Currently when assertions are enabled, the cc1 flag is not
inserted into the llvmcmd section of object files with embedded
bitcode. This deviates from the normal behavior where this is
the first flag that is inserted. This error stems from incorrect
use of the function generateCC1CommandLine() which requires
manually adding in the -cc1 flag which is currently not done.
Reviewed By: jansvoboda11
Differential Revision: https://reviews.llvm.org/D130620
The method used in 4191d661c7 was fragile because it didn't consider cross-platform builds and rely on enlisting unsupported targets. Uses the host-supports-jit mechanism to make an escape path. This should fix buildbot failures happening in upstream as well as out-of-tree.
This patch enables context-sensitive analysis of multiple different calls to the same function (see the `ContextSensitiveSetBothTrueAndFalse` example in the `TransferTest` suite) by replacing the `Environment` copy-assignment with a call to the new `popCall` method, which `std::move`s some fields but specifically does not move `DeclToLoc` and `ExprToLoc` from the callee back to the caller.
To enable this, the `StorageLocation` for a given parameter needs to be stable across different calls to the same function, so this patch also improves the modeling of parameter initialization, using `ReferenceValue` when necessary (for arguments passed by reference).
This approach explicitly does not work for recursive calls, because we currently only plan to use this context-sensitive machinery to support specialized analysis models we write, not analysis of arbitrary callees.
Reviewed By: ymandel, xazax.hun
Differential Revision: https://reviews.llvm.org/D130726
After the intoduction of global destructor support, there is a possiblity to run invalid instructions in the destructor of Interpreter class. Completely disable tests in platforms with failing test cases.
Differential Revision: https://reviews.llvm.org/D130786
These statements are like switch statements in C, but without the 'case'
keyword in labels.
How labels are parsed. In UnwrappedLineParser, the program tries to
parse a statement every time it sees a colon. In TokenAnnotator, a
colon that isn't part of an expression is annotated as a label.
The token type `TT_GotoLabelColon` is added. We did not include Verilog
in the name because we thought we would eventually have to fix the
problem that case labels in C can't contain ternary conditional
expressions and we would use that token type.
The style is like below. Labels are on separate lines and indented by
default. The linked style guide also has examples where labels and the
corresponding statements are on the same lines. They are not supported
for now.
https://github.com/lowRISC/style-guides/blob/master/VerilogCodingStyle.md
```
case (state_q)
StIdle:
state_d = StA;
StA: begin
state_d = StB;
end
endcase
```
Differential Revision: https://reviews.llvm.org/D128714
Now things inside hierarchies like modules and interfaces are
indented. When the module header spans multiple lines, all except the
first line are indented as continuations. We added the property
`IsContinuation` to mark lines that should be indented this way.
In order that the colons inside square brackets don't get labeled as
`TT_ObjCMethodExpr`, we added a check to only use this type when the
language is not Verilog.
Differential Revision: https://reviews.llvm.org/D128712
Now stuff inside begin-end blocks get indented.
Some tests are moved into FormatTestVerilog.Block from
FormatTestVerilog.If because they have nothing to do with if statements.
Reviewed By: HazardyKnusperkeks, owenpan
Differential Revision: https://reviews.llvm.org/D128711
There's no a space symbol between trailing return type `auto` and left brace `{`.
The simpliest examles of code to reproduce the issue:
```
[]() -> auto {}
```
and
```
auto foo() -> auto {}
```
Depends on D130299
Reviewed By: HazardyKnusperkeks, curdeius, owenpan
Differential Revision: https://reviews.llvm.org/D130417
Fix "JIT session error: Symbols not found: [ DW.ref.__gxx_personality_v0 ] error" which happens when trying to use exceptions on ppc linux. To do this, it expands AutoClaimSymbols option in RTDyldObjectLinkingLayer to also claim weak symbols before they are tried to be resovled. In ppc linux, DW.ref symbols is emitted as weak hidden symbols in the later stage of MC pipeline. This means when using IRLayer (i.e. LLJIT), IRLayer will not claim responsibility for such symbols and RuntimeDyld will skip defining this symbol even though it couldn't resolve corresponding external symbol.
Reviewed By: sgraenitz
Differential Revision: https://reviews.llvm.org/D129175
Lambdas with trailing return type 'auto' are annotated incorrectly. It causes a misformatting. The simpliest code to reproduce is:
```
auto list = {[]() -> auto { return 0; }};
```
Fixes https://github.com/llvm/llvm-project/issues/54798
Reviewed By: HazardyKnusperkeks, owenpan, curdeius
Differential Revision: https://reviews.llvm.org/D130299
The code relied on ManagedStatic.h being included indirectly. This is
about to change as uses of ManagedStatic are removed throughout the
codebase.
Differential Revision: https://reviews.llvm.org/D130575
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
---
Troubleshooting list to deal with any breakage seen with this patch:
1) The most likely effect one would see by this patch is a change in how
a type is printed. The type printer will, by design and default,
print types as written. There are customization options there, but
not that many, and they mainly apply to how to print a type that we
somehow failed to track how it was written. This patch fixes a
problem where we failed to distinguish between a type
that was written without any elaborated-type qualifiers,
such as a 'struct'/'class' tags and name spacifiers such as 'std::',
and one that has been stripped of any 'metadata' that identifies such,
the so called canonical types.
Example:
```
namespace foo {
struct A {};
A a;
};
```
If one were to print the type of `foo::a`, prior to this patch, this
would result in `foo::A`. This is how the type printer would have,
by default, printed the canonical type of A as well.
As soon as you add any name qualifiers to A, the type printer would
suddenly start accurately printing the type as written. This patch
will make it print it accurately even when written without
qualifiers, so we will just print `A` for the initial example, as
the user did not really write that `foo::` namespace qualifier.
2) This patch could expose a bug in some AST matcher. Matching types
is harder to get right when there is sugar involved. For example,
if you want to match a type against being a pointer to some type A,
then you have to account for getting a type that is sugar for a
pointer to A, or being a pointer to sugar to A, or both! Usually
you would get the second part wrong, and this would work for a
very simple test where you don't use any name qualifiers, but
you would discover is broken when you do. The usual fix is to
either use the matcher which strips sugar, which is annoying
to use as for example if you match an N level pointer, you have
to put N+1 such matchers in there, beginning to end and between
all those levels. But in a lot of cases, if the property you want
to match is present in the canonical type, it's easier and faster
to just match on that... This goes with what is said in 1), if
you want to match against the name of a type, and you want
the name string to be something stable, perhaps matching on
the name of the canonical type is the better choice.
3) This patch could expose a bug in how you get the source range of some
TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
which only looks at the given TypeLoc node. This patch introduces a new,
and more common TypeLoc node which contains no source locations on itself.
This is not an inovation here, and some other, more rare TypeLoc nodes could
also have this property, but if you use getLocalSourceRange on them, it's not
going to return any valid locations, because it doesn't have any. The right fix
here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
into the inner TypeLoc to get the source range if it doesn't find it on the
top level one. You can use getLocalSourceRange if you are really into
micro-optimizations and you have some outside knowledge that the TypeLocs you are
dealing with will always include some source location.
4) Exposed a bug somewhere in the use of the normal clang type class API, where you
have some type, you want to see if that type is some particular kind, you try a
`dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
Again, like 2), this would usually have been tested poorly with some simple tests with
no qualifications, and would have been broken had there been any other kind of type sugar,
be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.
5) It could be a bug in this patch perhaps.
Let me know if you need any help!
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
Without the "found declaration" it is later not possible to know where the operator declaration
was brought into the scope calling it.
The initial motivation for this fix came from #55095. However, this also has an influence on
`clang -ast-dump` which now prints a `UsingShadow` attribute for operators only visible through
`using` statements. Also, clangd now correctly references the `using` statement instead of the
operator directly.
Reviewed By: shafik
Differential Revision: https://reviews.llvm.org/D129973
This patch adds initial support for context-sensitive analysis of simple functions whose definition is available in the translation unit, guarded by the `ContextSensitive` flag in the new `TransferOptions` struct. When this option is true, the `VisitCallExpr` case in the builtin transfer function has a fallthrough case which checks for a direct callee with a body. In that case, it constructs a CFG from that callee body, uses the new `pushCall` method on the `Environment` to make an environment to analyze the callee, and then calls `runDataflowAnalysis` with a `NoopAnalysis` (disabling context-sensitive analysis on that sub-analysis, to avoid problems with recursion). After the sub-analysis completes, the `Environment` from its exit block is simply assigned back to the environment at the callsite.
The `pushCall` method (which currently only supports non-method functions with some restrictions) maps the `SourceLocation`s for all the parameters to the existing source locations for the corresponding arguments from the callsite.
This patch adds a few tests to check that this context-sensitive analysis works on simple functions. More sophisticated functionality will be added later; the most important next step is to explicitly model context in some fields of the `DataflowAnalysisContext` class, as mentioned in a `FIXME` comment in the `pushCall` implementation.
Reviewed By: ymandel, xazax.hun
Differential Revision: https://reviews.llvm.org/D130306
Depends On D130305
This patch adds initial support for context-sensitive analysis of simple functions whose definition is available in the translation unit, guarded by the `ContextSensitive` flag in the new `TransferOptions` struct. When this option is true, the `VisitCallExpr` case in the builtin transfer function has a fallthrough case which checks for a direct callee with a body. In that case, it constructs a CFG from that callee body, uses the new `pushCall` method on the `Environment` to make an environment to analyze the callee, and then calls `runDataflowAnalysis` with a `NoopAnalysis` (disabling context-sensitive analysis on that sub-analysis, to avoid problems with recursion). After the sub-analysis completes, the `Environment` from its exit block is simply assigned back to the environment at the callsite.
The `pushCall` method (which currently only supports non-method functions with some restrictions) first calls `initGlobalVars`, then maps the `SourceLocation`s for all the parameters to the existing source locations for the corresponding arguments from the callsite.
This patch adds a few tests to check that this context-sensitive analysis works on simple functions. More sophisticated functionality will be added later; the most important next step is to explicitly model context in some fields of the `DataflowAnalysisContext` class, as mentioned in a `TODO` comment in the `pushCall` implementation.
Reviewed By: ymandel, xazax.hun
Differential Revision: https://reviews.llvm.org/D130306
Previously we used to desugar implications and biconditionals into
equivalent CNF/DNF as soon as possible. However, this desugaring makes
debug output (Environment::dump()) less readable than it could be.
Therefore, it makes sense to keep the sugared representation of a
boolean formula, and desugar it in the solver.
Reviewed By: sgatev, xazax.hun, wyt
Differential Revision: https://reviews.llvm.org/D130519
BooleanFormula::addClause has an invariant that a clause has no duplicated
literals. When the solver was desugaring a formula into CNF clauses, it
could construct a clause with such duplicated literals in two cases.
Reviewed By: sgatev, ymandel, xazax.hun
Differential Revision: https://reviews.llvm.org/D130522
Fix `MapLattice` API to return `std::pair<iterator, bool>`,
allowing users to detect when an element has been inserted without
performing a redundant map lookup.
Differential Revision: https://reviews.llvm.org/D130497
specialization
Previously in D120397, we've handled the linkage for function template
and its specialization. But we forgot to handle it for class templates
and their specialization. So we make it in the patch with the similar
approach.
Avoid a crash if a function is imported that has auto return type that
references to a template with an expression-type of argument that
references into the function's body.
Fixes issue #56047
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D129640
This patch connects the check for const-correctness with the new general
utility to add `const` to variables.
The code-transformation is only done, if the detected variable for const-ness
is not part of a group-declaration.
The check allows to control multiple facets of adding `const`, e.g. if pointers themself should be
marked as `const` if they are not changed.
Reviewed By: njames93
Differential Revision: https://reviews.llvm.org/D54943
llvm::sort is beneficial even when we use the iterator-based overload,
since it can optionally shuffle the elements (to detect
non-determinism). However llvm::sort is not usable everywhere, for
example, in compiler-rt.
Reviewed By: nhaehnle
Differential Revision: https://reviews.llvm.org/D130406
This patch moves `Analysis/FlowSensitive/NoopAnalysis.h` from `clang/unittests/` to `clang/include/clang/`, so that we can use it for doing context-sensitive analysis.
Reviewed By: ymandel, gribozavr2, sgatev
Differential Revision: https://reviews.llvm.org/D130304
message expressions
For an Obj-C message expression `[o m]`, the adding matcher will match
the declaration of the method `m`. This commit overloads the existing
`callee` ASTMatcher, which originally was only for C/C++ nodes but
also applies to Obj-C messages now.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D129398
Otherwise the brace was detected as a function brace, not wrong per se,
but when directly calling the lambda the calling parens were put on the
next line.
Differential Revision: https://reviews.llvm.org/D129946
[clang] Emit SARIF Diagnostics: Create clang::SarifDocumentWriter interface
Create an interface for writing SARIF documents from within clang:
The primary intent of this change is to introduce the interface
clang::SarifDocumentWriter, which allows incrementally adding
diagnostic data to a JSON backed document. The proposed interface is
not yet connected to the compiler internals, which will be covered in
future work. As such this change will not change the input/output
interface of clang.
This change also introduces the clang::FullSourceRange type that is
modeled after clang::SourceRange + clang::FullSourceLoc, this is useful
for packaging a pair of clang::SourceLocation objects with their
corresponding SourceManagers.
Previous discussions:
RFC for this change: https://lists.llvm.org/pipermail/cfe-dev/2021-March/067907.htmlhttps://lists.llvm.org/pipermail/cfe-dev/2021-July/068480.html
SARIF Standard (2.1.0):
https://docs.oasis-open.org/sarif/sarif/v2.1.0/os/sarif-v2.1.0-os.html
Differential Revision: https://reviews.llvm.org/D109701
Unfortunatly fixing leak expose use-after-free if delete more then one
Compilation for the same Driver, so I am changing validateTargetProfile
to create own Driver each time.
The test was added by D122865.
After b646f09555,
the added regression test started being formatted as-if the
multiplication `*` was a pointer. This adapts the heuristic to
distinguish between these two cases.
Reviewed By: jackhong12, curdeius, HazardyKnusperkeks, owenpan
Differential Revision: https://reviews.llvm.org/D129771
TokenManager defines Token interfaces for the clang syntax-tree. This is the level
of abstraction that the syntax-tree should use to operate on Tokens.
It decouples the syntax-tree from a particular token implementation (TokenBuffer
previously). This enables us to use a different underlying token implementation
for the syntax Leaf node -- in clang pseudoparser, we want to produce a
syntax-tree with its own pseudo::Token rather than syntax::Token.
Differential Revision: https://reviews.llvm.org/D128411
This reverts commit 7c51f02eff because it
stills breaks the LLDB tests. This was re-landed without addressing the
issue or even agreement on how to address the issue. More details and
discussion in https://reviews.llvm.org/D112374.
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
---
Troubleshooting list to deal with any breakage seen with this patch:
1) The most likely effect one would see by this patch is a change in how
a type is printed. The type printer will, by design and default,
print types as written. There are customization options there, but
not that many, and they mainly apply to how to print a type that we
somehow failed to track how it was written. This patch fixes a
problem where we failed to distinguish between a type
that was written without any elaborated-type qualifiers,
such as a 'struct'/'class' tags and name spacifiers such as 'std::',
and one that has been stripped of any 'metadata' that identifies such,
the so called canonical types.
Example:
```
namespace foo {
struct A {};
A a;
};
```
If one were to print the type of `foo::a`, prior to this patch, this
would result in `foo::A`. This is how the type printer would have,
by default, printed the canonical type of A as well.
As soon as you add any name qualifiers to A, the type printer would
suddenly start accurately printing the type as written. This patch
will make it print it accurately even when written without
qualifiers, so we will just print `A` for the initial example, as
the user did not really write that `foo::` namespace qualifier.
2) This patch could expose a bug in some AST matcher. Matching types
is harder to get right when there is sugar involved. For example,
if you want to match a type against being a pointer to some type A,
then you have to account for getting a type that is sugar for a
pointer to A, or being a pointer to sugar to A, or both! Usually
you would get the second part wrong, and this would work for a
very simple test where you don't use any name qualifiers, but
you would discover is broken when you do. The usual fix is to
either use the matcher which strips sugar, which is annoying
to use as for example if you match an N level pointer, you have
to put N+1 such matchers in there, beginning to end and between
all those levels. But in a lot of cases, if the property you want
to match is present in the canonical type, it's easier and faster
to just match on that... This goes with what is said in 1), if
you want to match against the name of a type, and you want
the name string to be something stable, perhaps matching on
the name of the canonical type is the better choice.
3) This patch could exposed a bug in how you get the source range of some
TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
which only looks at the given TypeLoc node. This patch introduces a new,
and more common TypeLoc node which contains no source locations on itself.
This is not an inovation here, and some other, more rare TypeLoc nodes could
also have this property, but if you use getLocalSourceRange on them, it's not
going to return any valid locations, because it doesn't have any. The right fix
here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
into the inner TypeLoc to get the source range if it doesn't find it on the
top level one. You can use getLocalSourceRange if you are really into
micro-optimizations and you have some outside knowledge that the TypeLocs you are
dealing with will always include some source location.
4) Exposed a bug somewhere in the use of the normal clang type class API, where you
have some type, you want to see if that type is some particular kind, you try a
`dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
Again, like 2), this would usually have been tested poorly with some simple tests with
no qualifications, and would have been broken had there been any other kind of type sugar,
be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.
5) It could be a bug in this patch perhaps.
Let me know if you need any help!
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
When removing an r_brace that is the first token of an annotated line, if the
line above ends with a line comment, clang-format generates invalid code by
merging the tokens after the r_brace into the line comment.
Fixes#56488.
Differential Revision: https://reviews.llvm.org/D129742
In method `TypeRetrievingVisitor::VisitConcreteInt`, `ASTContext::getIntTypeForBitwidth` is used to get the type for `ConcreteInt`s.
However, the getter in ASTContext cannot handle the boolean type with the bit width of 1, which will make method `SVal::getType` return a Null `Type`.
In this patch, a check for this case is added to fix this problem by returning the bool type directly when the bit width is 1.
Differential Revision: https://reviews.llvm.org/D129737
This reverts commit bdc6974f92 because it
breaks all the LLDB tests that import the std module.
import-std-module/array.TestArrayFromStdModule.py
import-std-module/deque-basic.TestDequeFromStdModule.py
import-std-module/deque-dbg-info-content.TestDbgInfoContentDequeFromStdModule.py
import-std-module/forward_list.TestForwardListFromStdModule.py
import-std-module/forward_list-dbg-info-content.TestDbgInfoContentForwardListFromStdModule.py
import-std-module/list.TestListFromStdModule.py
import-std-module/list-dbg-info-content.TestDbgInfoContentListFromStdModule.py
import-std-module/queue.TestQueueFromStdModule.py
import-std-module/stack.TestStackFromStdModule.py
import-std-module/vector.TestVectorFromStdModule.py
import-std-module/vector-bool.TestVectorBoolFromStdModule.py
import-std-module/vector-dbg-info-content.TestDbgInfoContentVectorFromStdModule.py
import-std-module/vector-of-vectors.TestVectorOfVectorsFromStdModule.py
https://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/45301/
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
MacroUnexpander applies the structural formatting of expanded lines into
UnwrappedLines to the corresponding unexpanded macro calls, resulting in
UnwrappedLines for the macro calls the user typed.
Differential Revision: https://reviews.llvm.org/D88299
Create an interface for writing SARIF documents from within clang:
The primary intent of this change is to introduce the interface
clang::SarifDocumentWriter, which allows incrementally adding
diagnostic data to a JSON backed document. The proposed interface is
not yet connected to the compiler internals, which will be covered in
future work. As such this change will not change the input/output
interface of clang.
This change also introduces the clang::FullSourceRange type that is
modeled after clang::SourceRange + clang::FullSourceLoc, this is useful
for packaging a pair of clang::SourceLocation objects with their
corresponding SourceManagers.
Previous discussions:
RFC for this change: https://lists.llvm.org/pipermail/cfe-dev/2021-March/067907.htmlhttps://lists.llvm.org/pipermail/cfe-dev/2021-July/068480.html
SARIF Standard (2.1.0):
https://docs.oasis-open.org/sarif/sarif/v2.1.0/os/sarif-v2.1.0-os.html
Differential Revision: https://reviews.llvm.org/D109701
This reverts commit 19e21887eb. I
accidentally landed the non-final version of the patch that used
decomposition declarations (not yet usable in LLVM/Clang source).
A truth assignment to atomic boolean values which satisfy `Constraints` will be returned if found by the solver.
This gives us more information which can be helpful for debugging or constructing warning messages.
Reviewed By: hlopko, gribozavr2, sgatev
Differential Revision: https://reviews.llvm.org/D129180
Treat `std::nullptr_t` as a regular scalar type to avoid tripping
assertions when analyzing code that uses `std::nullptr_t`.
Differential Revision: https://reviews.llvm.org/D129097
Break after a constructor initializer colon only if it's not followed by a
comment on the same line.
Fixes#41128.
Fixes#43246.
Differential Revision: https://reviews.llvm.org/D129057
Create an interface for writing SARIF documents from within clang:
The primary intent of this change is to introduce the interface
clang::SarifDocumentWriter, which allows incrementally adding
diagnostic data to a JSON backed document. The proposed interface is
not yet connected to the compiler internals, which will be covered in
future work. As such this change will not change the input/output
interface of clang.
This change also introduces the clang::FullSourceRange type that is
modeled after clang::SourceRange + clang::FullSourceLoc, this is useful
for packaging a pair of clang::SourceLocation objects with their
corresponding SourceManagers.
Previous discussions:
RFC for this change: https://lists.llvm.org/pipermail/cfe-dev/2021-March/067907.htmlhttps://lists.llvm.org/pipermail/cfe-dev/2021-July/068480.html
SARIF Standard (2.1.0):
https://docs.oasis-open.org/sarif/sarif/v2.1.0/os/sarif-v2.1.0-os.html
Differential Revision: https://reviews.llvm.org/D109701
Many of our tests are currently written using `TEST_F` where the test fixture class doesn't have any `SetUp` or `TearDown` methods, and just one helper method. In those cases, this patch deletes the class and pulls its method out into a standalone function, using `TEST` instead of `TEST_F`.
There are still a few test files leftover in `clang/unittests/Analysis/FlowSensitive/` that use `TEST_F`:
- `DataflowAnalysisContextTest.cpp` because the class contains a `Context` field which is used
- `DataflowEnvironmentTest.cpp` because the class contains an `Environment` field which is used
- `SolverTest.cpp` because the class contains a `Vals` field which is used
- `TypeErasedDataflowAnalysisTest.cpp` because there are several different classes which all share the same method name
Reviewed By: ymandel, sgatev
Differential Revision: https://reviews.llvm.org/D128924
This patch deletes the now-unused `SourceLocationsLattice` class, along with its containing files and surrounding helper functions and tests.
Reviewed By: xazax.hun, ymandel, sgatev, gribozavr2
Differential Revision: https://reviews.llvm.org/D128448
Followup to D128352. This patch pulls the `NoopLattice` class out from the `NoopAnalysis.h` test file into its own `NoopLattice.h` source file, and uses it to replace usage of `SourceLocationsLattice` in `UncheckedOptionalAccessModel`.
Reviewed By: ymandel, sgatev, gribozavr2, xazax.hun
Differential Revision: https://reviews.llvm.org/D128356
Followup to D128352. This patch pulls the `NoopLattice` class out from the `NoopAnalysis.h` test file into its own `NoopLattice.h` source file, and uses it to replace usage of `SourceLocationsLattice` in `UncheckedOptionalAccessModel`.
Reviewed By: ymandel, sgatev, gribozavr2, xazax.hun
Differential Revision: https://reviews.llvm.org/D128356
This patch adds an optional `PostVisitStmt` parameter to the `runTypeErasedDataflowAnalysis` function, which does one more pass over all statements in the CFG after a fixpoint is reached. It then defines a `diagnose` method for the optional model in a new `UncheckedOptionalAccessDiagnosis` class, but only integrates that into the tests and not the actual optional check for `clang-tidy`. That will be done in a followup patch.
The primary motivation is to separate the implementation of the unchecked optional access check into two parts, to allow for further refactoring of just the model part later, while leaving the checking part alone. Currently there is duplication between the `transferUnwrapCall` and `diagnoseUnwrapCall` functions, but that will be dealt with in the followup.
Because diagnostics are now all gathered into one collection rather than being populated at each program point like when computing a fixpoint, this patch removes the usage of `Pair` and `UnorderedElementsAre` from the optional model tests, and instead modifies all their expectations to simply check the stringified set of diagnostics against a single string, either `"safe"` or some concatenation of `"unsafe: input.cc:y:x"`. This is not ideal as it loses any connection to the `/*[[check]]*/` annotations in the source strings, but it does still retain the source locations from the diagnostic strings themselves.
Reviewed By: sgatev, gribozavr2, xazax.hun
Differential Revision: https://reviews.llvm.org/D127898
When a `nullptr` is assigned to a pointer variable, it is wrapped in a `ImplicitCastExpr` with cast kind `CK_NullTo(Member)Pointer`. This patch assigns singleton pointer values representing null to these expressions.
For each pointee type, a singleton null `PointerValue` is created and stored in the `NullPointerVals` map of the `DataflowAnalysisContext` class. The pointee type is retrieved from the implicit cast expression, and used to initialise the `PointeeLoc` field of the `PointerValue`. The `PointeeLoc` created is not mapped to any `Value`, reflecting the absence of value indicated by null pointers.
Reviewed By: gribozavr2, sgatev, xazax.hun
Differential Revision: https://reviews.llvm.org/D128056
This patch introduces `buildAndSubstituteFlowCondition` - given a flow condition token, this function returns the expression of constraints defining the flow condition, with values substituted where specified.
As an example:
Say we have tokens `FC1`, `FC2`, `FC3`:
```
FlowConditionConstraints: {
FC1: C1,
FC2: C2,
FC3: (FC1 v FC2) ^ C3,
}
```
`buildAndSubstituteFlowCondition(FC3, /*Substitutions:*/{{C1 -> C1'}})`
returns a value corresponding to `(C1' v C2) ^ C3`.
Note:
This function returns the flow condition expressed directly as its constraints, which differs to how we currently represent the flow condition as a token bound to a set of constraints and dependencies. Making the representation consistent may be an option to consider in the future.
Depends On D128357
Reviewed By: gribozavr2, xazax.hun
Differential Revision: https://reviews.llvm.org/D128363
This patch is a part of the upstreaming efforts. Cling has the ability to spawn
child interpreters (mainly for auto completions). The child interpreter import
Decls using the ASTImporter which casuses the assertion here
65eb74e94b/clang/include/clang/Basic/SourceLocation.h (L322)
The patch is co-developed with V. Vassilev.
Differential revision: https://reviews.llvm.org/D88780
In interactive C++ it is convenient to roll back to a previous state of the
compiler. For example:
clang-repl> int x = 42;
clang-repl> %undo
clang-repl> float x = 24 // not an error
To support this, the patch extends the functionality used to recover from
errors and adds functionality to recover the low-level execution infrastructure.
The current implementation is based on watermarks. It exploits the fact that
at each incremental input the underlying compiler infrastructure is in a valid
state. We can only go N incremental inputs back to a previous valid state. We do
not need and do not do any further dependency tracking.
This patch was co-developed with V. Vassilev, relies on the past work of Purva
Chaudhari in clang-repl and is inspired by the past work on the same feature
in the Cling interpreter.
Co-authored-by: Purva-Chaudhari <purva.chaudhari02@gmail.com>
Co-authored-by: Vassil Vassilev <v.g.vassilev@gmail.com>
Signed-off-by: Jun Zhang <jun@junz.org>
Verilog uses the backtick instead of the hash. In this revision
backticks are lexed manually and then get labeled as hashes so the logic
for handling C preprocessor stuff don't have to change. Hashes get
labeled as identifiers for Verilog-specific stuff like delays.
Reviewed By: HazardyKnusperkeks
Differential Revision: https://reviews.llvm.org/D124749
This patch mainly handles treating `begin` as block openers.
While and for statements will be handled in another patch.
Reviewed By: HazardyKnusperkeks
Differential Revision: https://reviews.llvm.org/D123450
`equivalentBoolValues` compares equivalence between two booleans. The current implementation does not consider constraints imposed by flow conditions on the booleans and its subvalues.
Depends On D128520
Reviewed By: gribozavr2, xazax.hun
Differential Revision: https://reviews.llvm.org/D128521
To keep functionality of creating boolean expressions in a consistent location.
Depends On D128357
Reviewed By: gribozavr2, sgatev, xazax.hun
Differential Revision: https://reviews.llvm.org/D128519
This patch implements soft reset and adds tests for soft reset success of the
diagnostics engine. This allows us to recover from errors in clang-repl without
resetting the pragma handlers' state.
Differential revision: https://reviews.llvm.org/D126183
Reland of D128467. This version replaces `return {};` with `return Result();`, since the former failed on GCC with `Result = void`.
Reviewed By: gribozavr2
Differential Revision: https://reviews.llvm.org/D128533
This patch adds another `typename` parameter to `MatchSwitch` class: `Result` (defaults to `void`), corresponding to the return type of the function. This necessitates a couple minor changes to the `MatchSwitchBuilder` class, and is tested via a new `ReturnNonVoid` test in `clang/unittests/Analysis/FlowSensitive/MatchSwitchTest.cpp`.
Reviewed By: gribozavr2, sgatev, xazax.hun
Differential Revision: https://reviews.llvm.org/D128467
Create an interface for writing SARIF documents from within clang:
The primary intent of this change is to introduce the interface
clang::SarifDocumentWriter, which allows incrementally adding
diagnostic data to a JSON backed document. The proposed interface is
not yet connected to the compiler internals, which will be covered in
future work. As such this change will not change the input/output
interface of clang.
This change also introduces the clang::FullSourceRange type that is
modeled after clang::SourceRange + clang::FullSourceLoc, this is useful
for packaging a pair of clang::SourceLocation objects with their
corresponding SourceManagers.
Previous discussions:
RFC for this change: https://lists.llvm.org/pipermail/cfe-dev/2021-March/067907.htmlhttps://lists.llvm.org/pipermail/cfe-dev/2021-July/068480.html
SARIF Standard (2.1.0):
https://docs.oasis-open.org/sarif/sarif/v2.1.0/os/sarif-v2.1.0-os.html
Differential Revision: https://reviews.llvm.org/D109701
This reverts commit 7aac15d5df.
Only updates the tests, as these statements are still part of the CFG
and its just the pretty printer policy that changes. Hopefully this
shouldn't affect any analysis.
Add support for correlated branches to the std::optional dataflow model.
Differential Revision: https://reviews.llvm.org/D125931
Reviewed-by: ymandel, xazax.hun
We distinguish between the referent location for `ReferenceValue` and pointee location for `PointerValue`. The former must be non-empty but the latter may be empty in the case of a `nullptr`
Reviewed By: gribozavr2, sgatev
Differential Revision: https://reviews.llvm.org/D127745
The AST of a BindingDecl in case of tuple like structures wasn't
properly printed. For these bidnings there is information stored
in BindingDecl::getHoldingVar(), and this information was't
printed in the AST-dump.
Differential Revision: https://reviews.llvm.org/D126131
this patch is the continuation of my previous patch regarding the ImportError in ASTImportError.h
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D125340
Call mightFitOneOneline() on the line before the closing brace only
if it is at the level of the block.
Differential Revision: https://reviews.llvm.org/D127614
Currently the unchecked-optional-access model fails on this example:
#include <memory>
#include <optional>
void foo() {
std::unique_ptr<std::optional<float>> x;
*x = std::nullopt;
}
You can verify the failure by saving the file as `foo.cpp` and running this command:
clang-tidy -checks='-*,bugprone-unchecked-optional-access' foo.cpp -- -std=c++17
The failing `assert` is in the `transferAssignment` function of the `UncheckedOptionalAccessModel.cpp` file:
assert(OptionalLoc != nullptr);
The symptom can be treated by replacing that `assert` with an early `return`:
if (OptionalLoc == nullptr)
return;
That would be better anyway since we cannot expect to always cover all possible LHS expressions, but it is out of scope for this patch and left as a followup.
Note that the failure did not occur on this very similar example:
#include <optional>
template <typename T>
struct smart_ptr {
T& operator*() &;
T* operator->();
};
void foo() {
smart_ptr<std::optional<float>> x;
*x = std::nullopt;
}
The difference is caused by the `isCallReturningOptional` matcher, which was previously checking the `functionDecl` of the `callee`. This patch changes it to instead use `hasType` directly on the call expression, fixing the failure for the `std::unique_ptr` example above.
Reviewed By: sgatev
Differential Revision: https://reviews.llvm.org/D127434
Fix a case of importing a function with auto return type
that is resolved with a type template argument that is declared
inside the function.
Fixes#55500
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D127396
This patch adds partial support for tracking (i.e. modeling) the contents of an
optional value. Specifically, it supports tracking the value after it is
accessed. We leave tracking constructed/assigned contents to a future patch.
Differential Revision: https://reviews.llvm.org/D124932
The driver stripts the first argument. Without the compiler name, the
test depends on whether GCC_INSTALL_PREFIX is set or not.
See https://reviews.llvm.org/D125862
This patch precedes a future patch to make PointeeLoc for PointerValue possibly empty (for nullptr), by using a pointer instead of a reference type.
ReferenceValue should maintain a non-empty PointeeLoc reference.
Reviewed By: gribozavr2
Differential Revision: https://reviews.llvm.org/D127312
This patch moves the implementation of synthetic properties from the StructValue class into the Value base class so that it can be used across all Value instances.
Reviewed By: gribozavr2, ymandel, sgatev, xazax.hun
Differential Revision: https://reviews.llvm.org/D127196
Previously, type aliases were not handled (and resulted in an assertion
firing). This patch generalizes the model to consider aliases everywhere (a
previous patch already considered aliases for optional-returning functions).
Differential Revision: https://reviews.llvm.org/D126972
Instead of adding all devtoolset and gcc-toolset prefixes to the list of
prefixes, just scan the /opt/rh/ directory for the one with the highest
version number and only add that one.
Differential Revision: https://reviews.llvm.org/D125862
The function promises to canonicalize the path, but neglected to do so
for the root component.
For example, calling remove_dots("/tmp/foo.c", Style::windows_backslash)
resulted in "/tmp\foo.c". Now it produces "\tmp\foo.c".
Also fix FIXME in the corresponding test.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D126412
This reverts commit d374b65f2d.
The changes lose AST fidelity (reported in #55778), but also may be
improperly dropping _Atomic qualifiers. I am rolling the changes back
until I've finished discussions in WG14 about the proper resolution to
DR423.
This is part of the implementation of the dataflow analysis framework.
See "[RFC] A dataflow analysis framework for Clang AST" on cfe-dev.
Differential Revision: https://reviews.llvm.org/D120495
Reviewed-by: ymandel, xazax.hun
This is to avoid err_target_unknown_abi which is caused by use default TargetTriple instead of shader model target triple.
Reviewed By: beanz
Differential Revision: https://reviews.llvm.org/D125585
Currently, we assert that `CXXCtorInitializer`s are field initializers. Replace
the assertion with an early return. Otherwise, we crash every time we process a
constructor with a non-field (e.g. base class) initializer.
Differential Revision: https://reviews.llvm.org/D126419