When running `target module lookup` command, show the name of absolute
symbols. Also fix indentation issue after printing an absolute symbol.
Reviewed By: clayborg, DavidSpickett
Differential Revision: https://reviews.llvm.org/D134516
This adds a line break between each result address in the output of the
lldb command `target modules lookup`. Before this change, a new address
result will be printed on the same line as the summary of the last
result, making the output difficult to view.
Also adds a test for this command.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D134111
Some time ago, a refactor (1153dc960) broke completion for assigning settings
values (`settings set`). This was most annoying for enum settings, where you'd
have to get the valid enum names separately.
This restores the logic in the post-refactor completion function, as well as
adding a test to catch future regressions.
Differential Revision: https://reviews.llvm.org/D134515
There are two conditions for the loop exit. Either we hit LLDB_INVALID_ADDRESS
or the ABI tells us we are beyond mappable memory.
I made a mistake in that second part that meant if you had no ABI plugin
--all would stop on the first loop and return nothing.
If there's no ABI plugin we should only check for LLDB_INVALID_ADDRESS.
Depends on D134029
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D134030
When I wrote the initial version I forgot that a region being
unmapped is not an error. There are real errors that we don't
want to hide, such as the remote not supporting the
qMemoryRegionInfo packet (gdbserver does not).
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D134029
- Merge pairs like `eFormatCategoryItemSummary` and
`eFormatCategoryItemRegexSummary` into a single value. See explanation
below.
- Rename `eFormatCategoryItemValue` to `eFormatCategoryItemFormat`. This
makes the enum match the names used elsewhere for formatter kinds
(format, summary, filter, synth).
- Delete unused values `eFormatCategoryItemValidator` and
`eFormatCategoryItemRegexValidator`.
This enum is only used to reuse some code in CommandObjectType.cpp. For
example, instead of having separate implementations for `type summary
delete`, `type format delete`, and so on, there's a single generic
implementation that takes an enum value, and then the specific commands
derive from it and set the right flags for the specific kind of
formatter.
Even though the enum distinguishes between regular and regex matches for
every kind of formatter, this distinction is never used: enum values are
always specified in pairs like
`eFormatCategoryItemSummary | eFormatCategoryItemRegexSummary`.
This causes some ugly code duplication in TypeCategory.cpp. In order to
handle every flag combination some code appears 8 times:
{format, summary, synth, filter} x {exact, regex}
Differential Revision: https://reviews.llvm.org/D134244
Summary:
Many times when debugging variables might not be available even though a user can successfully set breakpoints and stops somewhere. Letting the user know will help users fix these kinds of issues and have a better debugging experience.
Examples of this include:
- enabling -gline-tables-only and being able to set file and line breakpoints and yet see no variables
- unable to open object file for DWARF in .o file debugging for darwin targets due to modification time mismatch or not being able to locate the N_OSO file.
This patch adds an new API to SBValueList:
lldb::SBError lldb::SBValueList::GetError();
object so that if you request a stack frame's variables using SBValueList SBFrame::GetVariables(...), you can get an error the describes why the variables were not available.
This patch adds the ability to get an error back when requesting variables from a lldb_private::StackFrame when calling GetVariableList.
It also now shows an error in response to "frame variable" if we have debug info and are unable to get varialbes due to an error as mentioned above:
(lldb) frame variable
error: "a.o" object from the "/tmp/libfoo.a" archive: either the .o file doesn't exist in the archive or the modification time (0x63111541) of the .o file doesn't match
Reviewers: labath JDevlieghere aadsm yinghuitan jdoerfert sscalpone
Subscribers:
Differential Revision: https://reviews.llvm.org/D133164
Many times when debugging variables might not be available even though a user can successfully set breakpoints and stops somewhere. Letting the user know will help users fix these kinds of issues and have a better debugging experience.
Examples of this include:
- enabling -gline-tables-only and being able to set file and line breakpoints and yet see no variables
- unable to open object file for DWARF in .o file debugging for darwin targets due to modification time mismatch or not being able to locate the N_OSO file.
This patch adds an new API to SBValueList:
lldb::SBError lldb::SBValueList::GetError();
object so that if you request a stack frame's variables using SBValueList SBFrame::GetVariables(...), you can get an error the describes why the variables were not available.
This patch adds the ability to get an error back when requesting variables from a lldb_private::StackFrame when calling GetVariableList.
It also now shows an error in response to "frame variable" if we have debug info and are unable to get varialbes due to an error as mentioned above:
(lldb) frame variable
error: "a.o" object from the "/tmp/libfoo.a" archive: either the .o file doesn't exist in the archive or the modification time (0x63111541) of the .o file doesn't match
Differential Revision: https://reviews.llvm.org/D133164
Symbols that have the section index of SHN_ABS were previously creating extra top level sections that contained the value of the symbol as if the symbol's value was an address. As far as I can tell, these symbol's values are not addresses, even if they do have a size. To make matters worse, adding these extra sections can stop address lookups from succeeding if the symbol's value + size overlaps with an existing section as these sections get mapped into memory when the image is loaded by the dynamic loader. This can cause stack frames to appear empty as the address lookup fails completely.
This patch:
- doesn't create a section for any SHN_ABS symbols
- makes symbols that are absolute have values that are not addresses
- add accessors to SBSymbol to get the value and size of a symbol as raw integers. Prevoiusly there was no way to access a symbol's value from a SBSymbol because the only accessors were:
SBAddress SBSymbol::GetStartAddress();
SBAddress SBSymbol::GetEndAddress();
and these accessors would return an invalid SBAddress if the symbol's value wasn't an address
- Adds a test to ensure no ".absolute.<symbol-name>" sections are created
- Adds a test to test the new SBSymbol APIs
Differential Revision: https://reviews.llvm.org/D131705
The per-PSB packet decoding logic was wrong because it was assuming that pt_insn_get_sync_offset was being udpated after every PSB. Silly me, that is not true. It returns the offset of the PSB packet after invoking pt_insn_sync_forward regardless of how many PSBs are visited later. Instead, I'm now following the approach described in https://github.com/intel/libipt/blob/master/doc/howto_libipt.md#parallel-decode for parallel decoding, which is basically what we need.
A nasty error that happened because of this is that when we had two PSBs (A and B), the following was happening
1. PSB A was processed all the way up to the end of the trace, which includes PSB B.
2. PSB B was then processed until the end of the trace.
The instructions emitted by step 2. were also emitted as part of step 1. so our trace had duplicated chunks. This problem becomes worse when you many PSBs.
As part of making sure this diff is correct, I added some other features that are very useful.
- Added a "synchronization point" event to the TraceCursor, so we can inspect when PSBs are emitted.
- Removed the single-thread decoder. Now the per-cpu decoder and single-thread decoder use the same code paths.
- Use the query decoder to fetch PSBs and timestamps. It turns out that the pt_insn_sync_forward of the instruction decoder can move past several PSBs (this means that we could skip some TSCs). On the other hand, the pt_query_sync_forward method doesn't skip PSBs, so we can get more accurate sync events and timing information.
- Turned LibiptDecoder into PSBBlockDecoder, which decodes single PSB blocks. It is the fundamental processing unit for decoding.
- Added many comments, asserts and improved error handling for clarity.
- Improved DecodeSystemWideTraceForThread so that a TSC is emitted always before a cpu change event. This was a bug that was annoying me before.
- SplitTraceInContinuousExecutions and FindLowestTSCInTrace are now using the query decoder, which can identify precisely each PSB along with their TSCs.
- Added an "only-events" option to the trace dumper to inspect only events.
I did extensive testing and I think we should have an in-house testing CI. The LLVM buildbots are not capable of supporting testing post-mortem traces of hundreds of megabytes. I'll leave that for later, but at least for now the current tests were able to catch most of the issues I encountered when doing this task.
A sample output of a program that I was single stepping is the following. You can see that only one PSB is emitted even though stepping happened!
```
thread #1: tid = 3578223
0: (event) trace synchronization point [offset = 0x0xef0]
a.out`main + 20 at main.cpp:29:20
1: 0x0000000000402479 leaq -0x1210(%rbp), %rax
2: (event) software disabled tracing
3: 0x0000000000402480 movq %rax, %rdi
4: (event) software disabled tracing
5: (event) software disabled tracing
6: 0x0000000000402483 callq 0x403bd4 ; std::vector<int, std::allocator<int>>::vector at stl_vector.h:391:7
7: (event) software disabled tracing
a.out`std::vector<int, std::allocator<int>>::vector() at stl_vector.h:391:7
8: 0x0000000000403bd4 pushq %rbp
9: (event) software disabled tracing
10: 0x0000000000403bd5 movq %rsp, %rbp
11: (event) software disabled tracing
```
This is another trace of a long program with a few PSBs.
```
(lldb) thread trace dump instructions -E -f thread #1: tid = 3603082
0: (event) trace synchronization point [offset = 0x0x80]
47417: (event) software disabled tracing
129231: (event) trace synchronization point [offset = 0x0x800]
146747: (event) software disabled tracing
246076: (event) software disabled tracing
259068: (event) trace synchronization point [offset = 0x0xf78]
259276: (event) software disabled tracing
259278: (event) software disabled tracing
no more data
```
Differential Revision: https://reviews.llvm.org/D131630
Add bindings for the `TraceCursor` to allow for programatic traversal of
traces.
This diff adds bindings for all public `TraceCursor` methods except
`GetHwClock` and also adds `SBTrace::CreateNewCursor`. A new unittest
has been added to TestTraceLoad.py that uses the new `SBTraceCursor` API
to test that the sequential and random access APIs of the `TraceCursor`
are equivalent.
This diff depends on D130925.
Test Plan:
`ninja lldb-dotest && ./bin/lldb-dotest -p TestTraceLoad`
Differential Revision: https://reviews.llvm.org/D130930
The use of `std::unique_ptr` with `TraceCursor` adds unnecessary complexity to adding `SBTraceCursor` bindings
Specifically, since `TraceCursor` is an abstract class there's no clean
way to provide "deep clone" semantics for `TraceCursorUP` short of
creating a pure virtual `clone()` method (afaict).
After discussing with @wallace, we decided there is no strong reason to
favor wrapping `TraceCursor` with `std::unique_ptr` over `std::shared_ptr`, thus this diff
replaces all usages of `std::unique_ptr<TraceCursor>` with `std::shared_ptr<TraceCursor>`.
This sets the stage for future diffs to introduce `SBTraceCursor`
bindings in a more clean fashion.
Test Plan:
Differential Revision: https://reviews.llvm.org/D130925
Resubmission of https://reviews.llvm.org/D130309 with the 2 patches that fixed the linux buildbot, and new windows fixes.
The FileSpec APIs allow users to modify instance variables directly by getting a non const reference to the directory and filename instance variables. This makes it impossible to control all of the times the FileSpec object is modified so we can clear cached member variables like m_resolved and with an upcoming patch caching if the file is relative or absolute. This patch modifies the APIs of FileSpec so no one can modify the directory or filename instance variables directly by adding set accessors and by removing the get accessors that are non const.
Many clients were using FileSpec::GetCString(...) which returned a unique C string from a ConstString'ified version of the result of GetPath() which returned a std::string. This caused many locations to use this convenient function incorrectly and could cause many strings to be added to the constant string pool that didn't need to. Most clients were converted to using FileSpec::GetPath().c_str() when possible. Other clients were modified to use the newly renamed version of this function which returns an actualy ConstString:
ConstString FileSpec::GetPathAsConstString(bool denormalize = true) const;
This avoids the issue where people were getting an already uniqued "const char *" that came from a ConstString only to put the "const char *" back into a "ConstString" object. By returning the ConstString instead of a "const char *" clients can be more efficient with the result.
The patch:
- Removes the non const GetDirectory() and GetFilename() get accessors
- Adds set accessors to replace the above functions: SetDirectory() and SetFilename().
- Adds ClearDirectory() and ClearFilename() to replace usage of the FileSpec::GetDirectory().Clear()/FileSpec::GetFilename().Clear() call sites
- Fixed all incorrect usage of FileSpec::GetCString() to use FileSpec::GetPath().c_str() where appropriate, and updated other call sites that wanted a ConstString to use the newly returned ConstString appropriately and efficiently.
Differential Revision: https://reviews.llvm.org/D130549
The DumpDataExtractor function had two branches for printing floating
point values. One branch (APFloat) was used if we had a Target object
around and could query it for the appropriate semantics. If we didn't
have a Target, we used host operations to read and format the value.
This patch changes second path to use APFloat as well. To make it work,
I pick reasonable defaults for different byte size. Notably, I did not
include x87 long double in that list (as it is ambibuous and
architecture-specific). This exposed a bug where we were printing
register values using the target-less branch, even though the registers
definitely belong to a target, and we had it available. Fixing this
prompted the update of several tests for register values due to slightly
different floating point outputs.
The most dubious aspect of this patch is the change in
TypeSystemClang::GetFloatTypeSemantics to recognize `10` as a valid size
for x87 long double. This was necessary because because sizeof(long
double) on x86_64 is 16 even though it only holds 10 bytes of useful
data. This generalizes the hackaround present in the target-free branch
of the dumping function.
Differential Revision: https://reviews.llvm.org/D129750
The FileSpect APIs allow users to modify instance variables directly by getting a non const reference to the directory and filename instance variables. This makes it impossibly to control all of the times the FileSpec object is modified so we can clear the cache. This patch modifies the APIs of FileSpec so no one can modify the directory or filename directly by adding set accessors and by removing the get accessors that are non const.
Many clients were using FileSpec::GetCString(...) which returned a unique C string from a ConstString'ified version of the result of GetPath() which returned a std::string. This caused many locations to use this convenient function incorrectly and could cause many strings to be added to the constant string pool that didn't need to. Most clients were converted to using FileSpec::GetPath().c_str() when possible. Other clients were modified to use the newly renamed version of this function which returns an actualy ConstString:
ConstString FileSpec::GetPathAsConstString(bool denormalize = true) const;
This avoids the issue where people were getting an already uniqued "const char *" that came from a ConstString only to put the "const char *" back into a "ConstString" object. By returning the ConstString instead of a "const char *" clients can be more efficient with the result.
The patch:
- Removes the non const GetDirectory() and GetFilename() get accessors
- Adds set accessors to replace the above functions: SetDirectory() and SetFilename().
- Adds ClearDirectory() and ClearFilename() to replace usage of the FileSpec::GetDirectory().Clear()/FileSpec::GetFilename().Clear() call sites
- Fixed all incorrect usage of FileSpec::GetCString() to use FileSpec::GetPath().c_str() where appropriate, and updated other call sites that wanted a ConstString to use the newly returned ConstString appropriately and efficiently.
Differential Revision: https://reviews.llvm.org/D130309
Extract a bit of copy/pasted regex filtering logic into a separate
function and simplify it a little bit.
Differential Revision: https://reviews.llvm.org/D130219
Refactor the command option enum values and the command argument table
to connect the two. This has two benefits:
- We guarantee that two options that use the same argument type have
the same accepted values.
- We can print the enum values and their description in the help
output. (D129707)
Differential revision: https://reviews.llvm.org/D129703
Add `pcm-info` to the `target module dump` subcommands.
This dump command shows information about clang .pcm files. This command
effectively runs `clang -module-file-info` and produces identical output.
The .pcm file format is tightly coupled to the clang version. The clang
embedded in lldb is not guaranteed to match the version of the clang executable
available on the local system.
There have been times when I've needed to view the details about a .pcm file
produced by lldb's embedded clang, but because the clang executable was a
slightly different version, the `-module-file-info` invocation failed. With
this command, users can inspect .pcm files generated by lldb too.
Differential Revision: https://reviews.llvm.org/D129456
Thanks to ymeng@fb.com for coming up with this change.
`thread trace dump info` can dump some metrics that can be useful for
analyzing the performance and quality of a trace. This diff adds a --json
option for dumping this information in json format that can be easily
understood my machines.
Differential Revision: https://reviews.llvm.org/D129332
A trace bundle contains many trace files, and, in the case of intel pt, the
largest files are often the context switch traces because they are not
compressed by default. As a way to improve this, I'm adding a --compact option
to the `trace save` command that filters out unwanted processes from the
context switch traces. Eventually we can do the same for intel pt traces as
well.
Differential Revision: https://reviews.llvm.org/D129239
The requirements for "thread until <line number>" are:
a) If any code contributed by <line number> or the nearest subsequent of <line number> is executed before leaving the function, stop
b) If you end up leaving the function w/o triggering (a), then stop
In case of (a), since the <line number> may have multiple entries in the line table and the compiler might have scheduled/moved the relevant code across, and the lldb does not know the control flow, set breakpoints on all the line table entries of best match of <line number> i.e. exact or the nearest subsequent line.
Along with the above, currently, CommandObjectThreadUntil is also setting the breakpoints on all the subsequent line numbers after the best match and this latter part is wrong.
This issue is discussed at http://lists.llvm.org/pipermail/lldb-dev/2018-August/013979.html.
In fact, currently `TestStepUntil.py` is not actually testing step until scenarios and `test_missing_one` test fails without this patch if tests are made to run. Fixed the test as well.
Reviewed By: jingham
Differential Revision: https://reviews.llvm.org/D50304
We want to include events with metadata, like context switches, and this
requires the API to handle events with payloads (e.g. information about
such context switches). Besides this, we want to support multiple
similar events between two consecutive instructions, like multiple
context switches. However, the current implementation is not good for this because
we are defining events as bitmask enums associated with specific
instructions. Thus, we need to decouple instructions from events and
make events actual items in the trace, just like instructions and
errors.
- Add accessors in the TraceCursor to know if an item is an event or not
- Modify from the TraceDumper all the way to DecodedThread to support
- Renamed the paused event to disabled.
- Improved the tsc handling logic. I was using an API for getting the tsc from libipt, but that was an overkill that should be used when not processing events manually, but as we are already processing events, we can more easily get the tscs.
event items. Fortunately this simplified many things
- As part of this refactor, I also fixed and long stating issue, which is that some non decoding errors were being inserted in the decoded thread. I changed this so that TraceIntelPT::Decode returns an error if the decoder couldn't be set up proplerly. Then, errors within a trace are actual anomalies found in between instrutions.
All test pass
Differential Revision: https://reviews.llvm.org/D128576
https://reviews.llvm.org/D128453 recently added some safety checks for
command arguments. Unfortunately, some few commands started failing due
to that, and this diff fixes it. But fortunately, the fix is trivial, which is
simply declaring the argument that these commands will receive.
Differential Revision: https://reviews.llvm.org/D128775
The current way ot traversing the cursor is a bit uncommon and it can't handle empty traces, in fact, its invariant is that it shold always point to a valid item. This diff simplifies the cursor API and allows it to point to invalid items, thus being able to handle empty traces or to know it ran out of data.
- Removed all the granularity functionalities, because we are not actually making use of that. We can bring them back when they are actually needed.
- change the looping logic to the following:
```
for (; cursor->HasValue(); cursor->Next()) {
if (cursor->IsError()) {
.. do something for error
continue;
}
.. do something for instruction
}
```
- added a HasValue method that can be used to identify if the cursor ran out of data, the trace is empty, or the user tried to move to an invalid position via SetId() or Seek()
- made several simplifications to severals parts of the code.
Differential Revision: https://reviews.llvm.org/D128543
This is currently being done in an ad hoc way, and so for some
commands it isn't being checked. We have the info to make this check,
since commands are supposed to add their arguments to the m_arguments
field of the CommandObject. This change uses that info to check whether
the command received arguments in error.
A handful of commands weren't defining their argument types, I also had
to fix them. And a bunch of commands were checking for arguments by
hand, so I removed those checks in favor of the CommandObject one. That
also meant I had to change some tests that were checking for the ad hoc
error outputs.
Differential Revision: https://reviews.llvm.org/D128453
Add a log dump command to dump logs to a file. This only works for
channels that have a log handler associated that supports dumping. For
now that's limited to the circular log handler, but more could be added
in the future.
Differential revision: https://reviews.llvm.org/D128557
This patch adds a new flag to `log enable`, allowing the user to specify
a custom log handler. In addition to the default (stream) handler, this
allows using the circular log handler (which logs to a fixed size,
in-memory circular buffer) as well as the system log handler (which logs
to the operating system log).
Differential revision: https://reviews.llvm.org/D128323
The requirements for "thread until <line number>" are:
a) If any code contributed by <line number> or the nearest subsequent of <line number> is executed before leaving the function, stop
b) If you end up leaving the function w/o triggering (a), then stop
In case of (a), since the <line number> may have multiple entries in the line table and the compiler might have scheduled/moved the relevant code across, and the lldb does not know the control flow, set breakpoints on all the line table entries of best match of <line number> i.e. exact or the nearest subsequent line.
Along with the above, currently, CommandObjectThreadUntil is also setting the breakpoints on all the subsequent line numbers after the best match and this latter part is wrong.
This issue is discussed at http://lists.llvm.org/pipermail/lldb-dev/2018-August/013979.html.
In fact, currently `TestStepUntil.py` is not actually testing step until scenarios and `test_missing_one` test fails without this patch if tests are made to run. Fixed the test as well.
Reviewed By: jingham
Differential Revision: https://reviews.llvm.org/D50304
As previously discussed with @jj10306, we didn't really have a name for
the post-mortem (or offline) trace session representation, which is in
fact a folder with a bunch of files. We decided to call this folder
"trace bundle", and the main JSON file in it "trace bundle description
file". This naming is pretty decent, so I'm refactoring all the existing
code to account for that.
Differential Revision: https://reviews.llvm.org/D128484
Drop the thread-safe flag and make the locking strategy the
responsibility of the individual log handler.
Previously we got away with a non-thread safe mode because we were using
unbuffered streams that rely on the underlying syscalls/OS for
synchronization. With the introduction of log handlers, we can have
arbitrary logic involved in writing out the logs. With this patch the
log handlers can pick the most appropriate locking strategy for their
particular implementation.
Differential revision: https://reviews.llvm.org/D127922
This patch adds a buffered logging mode to lldb. A buffer size can be
passed to `log enable` with the -b flag. If no buffer size is specified,
logging is unbuffered.
Differential revision: https://reviews.llvm.org/D127986
passed. I was passing the empty list of breakponts to the
VerifyBreakpointList routine, but that treats empty as "choose
the default breakpoint" which we don't want here.
In order to provide simple scripting support on top of instruction traces, a simple solution is to enhance the `dump instructions` command and allow printing in json and directly to a file. The format is verbose and not space efficient, but it's not supposed to be used for really large traces, in which case the TraceCursor API is the way to go.
- add a -j option for printing the dump in json
- add a -J option for pretty printing the json output
- add a -F option for specifying an output file
- add a -a option for dumping all the instructions available starting at the initial point configured with the other flags
- add tests for all cases
- refactored the instruction dumper and abstracted the actual "printing" logic. There are two writer implementations: CLI and JSON. This made the dumper itself much more readable and maintanable
sample output:
```
(lldb) thread trace dump instructions -t -a --id 100 -J
[
{
"id": 100,
"tsc": "43591204528448966"
"loadAddress": "0x407a91",
"module": "a.out",
"symbol": "void std::deque<Foo, std::allocator<Foo>>::_M_push_back_aux<Foo>(Foo&&)",
"mnemonic": "movq",
"source": "/usr/include/c++/8/bits/deque.tcc",
"line": 492,
"column": 30
},
...
```
Differential Revision: https://reviews.llvm.org/D128316