Profiles show that `DWARFUnit::ExtractUnitDIENoDwoIfNeeded` is both high firing (tens of thousands of calls) and fast running (15 µs mean).
Timers like this are noise and load for profiling systems, and can be removed.
rdar://100326595
Differential Revision: https://reviews.llvm.org/D134920
Profiles show that `SymbolFileDWARF::FindFunctions` is both high firing (many thousands of calls) and fast running (35 µs mean).
Timers like this are noise and load for profiling systems, and can be removed.
rdar://100326595
Differential Revision: https://reviews.llvm.org/D134922
This change fixes two issues in ValueObject::GetExpressionPath method:
1. Accessing members of struct references used to produce expression
paths such as "str.&str.member" (instead of the expected
"str.member"). This is fixed by assigning the flag tha the child
value is a dereference when calling Dereference() on references
and adjusting logic in expression path creation.
2. If the parent of member access is dereference, the produced
expression path was "*(ptr).member". This is incorrect, since it
dereferences the member instead of the pointer. This is fixed by
wrapping dereference expression into parenthesis, resulting with
"(*(ptr)).member".
Reviewed By: werat, clayborg
Differential Revision: https://reviews.llvm.org/D132734
In `ProcessWindows::OnDebuggerConnected` (triggered from
`CREATE_PROCESS_DEBUG_EVENT`), we should always call
`Target::SetExecutableModule` regardless of whether LLDB has already
preloaded the executable modules. `SetExecutableModule` has the side
effect of clearing the module list of the Target, which help make sure
that module #0 is the executable module and the rest of the modules are
listed according to the DLL load order in the process (technically this
has no real consequences but it seems to make more sense anyway.) It
also fixes an issue where the modules preloaded by LLDB will be
duplicated when the debuggee process actually loads the DLL.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D134636
Now that we display an error when users try to get variables, but something in the debug info is preventing variables from showing up, track this with a new bool in each module's statistic information named "debugInfoHadVariableErrors".
This patch modifies the code to track when we have variable errors in a module and adds accessors to get/set this value. This value is used in the module statistics and we added a test to verify this value gets set correctly.
Differential Revision: https://reviews.llvm.org/D134508
All callers have been converted to the optional version.
Depends on D134540
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D134541
Both LLD and GNU ld write global/static variables to the COFF symbol
table with `IMAGE_SYM_TYPE_NULL` and `IMAGE_SYM_DTYPE_NULL` type. Map
these symbols as 'Data' type in the symtab to allow these symbols to be
used in expressions and printable.
Reviewed By: labath, DavidSpickett
Differential Revision: https://reviews.llvm.org/D134585
Forwarder exports do not point to a real function or variable. Instead
they point to a string describing which DLL and symbol to forward to.
Any imports which uses them will be redirected by the loader
transparently. These symbols do not have much use in LLDB, but keep them
just in case someone find it useful. Also set a synthesized name with
the forwarder string for informational purpose.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D134518
If a symbol is the same as an export symbol, mark it as 'Additional' to
prevent the duplicated symbol from being repeated in some commands (e.g.
`disas -n func`). If the RVA is the same but exported with a different
name, only synchronize the symbol types.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D134426
- Skip dummy/invalid export symbols.
- Make the export ordinal of export symbols visible when dumping the
symtab.
- Stop setting the 'Debug' flag and set the 'External' flag instead to
better match the meaning of export symbols.
- Try to guess the type (code vs data) of the symbol from section flags.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D134265
This reimplements `ObjectFilePECOFF::ParseSymtab` to replace the manual
data extraction with what `COFFObjectFile` already provides. Also use
`SymTab::AddSymbol` instead of resizing the SymTab then assigning each
elements afterwards.
Previously, ParseSymTab loads symbols from both the COFF symbol table
and the export table, but if there are any entries in the export table,
it overwrites all the symbols already loaded from the COFF symbol table.
Due to the change to use AddSymbols, this no longer happens, and so the
SymTab now contains all symbols from both tables as expected.
The export symbols are now ordered by ordinal, instead of by the name
table order.
In its current state, it is possible for symbols in the COFF symbol
table to be duplicated by those in the export table. This behaviour will
be modified in a separate change.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D134196
Currently funciton lookup in the expression evaluator
fails to disambiguate member functions the are overloaded
on lvalue/rvalue reference-qualifiers. This happens because
we unconditionally set a `FunctionPrototype`s
`ExtProtoInfo::RefQualifier` to `RQ_None`. We lose
the ref-qualifiers in the synthesized AST and `clang::Sema`
fails to pick a correct overload candidate.
DWARF emits information about a function's ref-qualifiers
in the form of a boolean `DW_AT_rvalue_reference` (for rvalues)
and `DW_AT_reference` (for lvalues).
This patch sets the `FunctionPrototype::ExtProtoInfo::RefQualifier`
based on the DWARF attributes above.
**Testing**
* Added API test
llvm/llvm-project issue #57866
Differential Revision: https://reviews.llvm.org/D134661
We have some 500 ish uses of the bool plus ref version
so changing them all at once isn't a great idea.
This adds an overload that doesn't take a RegisterInfo&
and returns an optional.
Once I'm done switching all the existing callers I'll
remove the original function.
Benefits of optional over bool plus ref:
* The intent of the function is clear from the prototype.
* It's harder to forget to check if the return is valid,
and if you do you'll get an assert.
* You don't hide ununsed variables, which happens because
passing by ref marks a variable used.
* You can't forget to reset the RegisterInfo in between
calls.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D134536
The motivating issue was the following:
```
$ cat main.cpp
enum class EnumVals : uint16_t {
VAL1 = 0
};
struct Foo {
EnumVals b1 : 4;
};
int main() {
// Assign value out-of-range if
// bit-field were signed
Foo f{.b1 = (EnumVals)8};
return 0; // Break here
}
(lldb) script
>>> lldb.frame.FindVariable("f").GetChildMemberWithName("b1").GetValueAsUnsigned()
4294967288
```
In the above example we observe a unsigned integer wrap-around
because we sign-extended the bit-fields underlying Scalar value
before casting it to an unsigned. The sign extension occurs because
we don't mark APSInt::IsUnsigned == true correctly when extracting
the value from memory (in Value::ResolveValue). The reason why sign
extension causes the wraparound is that the value we're assigning
to the bit-field is out-of-range (if it were a signed bit-field),
which causes `Scalar::sext` to left-fill the Scalar with 1s.
This patch corrects GetEncoding to account for unsigned enum types.
With this change the Scalar would be zero-extended instead.
This is mainly a convenience fix which well-formed code wouldn't
encounter.
rdar://99785324
Differential Revision: https://reviews.llvm.org/D134493
When debugging using Fission (-gsplit-dwarf), we can sometimes have issues loading .dwo files if they are missing or if the path was relative and we were unable to locate the file. We can also skip loading due to DWO ID mismatch or if a .dwp file doesn't contain a matching .dwo file. Also .dwo files could be updated due to a recompile and if the user debugs an executable that was linked against the old .dwo file, it could fail to load the information.
This patch adds a m_dwo_error to DWARFUnit that can be get/set and will cause "frame variable" to show errors when there are .dwo/.dwp issues informing the user about the error.
Differential Revision: https://reviews.llvm.org/D134252
This happens if the type is described elsewhere in target xml as a
<flags> or <struct>.
Also hardcode the function names into the log messages because
if you use __FUNCTION__ in a lambda you just get "operator()".
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D134043
This is the first step to being able to handle non
trivial types in the union.
info_type effects the lifetime of the objects in the union,
so making it private means we know you have to call one of the
Set<...> functions to change it.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D134039
So that the XML isn't one giant line. Which wasn't
a problem for lldb but was for me trying to troubleshoot
it using the logs.
It now looks like:
```
<?xml version="1.0"?>
<target version="1.0">
<architecture>aarch64</architecture>
<feature>
<...>
<reg name="fpcr" .../>
</feature>
</target>
```
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D134035
A common debugging pattern is to set a breakpoint that only stops after
a number of hits is recorded. The current implementation never resets
the hit count of breakpoints; as such, if a user re-`run`s their
program, the debugger will never stop on such a breakpoint again.
This behavior is arguably undesirable, as it renders such breakpoints
ineffective on all but the first run. This commit changes the
implementation of the `Will{Launch, Attach}` methods so that they reset
the _target's_ breakpoint hitcounts.
Differential Revision: https://reviews.llvm.org/D133858
Before, it returns the outermost blocks if nested blocks have the same
address range. That casuses lldb unable to find variables that are inside
inner blocks.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D133601
D131437 caused heap-use-after-free failures when testing TestCreateAfterAttach.py in asan mode, and "regular" crashes outside of asan.
This appears to be due to a mismatch in a couple places where we choose to clear the DIEs. When we clear the DIE of a skeleton unit, we unconditionally clear the DIE of the DWO unit if it exists. However, `~ScopedExtractDIEs()` only looks at the skeleton unit when deciding to clear. If we decide to clear the skeleton unit because it is now unused, we end up clearing the DWO unit that _is_ used. This change adds a guard by checking `m_cancel_scopes` to prevent clearing the DWO unit.
This is 100% reproducible by running TestCreateAfterAttach.py in asan mode, although it only seems to reproduce in our internal build, so no test case is added here. If someone has suggestions on how to write one, I can add it.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D133790
Add support for recognizing a platform binary in the ObjectFileMachO
method that parses the "load binary" LC_NOTEs in a corefile.
A bit of reorganization to ProcessMachCore::DoLoadCore to separate
all of the unrelated things being done in that method into their own
separate methods, as well as small fixes to improve the handling of
a corefile with multiple kernel images in the corefile.
Differential Revision: https://reviews.llvm.org/D133680
rdar://98754861
I went over the output of the following mess of a command:
(ulimit -m 2000000; ulimit -v 2000000; git ls-files -z | parallel
--xargs -0 cat | aspell list --mode=none --ignore-case | grep -E
'^[A-Za-z][a-z]*$' | sort | uniq -c | sort -n | grep -vE '.{25}' |
aspell pipe -W3 | grep : | cut -d' ' -f2 | less)
and proceeded to spend a few days looking at it to find probable typos
and fixed a few hundred of them in all of the llvm project (note, the
ones I found are not anywhere near all of them, but it seems like a
good start).
Differential revision: https://reviews.llvm.org/D131122
I encountered an issue where `p &variable` was finding an incorrect address for
32-bit PIC ELF files loaded into a running process. The problem was that the
R_386_32 ELF relocations were not being applied to the DWARF section, so all
variables in that file were reporting as being at the start of their respective
section. There is an assert that catches this on debug builds, but silently
ignores the issue on non-debug builds.
In this changeset, I added handling for the R_386_32 relocation type to
ObjectFileELF, and a supporting function to ELFRelocation to differentiate
between DT_REL & DT_RELA in ObjectFileELF::ApplyRelocations().
Demonstration of issue:
```
[dmlary@host work]$ cat rel.c
volatile char padding[32] = "make sure var isnt at .data+0";
volatile char var[] = "test";
[dmlary@host work]$ gcc -c rel.c -FPIC -fpic -g -m32
[dmlary@host work]$ lldb ./exec
(lldb) target create "./exec"
Current executable set to '/home/dmlary/src/work/exec' (i386).
(lldb) process launch --stop-at-entry
Process 21278 stopped
* thread #1, name = 'exec', stop reason = signal SIGSTOP
frame #0: 0xf7fdb150 ld-2.17.so`_start
ld-2.17.so`_start:
-> 0xf7fdb150 <+0>: movl %esp, %eax
0xf7fdb152 <+2>: calll 0xf7fdb990 ; _dl_start
ld-2.17.so`_dl_start_user:
0xf7fdb157 <+0>: movl %eax, %edi
0xf7fdb159 <+2>: calll 0xf7fdb140
Process 21278 launched: '/home/dmlary/src/work/exec' (i386)
(lldb) image add ./rel.o
(lldb) image load --file rel.o .text 0x40000000 .data 0x50000000
section '.text' loaded at 0x40000000
section '.data' loaded at 0x50000000
(lldb) image dump symtab rel.o
Symtab, file = rel.o, num_symbols = 13:
Debug symbol
|Synthetic symbol
||Externally Visible
|||
Index UserID DSX Type File Address/Value Load Address Size Flags Name
------- ------ --- --------------- ------------------ ------------------ ------------------ ---------- ----------------------------------
[ 0] 1 SourceFile 0x0000000000000000 0x0000000000000000 0x00000004 rel.c
[ 1] 2 Invalid 0x0000000000000000 0x0000000000000020 0x00000003
[ 2] 3 Invalid 0x0000000000000000 0x50000000 0x0000000000000020 0x00000003
[ 3] 4 Invalid 0x0000000000000025 0x0000000000000000 0x00000003
[ 4] 5 Invalid 0x0000000000000000 0x0000000000000020 0x00000003
[ 5] 6 Invalid 0x0000000000000000 0x0000000000000020 0x00000003
[ 6] 7 Invalid 0x0000000000000000 0x0000000000000020 0x00000003
[ 7] 8 Invalid 0x0000000000000000 0x0000000000000020 0x00000003
[ 8] 9 Invalid 0x0000000000000000 0x0000000000000020 0x00000003
[ 9] 10 Invalid 0x0000000000000000 0x0000000000000020 0x00000003
[ 10] 11 Invalid 0x0000000000000000 0x0000000000000020 0x00000003
[ 11] 12 X Data 0x0000000000000000 0x50000000 0x0000000000000020 0x00000011 padding
[ 12] 13 X Data 0x0000000000000020 0x50000020 0x0000000000000005 0x00000011 var
(lldb) p &var
(volatile char (*)[5]) $1 = 0x50000000
```
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D132954
Summary:
Many times when debugging variables might not be available even though a user can successfully set breakpoints and stops somewhere. Letting the user know will help users fix these kinds of issues and have a better debugging experience.
Examples of this include:
- enabling -gline-tables-only and being able to set file and line breakpoints and yet see no variables
- unable to open object file for DWARF in .o file debugging for darwin targets due to modification time mismatch or not being able to locate the N_OSO file.
This patch adds an new API to SBValueList:
lldb::SBError lldb::SBValueList::GetError();
object so that if you request a stack frame's variables using SBValueList SBFrame::GetVariables(...), you can get an error the describes why the variables were not available.
This patch adds the ability to get an error back when requesting variables from a lldb_private::StackFrame when calling GetVariableList.
It also now shows an error in response to "frame variable" if we have debug info and are unable to get varialbes due to an error as mentioned above:
(lldb) frame variable
error: "a.o" object from the "/tmp/libfoo.a" archive: either the .o file doesn't exist in the archive or the modification time (0x63111541) of the .o file doesn't match
Reviewers: labath JDevlieghere aadsm yinghuitan jdoerfert sscalpone
Subscribers:
Differential Revision: https://reviews.llvm.org/D133164
If we don't add local variables with no location info, when trying to print it,
lldb won't find it in the its parent DeclContext, which makes lldb to spend more
time to search all the way up in DeclContext hierarchy until found same name
variable or failed. Dwarf plugin also add local vars even if they don't have
location info.
Differential Revision: https://reviews.llvm.org/D133626
DynamicLoaderDarwinKernel calls in to PlatformDarwinKernel, and
with my changes in https://reviews.llvm.org/D133534, PlatformDarwinKernel
calls in to DynamicLoaderDarwinKernel. This results in a cmake
dependency if accurately included in the link libraries list.
lldbPluginDynamicLoaderDarwinKernel is specfically for kernel
debugging and is uncommonly linked in to anything except a full
lldb. lldbPluginPlatformMacOSX is any Darwin platform, including
PlatformDarwinKernel, and is referenced a number of time in shell
tests, for instance.
I believe anything linking the darwin kernel DynamicLoader plugin
will already have lldbPluginPlatformMacOSX in its dependency list,
so not explicitly expressing this dependency is safe.
Many times when debugging variables might not be available even though a user can successfully set breakpoints and stops somewhere. Letting the user know will help users fix these kinds of issues and have a better debugging experience.
Examples of this include:
- enabling -gline-tables-only and being able to set file and line breakpoints and yet see no variables
- unable to open object file for DWARF in .o file debugging for darwin targets due to modification time mismatch or not being able to locate the N_OSO file.
This patch adds an new API to SBValueList:
lldb::SBError lldb::SBValueList::GetError();
object so that if you request a stack frame's variables using SBValueList SBFrame::GetVariables(...), you can get an error the describes why the variables were not available.
This patch adds the ability to get an error back when requesting variables from a lldb_private::StackFrame when calling GetVariableList.
It also now shows an error in response to "frame variable" if we have debug info and are unable to get varialbes due to an error as mentioned above:
(lldb) frame variable
error: "a.o" object from the "/tmp/libfoo.a" archive: either the .o file doesn't exist in the archive or the modification time (0x63111541) of the .o file doesn't match
Differential Revision: https://reviews.llvm.org/D133164
Complete support of the binary-addresses key in the qProcessInfo packet
in ProcessGDBRemote, for detecting if one of the binaries needs to be
handled by a Platform plugin, and can be used to set the Process'
DynamicLoader plugin and the Target's Platform plugin.
Implement this method in PlatformDarwinKernel to recognize a kernel
fileset at that address, find the actual kernel address in the
fileset, set DynamicLoaderDarwinKernel and PlatformDarwinKernel
in the Process/Target; register the kernel address with the dynamic
loader so it will be loaded later during attach.
This patch only addresses the live debug scenario with a gdb remote
serial protocol connection. I'll handle corefiles in a subsequent
patch that builds on this.
Differential Revision: https://reviews.llvm.org/D133534
rdar://98754861