This patch implements P0634r3 that removes the need for 'typename' in certain contexts.
For example,
```
template <typename T>
using foo = T::type; // ok
```
This is also allowed in previous language versions as an extension, because I think it's pretty useful. :)
Reviewed By: #clang-language-wg, erichkeane
Differential Revision: https://reviews.llvm.org/D53847
As reported in GH #57945, this would crash because the decl context for
the lambda was being loaded via 'getNonClosureContext', which only gets
CODE contexts, so a global lambda was getting 'nullptr' here instead.
This patch does some work to make sure we get a valid/valuable
declcontext here instead.
This reverts commit 192d69f7e6.
This fixes the condition to check whether this is a situation where we
are in a recovery-expr'ed concept a little better, so we don't access an
inactive member of a union, which should make the bots happy.
Differential Revision: https://reviews.llvm.org/D134542
This reverts commit e3d14bee23.
There are apparently a large number of crashes in libcxx and some JSON
Parser thing, so clearly this has some sort of serious issue. Reverting
so I can take some time to figure out what is going on.
Discovered by reducing a different problem, we currently assert because
we failed to make the constraint expressions not dependent, since a
RecoveryExpr cannot be transformed.
This patch fixes that, and gets reasonably nice diagnostics by
introducing a concept (hah!) of "ContainsErrors" to the Satisfaction
types, which causes us to treat the candidate as non-viable.
However, just making THAT candidate non-viable would result in choosing
the 'next best' canddiate, which can result in awkward errors, where we
start evaluating a candidate that is not intended to be selected.
Because of this, and to make diagnostics more relevant, we now just
cause the entire lookup to result in a 'no-viable-candidates'.
This means we will only emit the list of candidates, rather than any
cascading failures.
Apparently TransformDecl in TreeTransform can be called with a nullptr
for a Decl, so my casts were illegal. The fix here is to add an early
exit to my TransformDecl.
This reverts commit 95d94a6775.
This implements the deferred concepts instantiation, which should allow
the libstdc++ ranges to properly compile, and for the CRTP to work for
constrained functions.
Since the last attempt, this has fixed the issues from @wlei and
@mordante.
Differential Revision: https://reviews.llvm.org/D126907
Prior to the patch, we didn't build a DeclRefExpr if the Decl being
referred to is invalid, because many clang downstream AST consumers
assume it, violating it will cause many diagnostic regressions.
With this patch, we build a DeclRefExpr enven for an invalid decl (when the
AcceptInvalidDecl is true), and wrap it with a dependent-type
RecoveryExpr (to prevent follow-up semantic analysis, and diagnostic
regressions).
This is a revised version of https://reviews.llvm.org/D76831
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D121599
It is possible that we can pass a null ParamType to
CheckNonTypeTemplateParameter -- the ParamType var can be reset to a null
type on Line 6940, and the followed bailout if is not entered.
Differential Revision: https://reviews.llvm.org/D134180
We change the template specialization of builtin templates to
behave like aliases.
Though unlike real alias templates, these might still produce a canonical
TemplateSpecializationType when some important argument is dependent.
For example, we can't do anything about make_integer_seq when the
count is dependent, or a type_pack_element when the index is dependent.
We change type deduction to not try to deduce canonical TSTs of
builtin templates.
We also change those buitin templates to produce substitution sugar,
just like a real instantiation would, making the resulting type correctly
represent the template arguments used to specialize the underlying template.
And make_integer_seq will now produce a TST for the specialization
of it's first argument, which we use as the underlying type of
the builtin alias.
When performing member access on the resulting type, it's now
possible to map from a Subst* node to the template argument
as-written used in a regular fashion, without special casing.
And this fixes a bunch of bugs with relation to these builtin
templates factoring into deduction.
Fixes GH42102 and GH51928.
Depends on D133261
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D133262
This continues D111283 by extending the getCommonSugaredType
implementation to also merge non-canonical type nodes.
We merge these nodes by going up starting from the canonical
node, calculating their merged properties on the way.
If we reach a pair that is too different, or which we could not
otherwise unify, we bail out and don't try to keep going on to
the next pair, in effect striping out all the remaining top-level
sugar nodes. This avoids mismatching 'companion' nodes, such as
ElaboratedType, so that they don't end up elaborating some other
unrelated thing.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D130308
After upgrading the type deduction machinery to retain type sugar in
D110216, we were left with a situation where there is no general
well behaved mechanism in Clang to unify the type sugar of multiple
deductions of the same type parameter.
So we ended up making an arbitrary choice: keep the sugar of the first
deduction, ignore subsequent ones.
In general, we already had this problem, but in a smaller scale.
The result of the conditional operator and many other binary ops
could benefit from such a mechanism.
This patch implements such a type sugar unification mechanism.
The basics:
This patch introduces a `getCommonSugaredType(QualType X, QualType Y)`
method to ASTContext which implements this functionality, and uses it
for unifying the results of type deduction and return type deduction.
This will return the most derived type sugar which occurs in both X and
Y.
Example:
Suppose we have these types:
```
using Animal = int;
using Cat = Animal;
using Dog = Animal;
using Tom = Cat;
using Spike = Dog;
using Tyke = Dog;
```
For `X = Tom, Y = Spike`, this will result in `Animal`.
For `X = Spike, Y = Tyke`, this will result in `Dog`.
How it works:
We take two types, X and Y, which we wish to unify as input.
These types must have the same (qualified or unqualified) canonical
type.
We dive down fast through top-level type sugar nodes, to the
underlying canonical node. If these canonical nodes differ, we
build a common one out of the two, unifying any sugar they had.
Note that this might involve a recursive call to unify any children
of those. We then return that canonical node, handling any qualifiers.
If they don't differ, we walk up the list of sugar type nodes we dived
through, finding the last identical pair, and returning that as the
result, again handling qualifiers.
Note that this patch will not unify sugar nodes if they are not
identical already. We will simply strip off top-level sugar nodes that
differ between X and Y. This sugar node unification will instead be
implemented in a subsequent patch.
This patch also implements a few users of this mechanism:
* Template argument deduction.
* Auto deduction, for functions returning auto / decltype(auto), with
special handling for initializer_list as well.
Further users will be implemented in a subsequent patch.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D111283
This reverts commit d200db3863, which causes a
clang crash. See https://reviews.llvm.org/D111283#3785755
Test case for convenience:
```
template <typename T>
using P = int T::*;
template <typename T, typename... A>
void j(P<T>, T, A...);
template <typename T>
void j(P<T>, T);
struct S {
int b;
};
void g(P<S> k, S s) { j(k, s); }
```
After upgrading the type deduction machinery to retain type sugar in
D110216, we were left with a situation where there is no general
well behaved mechanism in Clang to unify the type sugar of multiple
deductions of the same type parameter.
So we ended up making an arbitrary choice: keep the sugar of the first
deduction, ignore subsequent ones.
In general, we already had this problem, but in a smaller scale.
The result of the conditional operator and many other binary ops
could benefit from such a mechanism.
This patch implements such a type sugar unification mechanism.
The basics:
This patch introduces a `getCommonSugaredType(QualType X, QualType Y)`
method to ASTContext which implements this functionality, and uses it
for unifying the results of type deduction and return type deduction.
This will return the most derived type sugar which occurs in both X and
Y.
Example:
Suppose we have these types:
```
using Animal = int;
using Cat = Animal;
using Dog = Animal;
using Tom = Cat;
using Spike = Dog;
using Tyke = Dog;
```
For `X = Tom, Y = Spike`, this will result in `Animal`.
For `X = Spike, Y = Tyke`, this will result in `Dog`.
How it works:
We take two types, X and Y, which we wish to unify as input.
These types must have the same (qualified or unqualified) canonical
type.
We dive down fast through top-level type sugar nodes, to the
underlying canonical node. If these canonical nodes differ, we
build a common one out of the two, unifying any sugar they had.
Note that this might involve a recursive call to unify any children
of those. We then return that canonical node, handling any qualifiers.
If they don't differ, we walk up the list of sugar type nodes we dived
through, finding the last identical pair, and returning that as the
result, again handling qualifiers.
Note that this patch will not unify sugar nodes if they are not
identical already. We will simply strip off top-level sugar nodes that
differ between X and Y. This sugar node unification will instead be
implemented in a subsequent patch.
This patch also implements a few users of this mechanism:
* Template argument deduction.
* Auto deduction, for functions returning auto / decltype(auto), with
special handling for initializer_list as well.
Further users will be implemented in a subsequent patch.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D111283
Template arguments of template and declaration kind were being profiled
only by their canonical properties, which would cause incorrect
uniquing of constrained AutoTypes, leading to a crash in some cases.
This exposed some places in CheckTemplateArgumentList where non-canonical
arguments where being pushed into the resulting converted list.
We also throw in some asserts to catch early and explain the crashes.
Note that the fix for the 'declaration' kind is untestable at this point,
because there should be no cases right now in the AST where we try
to unique a non-canonical converted template argument.
This fixes GH55567.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D133072
When checking parameter packs for expansion, instead of basing the diagnostic for
length mismatch for outer parameters only on the known number of expansions,
we should also analyze SubstTemplateTypeParmPackType and SubstNonTypeTemplateParmPackExpr
for unexpanded packs, so we can emit a diagnostic pointing to a concrete
outer parameter.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D128095
This reverts commit d483730d8c.
This allegedly breaks a significant part of facebooks internal build.
Reverting while we wait for them to provide a reproducer of this from
@wlei.
This reverts commit 258c3aee54.
This should fix the libc++ issue that caused the revert, by re-designing
slightly how we determined when we should evaluate the constraints.
Additionally, many of the other components to the original patch (the
NFC parts) were committed separately to shrink the size of this patch
for review.
Differential Revision: https://reviews.llvm.org/D126907
I introduced a patch to handle unqualified templated base class
initialization in MSVC compatibility mode:
https://reviews.llvm.org/rGc894e85fc64dd8d83b460de81080fff93c5ca334
We identified a problem with this patch in the case where the base class
is partially specialized, which can lead to triggering an assertion in
the case of a mix between types and values.
The minimal test case is:
template <typename Type, int TSize> class Vec {};
template <int TDim> class Index : public Vec<int, TDim> {
Index() : Vec() {}
};
template class Index<0>;
The detailed problem is that I was using the
`InjectedClassNameSpecialization`, to which the class template arguments
were then applied in order. But in the process, we were losing all the
partial specializations of the base class and creating an index mismatch
between the expected and passed arguments.
Patch By: frederic-tingaud-sonarsource
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D130709
For failed static assertions, try to take the expression apart and print
useful information about why it failed. In particular, look at binary
operators and print the compile-time evaluated value of the LHS/RHS.
Differential Revision: https://reviews.llvm.org/D130894
DR2338 clarified that it was undefined behavior to set the value outside the
range of the enumerations values for an enum without a fixed underlying type.
We should diagnose this with a constant expression context.
Differential Revision: https://reviews.llvm.org/D130058
DR2338 clarified that it was undefined behavior to set the value outside the
range of the enumerations values for an enum without a fixed underlying type.
We should diagnose this with a constant expression context.
Differential Revision: https://reviews.llvm.org/D130058
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
---
Troubleshooting list to deal with any breakage seen with this patch:
1) The most likely effect one would see by this patch is a change in how
a type is printed. The type printer will, by design and default,
print types as written. There are customization options there, but
not that many, and they mainly apply to how to print a type that we
somehow failed to track how it was written. This patch fixes a
problem where we failed to distinguish between a type
that was written without any elaborated-type qualifiers,
such as a 'struct'/'class' tags and name spacifiers such as 'std::',
and one that has been stripped of any 'metadata' that identifies such,
the so called canonical types.
Example:
```
namespace foo {
struct A {};
A a;
};
```
If one were to print the type of `foo::a`, prior to this patch, this
would result in `foo::A`. This is how the type printer would have,
by default, printed the canonical type of A as well.
As soon as you add any name qualifiers to A, the type printer would
suddenly start accurately printing the type as written. This patch
will make it print it accurately even when written without
qualifiers, so we will just print `A` for the initial example, as
the user did not really write that `foo::` namespace qualifier.
2) This patch could expose a bug in some AST matcher. Matching types
is harder to get right when there is sugar involved. For example,
if you want to match a type against being a pointer to some type A,
then you have to account for getting a type that is sugar for a
pointer to A, or being a pointer to sugar to A, or both! Usually
you would get the second part wrong, and this would work for a
very simple test where you don't use any name qualifiers, but
you would discover is broken when you do. The usual fix is to
either use the matcher which strips sugar, which is annoying
to use as for example if you match an N level pointer, you have
to put N+1 such matchers in there, beginning to end and between
all those levels. But in a lot of cases, if the property you want
to match is present in the canonical type, it's easier and faster
to just match on that... This goes with what is said in 1), if
you want to match against the name of a type, and you want
the name string to be something stable, perhaps matching on
the name of the canonical type is the better choice.
3) This patch could expose a bug in how you get the source range of some
TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
which only looks at the given TypeLoc node. This patch introduces a new,
and more common TypeLoc node which contains no source locations on itself.
This is not an inovation here, and some other, more rare TypeLoc nodes could
also have this property, but if you use getLocalSourceRange on them, it's not
going to return any valid locations, because it doesn't have any. The right fix
here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
into the inner TypeLoc to get the source range if it doesn't find it on the
top level one. You can use getLocalSourceRange if you are really into
micro-optimizations and you have some outside knowledge that the TypeLocs you are
dealing with will always include some source location.
4) Exposed a bug somewhere in the use of the normal clang type class API, where you
have some type, you want to see if that type is some particular kind, you try a
`dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
Again, like 2), this would usually have been tested poorly with some simple tests with
no qualifications, and would have been broken had there been any other kind of type sugar,
be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.
5) It could be a bug in this patch perhaps.
Let me know if you need any help!
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
This patch rewords the static assert diagnostic output. Failing a
_Static_assert in C should not report that static_assert failed. This
changes the wording to be more like GCC and uses "static assertion"
when possible instead of hard coding the name. This also changes some
instances of 'static_assert' to instead be based on the token in the
source code.
Differential Revision: https://reviews.llvm.org/D129048
Looks like we again are going to have problems with libcxx tests that
are overly specific in their dependency on clang's diagnostics.
This reverts commit 6542cb55a3.
This patch is basically the rewording of the static assert statement's
output(error) on screen after failing. Failing a _Static_assert in C
should not report that static_assert failed. It’d probably be better to
reword the diagnostic to be more like GCC and say “static assertion”
failed in both C and C++.
consider a c file having code
_Static_assert(0, "oh no!");
In clang the output is like:
<source>:1:1: error: static_assert failed: oh no!
_Static_assert(0, "oh no!");
^ ~
1 error generated.
Compiler returned: 1
Thus here the "static_assert" is not much good, it will be better to
reword it to the "static assertion failed" to more generic. as the gcc
prints as:
<source>:1:1: error: static assertion failed: "oh no!"
1 | _Static_assert(0, "oh no!");
| ^~~~~~~~~~~~~~
Compiler returned: 1
The above can also be seen here. This patch is about rewording
the static_assert to static assertion.
Differential Revision: https://reviews.llvm.org/D129048
This reverts commit 7c51f02eff because it
stills breaks the LLDB tests. This was re-landed without addressing the
issue or even agreement on how to address the issue. More details and
discussion in https://reviews.llvm.org/D112374.
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
---
Troubleshooting list to deal with any breakage seen with this patch:
1) The most likely effect one would see by this patch is a change in how
a type is printed. The type printer will, by design and default,
print types as written. There are customization options there, but
not that many, and they mainly apply to how to print a type that we
somehow failed to track how it was written. This patch fixes a
problem where we failed to distinguish between a type
that was written without any elaborated-type qualifiers,
such as a 'struct'/'class' tags and name spacifiers such as 'std::',
and one that has been stripped of any 'metadata' that identifies such,
the so called canonical types.
Example:
```
namespace foo {
struct A {};
A a;
};
```
If one were to print the type of `foo::a`, prior to this patch, this
would result in `foo::A`. This is how the type printer would have,
by default, printed the canonical type of A as well.
As soon as you add any name qualifiers to A, the type printer would
suddenly start accurately printing the type as written. This patch
will make it print it accurately even when written without
qualifiers, so we will just print `A` for the initial example, as
the user did not really write that `foo::` namespace qualifier.
2) This patch could expose a bug in some AST matcher. Matching types
is harder to get right when there is sugar involved. For example,
if you want to match a type against being a pointer to some type A,
then you have to account for getting a type that is sugar for a
pointer to A, or being a pointer to sugar to A, or both! Usually
you would get the second part wrong, and this would work for a
very simple test where you don't use any name qualifiers, but
you would discover is broken when you do. The usual fix is to
either use the matcher which strips sugar, which is annoying
to use as for example if you match an N level pointer, you have
to put N+1 such matchers in there, beginning to end and between
all those levels. But in a lot of cases, if the property you want
to match is present in the canonical type, it's easier and faster
to just match on that... This goes with what is said in 1), if
you want to match against the name of a type, and you want
the name string to be something stable, perhaps matching on
the name of the canonical type is the better choice.
3) This patch could exposed a bug in how you get the source range of some
TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
which only looks at the given TypeLoc node. This patch introduces a new,
and more common TypeLoc node which contains no source locations on itself.
This is not an inovation here, and some other, more rare TypeLoc nodes could
also have this property, but if you use getLocalSourceRange on them, it's not
going to return any valid locations, because it doesn't have any. The right fix
here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
into the inner TypeLoc to get the source range if it doesn't find it on the
top level one. You can use getLocalSourceRange if you are really into
micro-optimizations and you have some outside knowledge that the TypeLocs you are
dealing with will always include some source location.
4) Exposed a bug somewhere in the use of the normal clang type class API, where you
have some type, you want to see if that type is some particular kind, you try a
`dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
Again, like 2), this would usually have been tested poorly with some simple tests with
no qualifications, and would have been broken had there been any other kind of type sugar,
be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.
5) It could be a bug in this patch perhaps.
Let me know if you need any help!
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
This reverts commit b7e77ff25f.
Reason: Broke sanitizer builds bots + libcxx. 'static assertion
expression is not an integral constant expression'. More details
available in the Phabricator review: https://reviews.llvm.org/D129048
This patch rewords the static assert diagnostic output. Failing a
_Static_assert in C should not report that static_assert failed. This
changes the wording to be more like GCC and uses "static assertion"
when possible instead of hard coding the name. This also changes some
instances of 'static_assert' to instead be based on the token in the
source code.
Differential Revision: https://reviews.llvm.org/D129048
Previous warning went on whenever a struct with a struct member with alignment => 16
was declared. This led to too many false positives and led to diagnostic lit failures
due to it being emitted too frequently. Only emit the warning when such a struct and
that struct contains a member that has an alignment of 16 bytes is passed to a caller
function since this is where the potential binary compatibility issue with XL 16.1.0
and older exists.
Reviewed By: sfertile, aaron.ballman
Differential Revision: https://reviews.llvm.org/D118350
This reverts commit bdc6974f92 because it
breaks all the LLDB tests that import the std module.
import-std-module/array.TestArrayFromStdModule.py
import-std-module/deque-basic.TestDequeFromStdModule.py
import-std-module/deque-dbg-info-content.TestDbgInfoContentDequeFromStdModule.py
import-std-module/forward_list.TestForwardListFromStdModule.py
import-std-module/forward_list-dbg-info-content.TestDbgInfoContentForwardListFromStdModule.py
import-std-module/list.TestListFromStdModule.py
import-std-module/list-dbg-info-content.TestDbgInfoContentListFromStdModule.py
import-std-module/queue.TestQueueFromStdModule.py
import-std-module/stack.TestStackFromStdModule.py
import-std-module/vector.TestVectorFromStdModule.py
import-std-module/vector-bool.TestVectorBoolFromStdModule.py
import-std-module/vector-dbg-info-content.TestDbgInfoContentVectorFromStdModule.py
import-std-module/vector-of-vectors.TestVectorOfVectorsFromStdModule.py
https://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/45301/
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
This reverts commit d4d47e574e.
This fixes the lldb crash that was observed by ensuring that our
friend-'template contains reference to' TreeTransform properly handles a
TemplateDecl.
This reverts commit 2f20743952 because it
triggers an assertion when building an LLDB test program:
Assertion failed: (InstantiatingSpecializations.empty() && "failed to
clean up an InstantiatingTemplate?"), function ~Sema, file
/Users/buildslave/jenkins/workspace/lldb-cmake/llvm-project/clang/lib/Sema/Sema.cpp,
line 458.
More details in https://reviews.llvm.org/D126907.
Fixes#54629.
The crash is is caused by the double template instantiation.
See the added test. Here is what happens:
- Template arguments for the partial specialization get instantiated.
- This causes instantitation into the corrensponding requires
expression.
- `TemplateInsantiator` correctly handles instantiation of parameters
inside `RequiresExprBody` and instantiates the constraint expression
inside the `NestedRequirement`.
- To build the substituted `NestedRequirement`, `TemplateInsantiator`
calls `Sema::BuildNestedRequirement` calls
`CheckConstraintSatisfaction`, which results in another template
instantiation (with empty template arguments). This seem to be an
implementation detail to handle constraint satisfaction and is not
required by the standard.
- The recursive template instantiation tries to find the parameter
inside `RequiresExprBody` and fails with the corresponding assertion.
Note that this only happens as both instantiations happen with the class
partial template specialization set as `Sema.CurContext`, which is
considered a dependent `DeclContext`.
To fix the assertion, avoid doing the recursive template instantiation
and instead evaluate resulting expressions in-place.
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D127487
This patch implements a necessary part of P0848, the overload resolution for destructors.
It is now possible to overload destructors based on constraints, and the eligible destructor
will be selected at the end of the class.
The approach this patch takes is to perform the overload resolution in Sema::ActOnFields
and to mark the selected destructor using a new property in FunctionDeclBitfields.
CXXRecordDecl::getDestructor is then modified to use this property to return the correct
destructor.
This closes https://github.com/llvm/llvm-project/issues/45614.
Reviewed By: #clang-language-wg, erichkeane
Differential Revision: https://reviews.llvm.org/D126194
Instead, just pop the cleanups at the end of the asm statement.
This fixes an assertion failure in BuildStmtExpr. It also fixes a bug
where blocks and C compound literals were destructed at the end of the
asm statement instead of at the end of the enclosing scope.
Differential Revision: https://reviews.llvm.org/D125936
When a non-const compound statement is used to initialize a constexpr pointer,
the pointed value is not const itself and cannot be folded at codegen time.
This matches GCC behavior for compound literal expr arrays.
Fix issue #39324.
Differential Revision: https://reviews.llvm.org/D124038
This includes a fix for the libc++ issue I ran across with friend
declarations not properly being identified as overloads.
This reverts commit 45c07db31c.
The flag was added when the C++20 draft did not allow for concept
caching. The final C++20 standard permits the caching, so flag is
redundant. See http://wg21.link/p2104r0.
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D125014