get_access<access::mode::write>(cgh);
cgh.parallel_for<init_a>(range<1>{1024}, [=](id<1> index) {
A[index] = index[0] + foo(42);
});
}
...
```
SYCL device compiler must compile lambda expression passed to
cl::sycl::handler::parallel_for method and function foo called from this
lambda expression for an "accelerator". SYCL device compiler also must
ignore bar function as it's not required for offloaded code execution.
This patch adds the sycl_kernel attribute, which is used to mark code
passed to cl::sycl::handler::parallel_for as "accelerated code".
Attribute must be applied to function templates which parameters include
at least "kernel name" and "kernel function object". These parameters
will be used to establish an ABI between the host application and
offloaded part.
Reviewers: jlebar, keryell, Naghasan, ABataev, Anastasia, bader, aaron.ballman, rjmccall, rsmith
Reviewed By: keryell, bader
Subscribers: mgorny, OlegM, ArturGainullin, agozillon, aaron.ballman, ebevhan, Anastasia, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60455
Signed-off-by: Alexey Bader <alexey.bader@intel.com>