Summary:
This change increases the offset of MPX registers (by 128) so they
do not overlap with the offset associated with AVX registers. That was
causing MPX data in GDBRemoteRegisterContext::m_reg_data to get overwritten.
Reviewers: labath
Reviewed By: labath
Subscribers: JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D68874
This patch removes the size_t return value and the append parameter
from the remainder of the Find.* functions in LLDB's internal API. As
in the previous patches, this is motivated by the fact that these
parameters aren't really used, and in the case of the append parameter
were frequently implemented incorrectly.
Differential Revision: https://reviews.llvm.org/D69119
llvm-svn: 375160
This patch adds an implementation of unwinding using PE EH info. It allows to
get almost ideal call stacks on 64-bit Windows systems (except some epilogue
cases, but I believe that they can be fixed with unwind plan disassembly
augmentation in the future).
To achieve the goal the CallFrameInfo abstraction was made. It is based on the
DWARFCallFrameInfo class interface with a few changes to make it less
DWARF-specific.
To implement the new interface for PECOFF object files the class PECallFrameInfo
was written. It uses the next helper classes:
- UnwindCodesIterator helps to iterate through UnwindCode structures (and
processes chained infos transparently);
- EHProgramBuilder with the use of UnwindCodesIterator constructs EHProgram;
- EHProgram is, by fact, a vector of EHInstructions. It creates an abstraction
over the low-level unwind codes and simplifies work with them. It contains
only the information that is relevant to unwinding in the unified form. Also
the required unwind codes are read from the object file only once with it;
- EHProgramRange allows to take a range of EHProgram and to build an unwind row
for it.
So, PECallFrameInfo builds the EHProgram with EHProgramBuilder, takes the ranges
corresponding to every offset in prologue and builds the rows of the resulted
unwind plan. The resulted plan covers the whole range of the function except the
epilogue.
Reviewers: jasonmolenda, asmith, amccarth, clayborg, JDevlieghere, stella.stamenova, labath, espindola
Reviewed By: jasonmolenda
Subscribers: leonid.mashinskiy, emaste, mgorny, aprantl, arichardson, MaskRay, lldb-commits, llvm-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D67347
llvm-svn: 374528
LLDB appears to have at least partial support for PPC, but PPC on Mach
isn't a thing AFAIK.
Differential Revision: https://reviews.llvm.org/D68661
llvm-svn: 374114
Summary:
Windows unwinding is weird. The unwind rules do not (always) describe
the precise layout of the stack, but rather expect the debugger to scan
the stack for something which looks like a plausible return address, and
the unwind based on that. The reason this works somewhat reliably is
because the the unwinder also has access to the frame sizes of the
functions on the stack. This allows it (in most cases) to skip function
pointers in local variables or function arguments, which could otherwise
be mistaken for return addresses.
Implementing this kind of unwind mechanism in lldb was a bit challenging
because we expect to be able to statically describe (in the UnwindPlan)
structure, the layout of the stack for any given instruction. Giving a
precise desription of this is not possible, because it requires
correlating information from two functions -- the pushed arguments to a
function are considered a part of the callers stack frame, and their
size needs to be considered when unwinding the caller, but they are only
present in the unwind entry of the callee. The callee may end up being
in a completely different module, or it may not even be possible to
determine it statically (indirect calls).
This patch implements this functionality by introducing a couple of new
APIs:
SymbolFile::GetParameterStackSize - return the amount of stack space
taken up by parameters of this function.
SymbolFile::GetOwnFrameSize - the size of this function's frame. This
excludes the parameters, but includes stuff like local variables and
spilled registers.
These functions are then used by the unwinder to compute the estimated
location of the return address. This address is not always exact,
because the stack may contain some additional values -- for instance, if
we're getting ready to call a function then the stack will also contain
partially set up arguments, but we will not know their size because we
haven't called the function yet. For this reason the unwinder will crawl
up the stack from the return address position, and look for something
that looks like a possible return address. Currently, we assume that
something is a valid return address if it ends up pointing to an
executable section.
All of this logic kicks in when the UnwindPlan sets the value of CFA as
"isHeuristicallyDetected", which is also the final new API here. Right
now, only SymbolFileBreakpad implements these APIs, but in the future
SymbolFilePDB will use them too.
Differential Revision: https://reviews.llvm.org/D66638
llvm-svn: 373072
In these cases, the register number should be calculated from
fpu_d0, not fpu_s0.
Differential Revision: https://reviews.llvm.org/D67892
llvm-svn: 372738
Summary:
InferiorCall is only ever used in Process, and it is not specific to
POSIX. By moving it to Process, we can remove all dependencies on plugins from
Process. Moving InferiorCall to Process seems to achieve this quite well.
Additionally, the name InferiorCall is a little vague now, so we rename
it something a bit more specific.
Reviewers: JDevlieghere, clayborg, compnerd, labath
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D67472
llvm-svn: 371796
Summary:
InferiorCallPOSIX directly grabs a ClangASTContext from the Target it
has and does no error checking. I don't think these functions have a
reason to know about clang specifically. Additionally, using
`GetScratchTypeSystemForLanguage` forces us to do error checking since
it returns an Expected.
Differential Revision: https://reviews.llvm.org/D67427
llvm-svn: 371654
This patches paves way for upcoming SVE RegisterInfo definitions. This is cosmetic change which allows us to define ARM64 RegisterInfo using macros.
In future we ll have define two different RegisterInfos to choose between SVE vs non-SVE RegisterInfo with decision being made at thread creation.
Differential Revision: https://reviews.llvm.org/D66934
llvm-svn: 370644
Summary:
The DWARFExpression methods have a lot of arguments. This removes two of
them by removing the ability to slice the expression via two offset+size
parameters. This is a functionality that it is not always needed, and
when it is, we already have a different handy way of slicing a data
extractor which we can use instead.
Reviewers: JDevlieghere, clayborg
Subscribers: aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D66745
llvm-svn: 370027
Originally I wanted to remove the RegularExpression class in Utility and
replace it with llvm::Regex. However, during that transition I noticed
that there are several places where need the regular expression string.
So instead I propose to keep the RegularExpression class and make it a
thin wrapper around llvm::Regex.
This patch also removes the workaround for empty regular expressions.
The result is that we are now (more or less) POSIX conformant.
Differential revision: https://reviews.llvm.org/D66174
llvm-svn: 369153
Summary: Thanks to Hui Huang and the reviewers for all the help with this patch.
Reviewers: labath, Hui, jfb, clayborg, amccarth
Reviewed By: labath
Subscribers: amccarth, compnerd, dexonsmith, mgorny, jfb, teemperor, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D63165
llvm-svn: 368759
Summary:
Update StackFrame::GetSymbolContext to mirror the logic in
RegisterContextLLDB::InitializeNonZerothFrame that knows not to do the
pc decrement when the given frame is a signal trap handler frame or the
parent of one, because the pc may not follow a call in these frames.
Accomplish this by adding a behaves_like_zeroth_frame field to
lldb_private::StackFrame, set to true for the zeroth frame, for
signal handler frames, and for parents of signal handler frames.
Also add logic to propagate the signal handler flag from UnwindPlan to
the FrameType on the RegisterContextLLDB it generates, and factor out a
helper to resolve symbol and address range for an Address now that we
need to invoke it in four places.
Reviewers: jasonmolenda, clayborg, jfb
Reviewed By: jasonmolenda
Subscribers: labath, dexonsmith, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D64993
llvm-svn: 367691
As discussed in D65249, don't use AlignedCharArray or std::aligned_storage. Just use alignas(X) char Buf[Size];. This will allow me to remove AlignedCharArray entirely, and works on the current minimum version of Visual Studio.
llvm-svn: 367275
This patch replaces explicit calls to log::Printf with the new LLDB_LOGF
macro. The macro is similar to LLDB_LOG but supports printf-style format
strings, instead of formatv-style format strings.
So instead of writing:
if (log)
log->Printf("%s\n", str);
You'd write:
LLDB_LOG(log, "%s\n", str);
This change was done mechanically with the command below. I replaced the
spurious if-checks with vim, since I know how to do multi-line
replacements with it.
find . -type f -name '*.cpp' -exec \
sed -i '' -E 's/log->Printf\(/LLDB_LOGF\(log, /g' "{}" +
Differential revision: https://reviews.llvm.org/D65128
llvm-svn: 366936
This patch removes any remaining instances of LogIfAnyCategoriesSet and
replaces them with the LLDB_LOG macro. This in turn made it possible to
make Log::VAPrintf and Log::VAError private.
llvm-svn: 366768
Summary:
Add __kernel_rt_sigreturn to the list of trap handlers for Linux (it's
used as such on aarch64 at least), and __restore_rt as well (used on
x86_64).
Skip decrement-and-recompute for trap handlers in
InitializeNonZerothFrame, as signal dispatch may point the child frame's
return address to the start of the return trampoline.
Parse the 'S' flag for signal handlers from eh_frame augmentation, and
propagate it to the unwind plan.
Reviewers: labath, jankratochvil, compnerd, jfb, jasonmolenda
Reviewed By: jasonmolenda
Subscribers: clayborg, MaskRay, wuzish, nemanjai, kbarton, jrtc27, atanasyan, jsji, javed.absar, kristof.beyls, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D63667
llvm-svn: 366580
operator new doesn't return a null pointer, even if one turns off
exceptions (it calls std::terminate instead). Therefore, all of this is
dead code.
llvm-svn: 364744
Introduce two common helpers to take care of splitting and recombining
YMM registers to/from XSAVE-like data. Since FreeBSD, Linux and NetBSD
all use XSAVE-like data structures but with potentially different field
layouts, the function takes two pointers -- to XMM register and to YMM
high bits, and copies the data from/to YMMReg type.
While at it, remove support for big endian. To mine and Pavel Labath's
combined knowledge, there is no such thing on x86. Furthermore,
assuming that the YMM register data would be swapped for big endian
seems to be a weird assumption.
Differential Revision: https://reviews.llvm.org/D63610
llvm-svn: 364042
Summary:
These fields are unused and have been since their inception, from what
I can tell.
Reviewers: compnerd, JDevlieghere, davide, labath
Subscribers: kubamracek, lldb-commits
Differential Revision: https://reviews.llvm.org/D63357
llvm-svn: 363881
Summary:
This is the second patch to improve module loading in a series that started here (where I explain the motivation and solution): https://reviews.llvm.org/D62499
I need to read the aux vector to know where the r_debug map with the loaded libraries are.
The AuxVector class was made generic so it could be reused between the POSIX-DYLD plugin and NativeProcess*. The class itself ended up in the ProcessUtility plugin.
Reviewers: clayborg, xiaobai, labath, JDevlieghere
Reviewed By: clayborg, labath, JDevlieghere
Subscribers: emaste, JDevlieghere, mgorny, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D62500
llvm-svn: 363098
Summary:
Previous patch (r360409) introduced the "symbol file unwind plan"
concept, but that plan wasn't used for unwinding yet. With this patch,
we start to consider the new plan as a possible strategy for both
synchronous and asynchronous unwinding. I also add a test that asserts
that unwinding via breakpad STACK CFI info works end-to-end.
Reviewers: jasonmolenda, clayborg
Subscribers: lldb-commits, amccarth, markmentovai
Differential Revision: https://reviews.llvm.org/D61853
llvm-svn: 361618
Summary:
NFC = [[ https://llvm.org/docs/Lexicon.html#nfc | Non functional change ]]
This commit is the result of modernizing the LLDB codebase by using
`nullptr` instread of `0` or `NULL`. See
https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-nullptr.html
for more information.
This is the command I ran and I to fix and format the code base:
```
run-clang-tidy.py \
-header-filter='.*' \
-checks='-*,modernize-use-nullptr' \
-fix ~/dev/llvm-project/lldb/.* \
-format \
-style LLVM \
-p ~/llvm-builds/debug-ninja-gcc
```
NOTE: There were also changes to `llvm/utils/unittest` but I did not
include them because I felt that maybe this library shall be updated in
isolation somehow.
NOTE: I know this is a rather large commit but it is a nobrainer in most
parts.
Reviewers: martong, espindola, shafik, #lldb, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: arsenm, jvesely, nhaehnle, hiraditya, JDevlieghere, teemperor, rnkovacs, emaste, kubamracek, nemanjai, ki.stfu, javed.absar, arichardson, kbarton, jrtc27, MaskRay, atanasyan, dexonsmith, arphaman, jfb, jsji, jdoerfert, lldb-commits, llvm-commits
Tags: #lldb, #llvm
Differential Revision: https://reviews.llvm.org/D61847
llvm-svn: 361484
Summary:
This behavior is specified in the Section 6.4.2.3 (Register Rule
instructions) of the DWARF4 spec. We were not doing that, which meant
that any register rule which was relying on the cfa value being there
was not evaluated correctly (it was aborted due to "out of bounds"
access).
I'm not sure how come this wasn't noticed before, but I guess this has
something to do with the fact that dwarf unwind expressions are not used
very often, and when they are, the situation is so complicated that the
CFA is of no use. I noticed this when I started emitting dwarf
expressions for the unwind information present in breakpad symbol files.
Reviewers: jasonmolenda, clayborg
Subscribers: aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D61018
llvm-svn: 360158
logging messages that are written the same, making it difficult to
know for certain which code path was taken based on a logfile. Add
some words to make each unique.
Right now the ordering for finding a FullUnwindPlan (ignoring
fallback unwind plan logic) is
1. If this is a _sigtramp like function, try eh_frame which is
hand written on darwin systems to account for finding the
saved register context correctly.
2. Ask the DynamicLoader if eh_frame should be preferred for
this frame. Some binaries on the system may have hand-written
eh_frame and the DynamicLoader is the source for this. (primarily
this is for hand-written assembly in the objc runtime, and we tell
lldb to trust that for functions in libobjc.dylib.)
3. if 0th frame, use GetUnwindPlanAtNonCallSite plan.
4. GetUnwindPlanAtCallSite {for 0th or any other}
5. GetUnwindPlanAtNonCallSite {now for non-0th frames, only if not from a compiler? hm.}
6. GetUnwindPlanArchitectureDefaultAtFunctionEntry if we're on the first instruction
7. Architectural default unwind plan ABI::CreateDefaultUnwindPlan
I'm moving #6 -- DefaultAtFunctionEntry -- up to between #3 and #4,
where we're already doing things specific to the zeroth frame. If
we're on the zeroth frame and the GetUnwindPlanAtNonCallSite plan
has failed for some reason, and we're on the first instruction, we
should definitely use DefaultAtFunctionEntry instead of any other
unwind plan. If we're trying to step out of some rando function
on the system that we couldn't assembly instruction inspect, this
is sufficient for us to step out of it.
llvm-svn: 359847
Summary:
This argument was added back in 2010 (r118882) to support the ability to unwind
from functions whose eh_frame entry does not cover the entire range of
the function.
However, due to the caching happening in FuncUnwinders, this solution is
very fragile. FuncUnwinders will cache the plan it got from eh_frame
regardless of the value of the current_offset, so our ability to unwind
from a given function depended what was the value of "current_offset" the
first time that this function was called.
Furthermore, since the "image show-unwind" command did not know what's
the right offset to pass, this created an unfortunate situation where
"image show-unwind" would show no valid plans for a function, even
though they were available and being used.
In this patch I implement the feature slightly differently. Instead of
giving just a base address to the eh_frame unwinder, I give it the
entire range we are interested in. Then, I change the unwinder to return
the first plan that covers (even partially) that range. This way even a
partial plan will be returned, regardless of the address in the function
where we are stopped at.
This solution is still not 100% correct, as it will not handle a
function which is covered by two independent fde entries. However, I
don't expect anybody will write this kind of functions, and this wasn't
handled by the previous implementation either. If this is ever needed in
the future. The eh_frame unwinder can be extended to return "composite"
unwind plans created by merging sevelar fde entries.
I also create a test which triggers this scenario. As doing this is
virtually impossible without hand-written assembly, the test only works
on x86 linux.
Reviewers: jasonmolenda, clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D60829
llvm-svn: 358964
A lot of comments in LLDB are surrounded by an ASCII line to delimit the
begging and end of the comment.
Its use is not really consistent across the code base, sometimes the
lines are longer, sometimes they are shorter and sometimes they are
omitted. Furthermore, it looks kind of weird with the 80 column limit,
where the comment actually extends past the line, but not by much.
Furthermore, when /// is used for Doxygen comments, it looks
particularly odd. And when // is used, it incorrectly gives the
impression that it's actually a Doxygen comment.
I assume these lines were added to improve distinguishing between
comments and code. However, given that todays editors and IDEs do a
great job at highlighting comments, I think it's worth to drop this for
the sake of consistency. The alternative is fixing all the
inconsistencies, which would create a lot more churn.
Differential revision: https://reviews.llvm.org/D60508
llvm-svn: 358135
Since these timeouts guard against catastrophic error in debugserver,
I also increased all of them to the maximum value among them.
The motivation for this test was the observation that an asanified
LLDB would often exhibit seemingly random test failures that could be
traced back to debugserver packets getting out of sync. With this path
applied I can no longer reproduce the one particular failure mode that
I was investigating.
rdar://problem/49441261
Differential Revision: https://reviews.llvm.org/D60340
llvm-svn: 357829
Summary:
gcc diagnoses this as "array subscript 63 is above array bounds of
'RegisterContextDarwin_arm64::VReg [32]'".
The correct fix seems to be subtracting the fpu register base index, but
I have no way of verifying that this actually works.
Reviewers: jasonmolenda
Subscribers: javed.absar, kristof.beyls, lldb-commits
Differential Revision: https://reviews.llvm.org/D59495
llvm-svn: 357055
My apologies for the large patch. With the exception of ConstString.h
itself it was entirely produced by sed.
ConstString has exactly one const char * data member, so passing a
ConstString by reference is not any more efficient than copying it by
value. In both cases a single pointer is passed. But passing it by
value makes it harder to accidentally return the address of a local
object.
(This fixes rdar://problem/48640859 for the Apple folks)
Differential Revision: https://reviews.llvm.org/D59030
llvm-svn: 355553
I reduced the alignment of this struct in r342029 to avoid compiler
warnings about under-aligned allocations, but it turns out that this
still causes problems with some compilers (see r353778). As I hinted in
r342029, I don't believe any special aligment is necessary here (the
only reason for that would be if we used some aligned SSE instructions to
access this buffer, but I don't see any reason why we should do that),
so here I go all the way, and remove the alignment requirements (except
the ones naturally imposed by basic types) altogether.
llvm-svn: 354125
Summary:
This is a preparatory step to enable adding extra unwind strategies by
symbol file plugins. This has been discussed on the lldb-dev mailing
list: <http://lists.llvm.org/pipermail/lldb-dev/2019-February/014703.html>.
Reviewers: jasonmolenda, clayborg, espindola
Subscribers: lemo, emaste, lldb-commits, arichardson
Differential Revision: https://reviews.llvm.org/D58129
llvm-svn: 354033
The `ap` suffix is a remnant of lldb's former use of auto pointers,
before they got deprecated. Although all their uses were replaced by
unique pointers, some variables still carried the suffix.
In r353795 I removed another auto_ptr remnant, namely redundant calls to
::get for unique_pointers. Jim justly noted that this is a good
opportunity to clean up the variable names as well.
I went over all the changes to ensure my find-and-replace didn't have
any undesired side-effects. I hope I didn't miss any, but if you end up
at this commit doing a git blame on a weirdly named variable, please
know that the change was unintentional.
llvm-svn: 353912
Unlike std::make_unique, which is only available since C++14,
std::make_shared is available since C++11. Not only is std::make_shared
a lot more readable compared to ::reset(new), it also performs a single
heap allocation for the object and control block.
Differential revision: https://reviews.llvm.org/D57990
llvm-svn: 353764
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
LLVM added wrappers to std::sort (r327219) that randomly shuffle the
container before sorting. The goal is to uncover non-determinism due to
undefined sorting order of objects having the same key.
This can be enabled with -DLLVM_ENABLE_EXPENSIVE_CHECKS=ON.
llvm-svn: 350679
This patch simplifies boolean expressions acorss LLDB. It was generated
using clang-tidy with the following command:
run-clang-tidy.py -checks='-*,readability-simplify-boolean-expr' -format -fix $PWD
Differential revision: https://reviews.llvm.org/D55584
llvm-svn: 349215
Breakpad creates minidump files that sometimes have:
- linux maps textual content
- no MemoryInfoList
Right now unless the file has a MemoryInfoList we get no region information.
This patch:
- reads and caches the memory region info one time and sorts it for easy subsequent access
- get the region info from the best source in this order:
- linux maps info (if available)
- MemoryInfoList (if available)
- MemoryList or Memory64List
- returns memory region info for the gaps between regions (before the first and after the last)
Differential Revision: https://reviews.llvm.org/D55522
llvm-svn: 349182
Summary:
These are general purpose "utility" classes, whose functionality is not
debugger-specific in any way. As such, I believe they belong in the
Utility module.
This doesn't break any particular dependency (yet), but it reduces the
number of Core dependencies across the board.
Reviewers: zturner, jingham, teemperor, clayborg
Subscribers: mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D55361
llvm-svn: 349157
This patch removes the comments grouping header includes. They were
added after running IWYU over the LLDB codebase. However they add little
value, are often outdates and burdensome to maintain.
llvm-svn: 346626
This patch removes the comments following the header includes. They were
added after running IWYU over the LLDB codebase. However they add little
value, are often outdates and burdensome to maintain.
Differential revision: https://reviews.llvm.org/D54385
llvm-svn: 346625
some of the macros from mach/exc_resource.h to decode EXC_RESOURCE,
but that header doesn't exist on non-apple platforms and
StopInfoMachException.cpp needs to build on those systems.
EXC_RESOURCE won't be decoded when lldb is built on non-darwin systems.
llvm-svn: 346573
event as a thread stop reason if we receive one, using
some macros to decode the payload.
Patch originally written by Fred Riss, with a few small changes
by myself.
Writing a test for this is a little tricky because the
mach exception data interpretation relies on header macros
or function calls - it may change over time and writing
a gdb_remote_client test for this would break as older
encoding interpretation is changed. I'll tak with Fred
about this more, but neither of us has been thrilled with
the kind of tests we could write for it.
<rdar://problem/13097323>, <rdar://problem/40144456>
llvm-svn: 346571
Summary:
This patch fixes issues with a stack realignment.
MSVC maintains two frame pointers (`ebx` and `ebp`) for a realigned stack - one
is used for access to function parameters, while another is used for access to
locals. To support this the patch:
- adds an alternative frame pointer (`ebx`);
- considers stack realignment instructions (e.g. `and esp, -32`);
- along with CFA (Canonical Frame Address) which point to the position next to
the saved return address (or to the first parameter on the stack) introduces
AFA (Aligned Frame Address) which points to the position of the stack pointer
right after realignment. AFA is used for access to registers saved after the
realignment (see the test);
Here is an example of the code with the realignment:
```
struct __declspec(align(256)) OverAligned {
char c;
};
void foo(int foo_arg) {
OverAligned oa_foo = { 1 };
auto aaa_foo = 1234;
}
void bar(int bar_arg) {
OverAligned oa_bar = { 2 };
auto aaa_bar = 5678;
foo(1111);
}
int main() {
bar(2222);
return 0;
}
```
and here is the `bar` disassembly:
```
push ebx
mov ebx, esp
sub esp, 8
and esp, -100h
add esp, 4
push ebp
mov ebp, [ebx+4]
mov [esp+4], ebp
mov ebp, esp
sub esp, 200h
mov byte ptr [ebp-200h], 2
mov dword ptr [ebp-4], 5678
push 1111 ; foo_arg
call j_?foo@@YAXH@Z ; foo(int)
add esp, 4
mov esp, ebp
pop ebp
mov esp, ebx
pop ebx
retn
```
Reviewers: labath, zturner, jasonmolenda, stella.stamenova
Reviewed By: jasonmolenda
Subscribers: abidh, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D53435
llvm-svn: 345577
When we get the `resolve_scope` parameter from the SB API, it's a
`uint32_t`. We then pass it through all of LLDB this way, as a uint32.
This is unfortunate, because it means the user of an API never actually
knows what they're dealing with. We can call it something like
`resolve_scope` and have comments saying "this is a value from the
`SymbolContextItem` enumeration, but it makes more sense to just have it
actually *be* the correct type in the actual C++ type system to begin
with. This way the person reading the code just knows what it is.
The reason to use integers instead of enumerations for flags is because
when you do bitwise operations on enumerations they get promoted to
integers, so it makes it tedious to constantly be casting them back
to the enumeration types, so I've introduced a macro to make this
happen magically. By writing LLDB_MARK_AS_BITMASK_ENUM after defining
an enumeration, it will define overloaded operators so that the
returned type will be the original enum. This should address all
the mechanical issues surrounding using rich enum types directly.
This way, we get a better debugger experience, and new users to
the codebase can get more easily acquainted with the codebase because
their IDE features can help them understand what the types mean.
Differential Revision: https://reviews.llvm.org/D53597
llvm-svn: 345313
max number of stack frames to backtrace, make it a setting,
target.process.thread.max-backtrace-depth.
Add a test case for the setting.
<rdar://problem/28759559>
llvm-svn: 343029
The warning is about heap-allocating a struct with bigger alignment
requirements than the standard heap allocator provides.
AFAICT, all uses of the XSAVE struct are already heap-allocated, so this
high alignment does not actually have any effect and removing it should
be NFC.
I have also done some digging in the commit history. This alignment
requirement was since the XSAVE struct was introduced in r180572 when
adding AVX register support for linux. It does not mention the alignment
specifically, so I am guessing this was just put there because the
corresponging XSAVE cpu instruction requires its buffer to be 64-byte
aligned. However, LLDB will not be normally reading this struct via the
XSAVE instruction directly. Instead we will ask the kernel to copy the
buffer saved when suspeding the inferior. This should not require such
strict alignment (in fact, linux kernel will happily do this for any
alignment).
llvm-svn: 342029
These three classes have no external dependencies, but they are used
from various low-level APIs. Moving them down to Utility improves
overall code layering (although it still does not break any particular
dependency completely).
The XCode project will need to be updated after this change.
Differential Revision: https://reviews.llvm.org/D49740
llvm-svn: 339127
Summary:
This is a clean version of the change suggested here: https://bugs.llvm.org/show_bug.cgi?id=37495
The main change is to follow the same pattern as non-windows targets and use an unwinder object to retrieve the register context. I also changed a couple of the comments to actually log, so that issues with unsupported scenarios can be tracked down more easily. Lastly, ClearStackFrames is implemented in the base class, so individual thread implementations don't have to override it.
Reviewers: asmith, zturner, aleksandr.urakov
Reviewed By: aleksandr.urakov
Subscribers: emaste, stella.stamenova, tatyana-krasnukha, llvm-commits
Differential Revision: https://reviews.llvm.org/D49111
llvm-svn: 336732
Summary:
Default copy/move constructors and assignment operators leave wrong m_sets[i].registers pointers.
Made the class movable and non-copyable (it's difficult to imagine when it needs to be copied).
Reviewers: clayborg
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D47728
llvm-svn: 334282
Summary: When compiling with modules, these missing includes cause the build to fail (as the header can't be compiled into a module).
Subscribers: ki.stfu, lldb-commits
Differential Revision: https://reviews.llvm.org/D47412
llvm-svn: 333345
Most non-local includes of header files living under lldb/sources/
were specified with the full path starting after sources/. However, in
a few instances, other sub-directories were added to include paths, or
Normalize those few instances to follow the style used by the rest of
the codebase, to make it easier to understand.
llvm-svn: 333035
Summary:
- Fix #include path
- Fix warning:
````
error: format specifies type 'unsigned long long' but the argument has type 'uint64_t'
(aka 'unsigned long') [-Werror,-Wformat]
```
Reviewers: labath, javed.absar
Differential Revision: https://reviews.llvm.org/D47072
llvm-svn: 332733
It turns out these class still contained some os-specific functionality,
but I did not notice that originally, as it was #ifdef arm(64). This
adds back the __APPLE__ condition to these particular functions,
unbreaking arm builds on other OSs.
llvm-svn: 332710
Summary:
Before this patch we were unable to write cross-platform MachO tests
because the parsing code did not compile on other platforms. The reason
for that was that ObjectFileMachO depended on
RegisterContextDarwin_arm(64)? (presumably for core file parsing) and
the two Register Context classes uses constants from the system headers
(KERN_SUCCESS, KERN_INVALID_ARGUMENT).
As far as I can tell, these two files don't actually interact with the
darwin kernel -- they are used only in ObjectFileMachO and MacOSX-Kernel
process plugin (even though it has "kernel" in the name, this one
communicates with it via network packets and not syscalls). For the time
being I have created OS-independent definitions of these constants and
made the register context classes use those. Long term, the error
handling in these classes should be probably changed to use more
standard mechanisms such as Status or Error classes.
This is the only change necessary (apart from build system glue) to make
ObjectFileMachO work on other platforms. To demonstrate that, I remove
REQUIRES:darwin from our (only) cross-platform mach-o test.
Reviewers: jasonmolenda, aprantl, clayborg, javed.absar
Subscribers: mgorny, lldb-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D46934
llvm-svn: 332702
This brings the LLDB configuration closer to LLVM's and removes visual
clutter in the source code by removing the @brief commands from
comments.
This patch also reflows the paragraphs in all doxygen comments.
See also https://reviews.llvm.org/D46290.
Differential Revision: https://reviews.llvm.org/D46321
llvm-svn: 331373
This is intended as a clean up after the big clang-format commit
(r280751), which unfortunately resulted in many of the comment
paragraphs in LLDB being very hard to read.
FYI, the script I used was:
import textwrap
import commands
import os
import sys
import re
tmp = "%s.tmp"%sys.argv[1]
out = open(tmp, "w+")
with open(sys.argv[1], "r") as f:
header = ""
text = ""
comment = re.compile(r'^( *//) ([^ ].*)$')
special = re.compile(r'^((([A-Z]+[: ])|([0-9]+ )).*)|(.*;)$')
for line in f:
match = comment.match(line)
if match and not special.match(match.group(2)):
# skip intentionally short comments.
if not text and len(match.group(2)) < 40:
out.write(line)
continue
if text:
text += " " + match.group(2)
else:
header = match.group(1)
text = match.group(2)
continue
if text:
filled = textwrap.wrap(text, width=(78-len(header)),
break_long_words=False)
for l in filled:
out.write(header+" "+l+'\n')
text = ""
out.write(line)
os.rename(tmp, sys.argv[1])
Differential Revision: https://reviews.llvm.org/D46144
llvm-svn: 331197
Summary:
The idea behind this is to move the functionality which depend on other lldb
classes into a separate class. This way, the Args class can be turned
into a lightweight arc+argv wrapper and moved into the lower lldb
layers.
Reviewers: jingham, zturner
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D44306
llvm-svn: 329677
While trying to use this header I noticed that it is not in the include
folder. Move it to there and update all #includes to reference that file
correctly.
llvm-svn: 327996
Summary:
This patch implements the ABI Plugin for PPC64le. It was based on the
ABI for PPC64. It also enables LLDB to evaluate expressions using JIT.
Reviewers: labath, clayborg, jhibbits, davide
Reviewed By: labath, clayborg, jhibbits, davide
Subscribers: davide, JDevlieghere, chmeee, emaste, jhibbits, hfinkel, lldb-commits, nemanjai, luporl, lbianc, mgorny, anajuliapc, kbarton
Differential Revision: https://reviews.llvm.org/D41702
Patch by Alexandre Yukio Yamashita <alexandre.yamashita@eldorado.org.br>
llvm-svn: 323100
Summary:
The x86 FPR struct was defined as a struct containing a union between
two members: XSAVE and FXSAVE. This patch makes FPR a union directly to
remove one layer of indirection when trying to access the members.
The initial layout of these two structs is identical, which is
recognised by the fact that XSAVE has FXSAVE as its first member, so we
also considered removing one more layer and leave FPR identical to XSAVE
struct, but stopped short of doing that, as the FPR may be used to store
different layouts in the future (e.g., ones generated by the FSAVE
instruction).
Reviewers: clayborg, krytarowski
Subscribers: emaste, lldb-commits
Differential Revision: https://reviews.llvm.org/D41245
llvm-svn: 320966
A few methods in RegisterContext classes accept const objects which are
cast to a non-const thread_state_t. Drop const-ness more explicitly
where we mean to do so. This fixes a slew of warnings.
Differential Revision: https://reviews.llvm.org/D40821
llvm-svn: 319939
struct iovec is used as an interface to system (posix) api's. As such,
we shouldn't be using it in os-independent code, and we shouldn't be
defining our own iovec replacements.
Fortunately, its usage was not very widespread, so the removal was very
easy -- I simply moved a couple declarations into os-specific code.
llvm-svn: 319536
Summary:
New linux kernels (on systems that support the XSAVES instruction) will
not update the inferior registers unless the corresponding flag in the
XSAVE header is set. Normally this flag will be set in our image of the
XSAVE area (since we obtained it from the kernel), but if the inferior
has never used the corresponding register set, the respective flag can
be clear.
This fixes the issue by making sure we explicitly set the flags
corresponding to the registers we modify. I don't try to precisely match
the flags to set on each write, as the rules could get quite complicated
-- I use a simpler over-approximation instead.
This was already caught by test_fp_register_write, but that was only
because the code that ran before main() did not use some of the register
sets. Since nothing in this test relies on being stopped in main(), I
modify the test to stop at the entry point instead, so we can be sure
the inferior did not have a chance to access these registers.
Reviewers: clayborg, valentinagiusti
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D40434
llvm-svn: 319161
so it has the same padding as the kernel's definition
which is written in terms of uint128_t. Original patch
by Ryan Mansfield.
<rdar://problem/35468499>
llvm-svn: 318357
break. The alignas(__uint128_t) is not recognized with MSVC
it looks like. Zachary, is there a similar type on windows?
I suppose I can go with alignas(16) here but I'd prefer to
specify the type alignment that I want & let the ABI dictate
how much padding is required.
llvm-svn: 318262
The rationale here is that ArchSpec is used throughout the codebase,
including in places which should not depend on the rest of the code in
the Core module.
This commit touches many files, but most of it is just renaming of
#include lines. In a couple of cases, I removed the #include ArchSpec
line altogether, as the file was not using it. In one or two places,
this necessitated adding other #includes like lldb-private-defines.h.
llvm-svn: 318048
Summary:
This commit removes the concrete_frame_idx member from
NativeRegisterContext and related functions, which was always set to
zero and never used.
I also change the native thread class to store a NativeRegisterContext
as a unique_ptr (documenting the ownership) and make sure it is always
initialized (most of the code was already blindly dereferencing the
register context pointer, assuming it would always be present -- this
makes its treatment consistent).
Reviewers: eugene, clayborg, krytarowski
Subscribers: aemerson, sdardis, nemanjai, javed.absar, arichardson, kristof.beyls, kbarton, uweigand, alexandreyy, lldb-commits
Differential Revision: https://reviews.llvm.org/D39837
llvm-svn: 317881
Add support for ppc64le to create breakpoints and read/write
general purpose registers.
Other features for ppc64le and functions to read/write
other registers are being implemented.
Patch by Alexandre Yukio Yamashita (alexandreyy)
Differential Revision: https://reviews.llvm.org/D38323
llvm-svn: 315008
The FXSAVE member `ftw` (FPU Tag Word) was given the wrong size (8-bit)
instead of the correct width (16-bit) as per the x87 Programmer's
Manual. Adjust this to ensure that we print out the complete value for
the register.
llvm-svn: 311579
* Enable i386 ABI creation for freebsd
* Added an extra argument in ABISysV_i386::PrepareTrivialCall for mmap
syscall
* Unlike linux, the last argument of mmap is actually 64-bit(off_t).
This requires us to push an additional word for the higher order bits.
* Prior to this change, ktrace dump will show mmap failures due to
invalid argument coming from the 6th mmap argument.
Patch by Karnajit Wangkhem
Differential Revision: https://reviews.llvm.org/D34776
llvm-svn: 311002
It was completly unused and broke the part of the encapsulation that
common code shouldn't depend on specific plugins or language specific
features.
llvm-svn: 311000
Summary:
It had a dependency on StringConvert and file reading code, which is not
in Utility. I've replaced that code by equivalent llvm operations.
I've added a unit test to demonstrate that parsing a file still works.
Reviewers: zturner, jingham
Subscribers: kubamracek, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D34625
llvm-svn: 306394
Summary:
When a call instruction is the last instruction in a function, the
backtrace PC will point past the end of the function. We already had
special code to handle that, but we did not handle the case where the PC
ends up outside of the bounds of the module containing the function,
which is a situation that occured in TestNoreturnUnwind on android for
some arch/compiler combinations.
I fix this by adding an argument to Address resolution code which states
that we are ok with addresses pointing to the end of a module/section to
resolve to that module/section.
I create a reproducible test case for this situation by hand-crafting an
executable which has a noreturn function at the end of a module.
Reviewers: jasonmolenda, jingham
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D32022
llvm-svn: 304976
It was returning const std::string& which was leading to
unnecessary copies all over the place, and preventing people
from doing things like Dict->GetValueForKeyAsString("foo", ref);
llvm-svn: 302875
This renames the LLDB error class to Status, as discussed
on the lldb-dev mailing list.
A change of this magnitude cannot easily be done without
find and replace, but that has potential to catch unwanted
occurrences of common strings such as "Error". Every effort
was made to find all the obvious things such as the word "Error"
appearing in a string, etc, but it's possible there are still
some lingering occurences left around. Hopefully nothing too
serious.
llvm-svn: 302872
This patch makes adjustments to header file includes in
lldbUtility based on recommendations by the iwyu tool
(include-what-you-use). The goal here is to make sure that
all files include the exact set of headers which are needed
for that file only, to eliminate cases of dead includes (e.g.
someone deleted some code but forgot to delete the header
includes that that code necessitated), and to eliminate the
case where header includes are picked up transitively.
llvm-svn: 299676
Summary:
Add basic OpenBSD support. This is enough to be able to analyze core dumps for OpenBSD/amd64, OpenBSD/arm, OpenBSD/arm64 and OpenBSD/i386.
Note that part of the changes to source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp fix a bug that probably affects other platforms as well. The GetProgramHeaderByIndex() interface use 1-based indices, but in some case when looping over the headers the, the loop starts at 0 and misses the last header. This caused problems on OpenBSD since OpenBSD core dumps have the PT_NOTE segment as the last program header.
Reviewers: joerg, labath, krytarowski
Reviewed By: krytarowski
Subscribers: aemerson, emaste, rengolin, srhines, krytarowski, mgorny, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D31131
llvm-svn: 298810
There are only two users of NativeRegisterContextRegisterInfo,
and both are in process plugins. Moving this code from Host
to Plugins/Process/Utility thus makes sense, and as it is the
only dependency from Host -> PluginProcessUtility, it also
breaks this cycle, reducing LLDB's overall cycle count from
45 to 44.
llvm-svn: 298466
All references to Host and Core have been removed, so this
class can now safely be lowered into Utility.
Differential Revision: https://reviews.llvm.org/D30559
llvm-svn: 296909
Summary:
These two register contexts were identical, so this shouldn't cause any
regressions, but I'd appreciate it if you can check that this at least compiles.
Reviewers: emaste, sas
Subscribers: aemerson, rengolin, lldb-commits, mgorny
Differential Revision: https://reviews.llvm.org/D27126
llvm-svn: 296335
Summary:
NetBSD 7.99.62 introduced Debug Registers interface similar to the FreeBSD one.
This interface will land NetBSD-8.0.
Introduce support for this interface in Register Context NetBSD x86_64 unconditionally as older versions of NetBSD will not be supported.
This change allows to reduce diff with other ports and remove local copy of the RegisterInfos_x86_64.h content.
NetBSD Register Context for 32-bit x86 support will be added later.
Sponsored by <The NetBSD Foundation>
Reviewers: labath, joerg, emaste, clayborg
Reviewed By: labath, clayborg
Subscribers: #lldb
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D30287
llvm-svn: 296071
With this patch, the only dependency left is from Utility
to Host. After this is broken, Utility will finally be
standalone.
Differential Revision: https://reviews.llvm.org/D29909
llvm-svn: 295088
This moves the following classes from Core -> Utility.
ConstString
Error
RegularExpression
Stream
StreamString
The goal here is to get lldbUtility into a state where it has
no dependendencies except on itself and LLVM, so it can be the
starting point at which to start untangling LLDB's dependencies.
These are all low level and very widely used classes, and
previously lldbUtility had dependencies up to lldbCore in order
to use these classes. So moving then down to lldbUtility makes
sense from both the short term and long term perspective in
solving this problem.
Differential Revision: https://reviews.llvm.org/D29427
llvm-svn: 293941
Summary:
Real-Time Signals are available in NetBSD-current and will land NetBSD 8.0.
Older stable versions of NetBSD will not be supported.
Sponsored by <The NetBSD Foundation>
Reviewers: labath, joerg, clayborg, emaste
Reviewed By: labath, clayborg, emaste
Subscribers: #lldb
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D29091
llvm-svn: 293391
Also found/fixed one bug identified by this warning in
RenderScriptx86ABIFixups.cpp where a string literal was being used in an
effort to provide a name for an instruction/register, but was instead
being passed as the bool 'isVolatile' parameter.
llvm-svn: 291198
Summary:
This replaces all the uses of the __ANDROID_NDK__ define with __ANDROID__. This
is a preparatory step to remove our custom android toolchain file and rely on
the standard android NDK one instead, which does not provide this define.
Instead I rely, on __ANDROID__, which is set by the compiler.
I haven't yet removed the cmake variable with the same name, as we will need to
do something completely different there -- NDK toolchain defines
CMAKE_SYSTEM_NAME to Android, while our current one pretends it's linux.
Reviewers: tberghammer, zturner
Subscribers: danalbert, srhines, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D27305
llvm-svn: 288494
We were referencing a the process class from a register context, which seems
intuitively wrong. Also, the comment above that code is now definitely incorrect,
as ProcessElfCore now does support floating point registers. Also, the code
wasn't really doing anything, as it was just skipping a zero-initialization of a
field that was most likely zero-initialized anyway. Linux elf core FPR test still
passes after this.
llvm-svn: 288237
Summary:
While adding FPR support to x86 elf core files (D26300), we ended up adding a
very x86-specific function to the general RegisterInfoInterface class, which I
didn't catch in review. This removes that function. The only reason we needed
it was to find the offset of the FXSAVE area. This is the same as the offset of
the first register within that area, so we might as well use that.
Reviewers: clayborg, dvlahovski
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D27222
llvm-svn: 288236
Summary:
This is a test-the-water change about possibilities of reducing duplication in
the register context definitions.
I've named the new class RegisterInfoPOSIX, as RegisterContextPOSIX was already
taken :(. The two files were identical except for a fix by Tamas in D12636,
which was applied to the Linux version only, which fixed a discrepancy between
the definitions of fpsr and fpcr on one hand, and all other floating point
register definitions on the other.
Linux test suite still passes after this change. For freebsd, make the floating
point register behavior consistent, but I don't know whether it will be
consistently fixed, or consistently broken. By eyeballing the code, I have a
feeling that a similar fix to D12636 will be required in
RegisterContextPOSIXProcessMonitor_arm64::ReadRegister, but I can't be sure as I
have no way to test it (the assert in that function should fire upon accessing
the registers if it is wrong though).
Reviewers: emaste, clayborg
Subscribers: aemerson, rengolin, beanz, mgorny, modocache, dmikulin, lldb-commits
Differential Revision: https://reviews.llvm.org/D25947
llvm-svn: 287916
Summary:
The floating-point and SSE registers could be present in the elf-core
file in the note NT_FPREGSET for 64 bit ones, and in the note
NT_PRXFPREG for 32 bit ones.
The entire note is a binary blob matching the layout of the x87 save
area that gets generated by the FXSAVE instruction (see Intel developers
manual for more information).
This CL mainly modifies the RegisterRead function in
RegisterContextPOSIXCore_x86_64 for it to return the correct data both
for GPR and FPR/SSE registers, and return false (meaning "this register
is not available") for other registers.
I added a test to TestElfCore.py that tests reading FPR/SSE registers
both from a 32 and 64 bit elf-core file and I have inluded the source
which I used to generate the core files.
I tried to also add support for the AVX registers, because this info could
also be present in the elf-core file (note NT_X86_XSTATE - that is the result of
the newer XSAVE instruction). Parsing the contents from the file is
easy. The problem is that the ymm registers are split into two halves
and they are in different places in the note. For making this work one
would either make a "hacky" approach, because there won't be
any other way with the current state of the register contexts - they
assume that "this register is of size N and at offset M" and
don't have the notion of discontinuos registers.
Reviewers: labath
Subscribers: emaste, lldb-commits
Differential Revision: https://reviews.llvm.org/D26300
llvm-svn: 287506
This is a large API change that removes the two functions from
StreamString that return a std::string& and a const std::string&,
and instead provide one function which returns a StringRef.
Direct access to the underlying buffer violates the concept of
a "stream" which is intended to provide forward only access,
and makes porting to llvm::raw_ostream more difficult in the
future.
Differential Revision: https://reviews.llvm.org/D26698
llvm-svn: 287152
The "value regs" field was filled incorrectly. It is supposed to list the
registers that *this* register is a sub-register of, not the other way around.
This manifested itself in "register read" showing only the smaller sub-registers
(and a bunch of tests not passing). I am not sure if the "invalidates" field is
correct either, but it's usage seems to be inconsistent, so I'll leave that as-is
for now.
llvm-svn: 284981
It's quite sad that we have to edit so many files just to add a register. I am
going to investigate how to merge these definitions somehow, but for now this
should at least get arm64 linux working again.
llvm-svn: 284970
RegisterInfos_arm64.h. These register definitions include the
offset into the register context, which will vary depending on the
endianness of the arm64 target system (e.g. s8 is at offset 0 in
v8 on little-endian, it is at offset 12 on big-endian) and I've
only added the little-endian definitions to the table. If we want
to add a big-endian arm64 target, we'll need a separate table which
uses the big-endian offsets for these registers. I changed the
name of the register table from g_register_infos_arm64 to
g_register_infos_arm64_le to make it explicit that this is the
little-endian version of that table, and updated users of the table
to use the new name.
I added support for the "w", "s", and "d" registers to
RegisterContextDarwin_arm64 but it was more an example than anything
useful -- this plugin is only used when working with core files and
darwin core files do not (today) include the floating point register
context, so it only added the support for the "w" pseudo registers.
When we're connected to a real arm64 device, we use the ProcessGDBRemote
code.
llvm-svn: 284666
This updates getters and setters to use StringRef instead of
const char *. I tested the build on Linux, Windows, and OSX
and saw no build or test failures. I cannot test any BSD
or Android variants, however I expect the required changes
to be minimal or non-existant.
llvm-svn: 282079
This patch also marks the const char* versions as =delete to prevent
their use. This has the potential to cause build breakages on some
platforms which I can't compile. I have tested on Windows, Linux,
and OSX. Best practices for fixing broken callsites are outlined in
Args.h in a comment above the deleted function declarations.
Eventually we can remove these =delete declarations, but for now they
are important to make sure that all implicit conversions from
const char * are manually audited to make sure that they do not invoke a
conversion from nullptr.
llvm-svn: 281919
Summary:
This patch uses the instruction CPUID to verify that FXSAVE, XSAVE, AVX
and MPX are supported by the target hardware. In case the HW supports XSAVE,
and at least one of the extended register sets, it further checks if the
target software has the kernel support for such features, by verifying that
their XSAVE part is correctly managed.
Differential Revision: https://reviews.llvm.org/D24559
llvm-svn: 281507
Most of these issues arose as a result of header re-ordering, but
it turned up a real bug, which is that MSVC doesn't support
__attribute__((packed)) or __attribute__((aligned)). This was
working before because there's a Windows header that #defines
__attribute__(x) to nothing. We should fix this by removing
that #define entirely, and dealing with the fallout separately
which may turn up even more bugs.
I fixed this by replacing them with the corresponding LLVM
macros which understand how to do these operations on all the
different compilers.
llvm-svn: 280757
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
This reverts commit rL280668 because the register tests fail on i386
Linux.
I investigated a little bit what causes the failure - there are missing
registers when running 'register read -a'.
This is the output I got at the bottom:
"""
...
Memory Protection Extensions:
bnd0 = {0x0000000000000000 0x0000000000000000}
bnd1 = {0x0000000000000000 0x0000000000000000}
bnd2 = {0x0000000000000000 0x0000000000000000}
bnd3 = {0x0000000000000000 0x0000000000000000}
unknown:
2 registers were unavailable.
"""
Also looking at the packets exchanged between the client and server:
"""
...
history[308] tid=0x7338 < 19> send packet: $qRegisterInfo4a#d7
history[309] tid=0x7338 < 130> read packet:
$name:bnd0;bitsize:128;offset:1032;encoding:vector;format:vector-uint64;set:Memory
Protection Extensions;ehframe:101;dwarf:101;#48
history[310] tid=0x7338 < 19> send packet: $qRegisterInfo4b#d8
history[311] tid=0x7338 < 130> read packet:
$name:bnd1;bitsize:128;offset:1048;encoding:vector;format:vector-uint64;set:Memory
Protection Extensions;ehframe:102;dwarf:102;#52
history[312] tid=0x7338 < 19> send packet: $qRegisterInfo4c#d9
history[313] tid=0x7338 < 130> read packet:
$name:bnd2;bitsize:128;offset:1064;encoding:vector;format:vector-uint64;set:Memory
Protection Extensions;ehframe:103;dwarf:103;#53
history[314] tid=0x7338 < 19> send packet: $qRegisterInfo4d#da
history[315] tid=0x7338 < 130> read packet:
$name:bnd3;bitsize:128;offset:1080;encoding:vector;format:vector-uint64;set:Memory
Protection Extensions;ehframe:104;dwarf:104;#54
history[316] tid=0x7338 < 19> send packet: $qRegisterInfo4e#db
history[317] tid=0x7338 < 76> read packet:
$name:bndcfgu;bitsize:64;offset:1096;encoding:vector;format:vector-uint8;#99
history[318] tid=0x7338 < 19> send packet: $qRegisterInfo4f#dc
history[319] tid=0x7338 < 78> read packet:
$name:bndstatus;bitsize:64;offset:1104;encoding:vector;format:vector-uint8;#8e
...
"""
The bndcfgu and bndstatus registers don't have the 'Memory Protections
Extension' set. I looked at the code and it seems that that is set
correctly.
So I'm not sure what's the problem or where does it come from.
Also there is a second failure related to something like this in the
tests:
"""
registerSet.GetName().lower()
"""
For some reason the registerSet.GetName() returns None.
llvm-svn: 280703
Summary:
The Intel(R) Memory Protection Extensions (Intel(R) MPX) associates pointers
to bounds, against which the software can check memory references to
prevent out of bound memory access.
This patch allows accessing the MPX registers:
* bnd0-3: 128-bit registers to hold the bound values,
* bndcfgu, bndstatus: 64-bit configuration registers,
This patch also adds read/write tests for the MPX registers in the register
command tests and adds a new subdirectory for MPX specific tests.
Signed-off-by: Valentina Giusti <valentina.giusti@intel.com>
Reviewers: labath, granata.enrico, lldb-commits, clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D24187
llvm-svn: 280668
MutableArrayRef<T> is essentially a safer version of passing around
(T*, length) pairs and provides some convenient functions for working
with the data without having to manually manipulate indices.
This is a minor NFC.
llvm-svn: 280123
for TestNamespaceLookup.py; didn't see anything obviously wrong so I'll
need to look at this more closely before re-committing. (passed OK on
macOS ;)
llvm-svn: 273531
There's uses of "macosx" that will be more tricky to
change, like in triples (e.g. "x86_64-apple-macosx10.11") -
for now I'm just updating source comments and strings printed
for humans.
llvm-svn: 273524
Patch by Nitesh Jain.
Summary: Currently floating point regsiters has eEncodingUint encoding. Hence register write '1.25' will failed. This patch add eEncodingIEEE754 encoding for floating point registers( - ). This patch will fix test_fp_register_write in TestRegisters.py
Reviewers: clayborg, sagar
Subscribers: mohit.bhakkad, jaydeep, bhushan, sdardis, lldb-commits
Differential: D18853
llvm-svn: 270208
values for the pc or return address register.
On ios with arm64 and a binary that has multiple functions without
individual symbol boundaries, we end up with an assembly profile
unwind plan that says lr=<same> - that is, the link register contents
are unmodified from the caller's value. This gets the unwinder in
a loop.
When we're off the 0th frame, we never want to look to a caller for
a pc or return-address register value.
Add checks to ReadGPRValue and ReadRegister to prevent both the pc
and ra register values from recursing.
If this causes problems with backtraces on android, let me know or
back it out and I'll look into it -- but I think these are
straightforward and don't expect problems.
<rdar://problem/24610365>
llvm-svn: 270162
This is a pretty straightforward first pass over removing a number of uses of
Mutex in favor of std::mutex or std::recursive_mutex. The problem is that there
are interfaces which take Mutex::Locker & to lock internal locks. This patch
cleans up most of the easy cases. The only non-trivial change is in
CommandObjectTarget.cpp where a Mutex::Locker was split into two.
llvm-svn: 269877
RegisterContextLLDB::InitializeNonZerothFrame already has code to attempt
to detect and handle the case where the PC points beyond the end of a
function, but there are certain cases where this doesn't work correctly.
In fact, there are *two* different places where this detection is attempted,
and the failure is in fact a result of an unfortunate interaction between
those two separate attempts.
First, the ResolveSymbolContextForAddress routine is called with the
resolve_tail_call_address flag set to true. This causes the routine
to internally accept a PC pointing beyond the end of a function, and
still resolving the PC to that function symbol.
Second, the InitializeNonZerothFrame routine itself maintains a
"decr_pc_and_recompute_addr_range" flag and, if that turns out to
be true, itself decrements the PC by one and searches again for
a symbol at that new PC value.
Both approaches correctly identify the symbol associated with the PC.
However, the problem is now that later on, we also need to find the
DWARF CFI record associated with the PC. This is done in the
RegisterContextLLDB::GetFullUnwindPlanForFrame routine, and uses
the "m_current_offset_backed_up_one" member variable.
However, that variable only actually contains the PC "backed up by
one" if the *second* approach above was taken. If the function was
already identified via the first approach above, that member variable
is *not* backed up by one but simply points to the original PC.
This in turn causes GetEHFrameUnwindPlan to not correctly identify
the DWARF CFI record associated with the PC.
Now, in many cases, if the first method had to back up the PC by one,
we *still* use the second method too, because of this piece of code:
// Or if we're in the middle of the stack (and not "above" an asynchronous event like sigtramp),
// and our "current" pc is the start of a function...
if (m_sym_ctx_valid
&& GetNextFrame()->m_frame_type != eTrapHandlerFrame
&& GetNextFrame()->m_frame_type != eDebuggerFrame
&& addr_range.GetBaseAddress().IsValid()
&& addr_range.GetBaseAddress().GetSection() == m_current_pc.GetSection()
&& addr_range.GetBaseAddress().GetOffset() == m_current_pc.GetOffset())
{
decr_pc_and_recompute_addr_range = true;
}
In many cases, when the PC is one beyond the end of the current function,
it will indeed then be exactly at the start of the next function. But this
is not always the case, e.g. if there happens to be alignment padding
between the end of one function and the start of the next.
In those cases, we may sucessfully look up the function symbol via
ResolveSymbolContextForAddress, but *not* set decr_pc_and_recompute_addr_range,
and therefore fail to find the correct DWARF CFI record.
A very simple fix for this problem is to just never use the first method.
Call ResolveSymbolContextForAddress with resolve_tail_call_address set
to false, which will cause it to fail if the PC is beyond the end of
the current function; or else, identify the next function if the PC
is also at the start of the next function. In either case, we will
then set the decr_pc_and_recompute_addr_range variable and back up the
PC anyway, but this time also find the correct DWARF CFI.
A related problem is that the ResolveSymbolContextForAddress sometimes
returns a "symbol" with empty name. This turns out to be an ELF section
symbol. Now, usually those get type eSymbolTypeInvalid. However, there
is code in ObjectFileELF::ParseSymbols that tries to change the type of
invalid symbols to eSymbolTypeCode or eSymbolTypeData if the symbol
lies within the code or data section.
Unfortunately, this check also hits the symbol for the code section
itself, which is then marked as eSymbolTypeCode. While the size of
the section symbol is 0 according to the ELF file, LLDB considers
this size invalid and attempts to figure out the "correct" size.
Depending on how this goes, we may end up with a symbol that overlays
part of the code section, even outside areas covered by real function
symbols.
Therefore, if we call ResolveSymbolContextForAddress with PC pointing
beyond the end of a function, we may get this bogus section symbol.
This again means InitializeNonZerothFrame thinks we have a valid PC,
but then we don't find any unwind info for it.
The fix for this problem is me to simply always leave ELF section
symbols as type eSymbolTypeInvalid.
Differential Revision: http://reviews.llvm.org/D18975
llvm-svn: 267363
This patch adds support for Linux on SystemZ:
- A new ArchSpec value of eCore_s390x_generic
- A new directory Plugins/ABI/SysV-s390x providing an ABI implementation
- Register context support
- Native Linux support including watchpoint support
- ELF core file support
- Misc. support throughout the code base (e.g. breakpoint opcodes)
- Test case updates to support the platform
This should provide complete support for debugging the SystemZ platform.
Not yet supported are optional features like transaction support (zEC12)
or SIMD vector support (z13).
There is no instruction emulation, since our ABI requires that all code
provide correct DWARF CFI at all PC locations in .eh_frame to support
unwinding (i.e. -fasynchronous-unwind-tables is on by default).
The implementation follows existing platforms in a mostly straightforward
manner. A couple of things that are different:
- We do not use PTRACE_PEEKUSER / PTRACE_POKEUSER to access single registers,
since some registers (access register) reside at offsets in the user area
that are multiples of 4, but the PTRACE_PEEKUSER interface only allows
accessing aligned 8-byte blocks in the user area. Instead, we use a s390
specific ptrace interface PTRACE_PEEKUSR_AREA / PTRACE_POKEUSR_AREA that
allows accessing a whole block of the user area in one go, so in effect
allowing to treat parts of the user area as register sets.
- SystemZ hardware does not provide any means to implement read watchpoints,
only write watchpoints. In fact, we can only support a *single* write
watchpoint (but this can span a range of arbitrary size). In LLDB this
means we support only a single watchpoint. I've set all test cases that
require read watchpoints (or multiple watchpoints) to expected failure
on the platform. [ Note that there were two test cases that install
a read/write watchpoint even though they nowhere rely on the "read"
property. I've changed those to simply use plain write watchpoints. ]
Differential Revision: http://reviews.llvm.org/D18978
llvm-svn: 266308
If the UnwindPlan did not identify how to unwind the stack pointer
register, LLDB currently assumes it can determine to caller's SP
from the current frame's CFA. This is true on most platforms
where CFA is by definition equal to the incoming SP at function
entry.
However, on the s390x target, we instead define the CFA to equal
the incoming SP plus an offset of 160 bytes. This is because
our ABI defines that the caller has to provide a register save
area of size 160 bytes. This area is allocated by the caller,
but is considered part of the callee's stack frame, and therefore
the CFA is defined as pointing to the top of this area.
In order to make this work on s390x, this patch introduces a new
ABI callback GetFallbackRegisterLocation that provides platform-
specific fallback register locations for unwinding. The existing
code to handle SP unwinding as well as volatile registers is moved
into the default implementation of that ABI callback, to allow
targets where that implementation is incorrect to override it.
This patch in itself is a no-op for all existing platforms.
But it is a pre-requisite for adding s390x support.
Differential Revision: http://reviews.llvm.org/D18977
llvm-svn: 266307
We want to do a better job presenting errors that occur when evaluating
expressions. Key to this effort is getting away from a model where all
errors are spat out onto a stream where the client has to take or leave
all of them.
To this end, this patch adds a new class, DiagnosticManager, which
contains errors produced by the compiler or by LLDB as an expression
is created. The DiagnosticManager can dump itself to a log as well as
to a string. Clients will (in the future) be able to filter out the
errors they're interested in by ID or present subsets of these errors
to the user.
This patch is not intended to change the *users* of errors - only to
thread DiagnosticManagers to all the places where streams are used. I
also attempt to standardize our use of errors a bit, removing trailing
newlines and making clients omit 'error:', 'warning:' etc. and instead
pass the Severity flag.
The patch is testsuite-neutral, with modifications to one part of the
MI tests because it relied on "error: error:" being erroneously
printed. This patch fixes the MI variable handling and the testcase.
<rdar://problem/22864976>
llvm-svn: 263859
Turns out that most of the code that runs expressions (e.g. the ObjC runtime grubber) on
behalf of the expression parser was using the currently selected thread. But sometimes,
e.g. when we are evaluating breakpoint conditions/commands, we don't select the thread
we're running on, we instead set the context for the interpreter, and explicitly pass
that to other callers. That wasn't getting communicated to these utility expressions, so
they would run on some other thread instead, and that could cause a variety of subtle and
hard to reproduce problems.
I also went through the commands and cleaned up the use of GetSelectedThread. All those
uses should have been trying the thread in the m_exe_ctx belonging to the command object
first. It would actually have been pretty hard to get misbehavior in these cases, but for
correctness sake it is good to make this usage consistent.
<rdar://problem/24978569>
llvm-svn: 263326
Additionally fix the type of some dwarf expression where we had a
confusion between scalar and load address types after a dereference.
Differential revision: http://reviews.llvm.org/D17604
llvm-svn: 262014
reason to None when we stop due to a trace, then noticed that
we were on a breakpoint that was not valid for the current thread.
That should actually have set it back to trace.
This was pr26441 (<rdar://problem/24470203>)
llvm-svn: 259684
register set indicated by ARM_THREAD_STATE32 (value 9) instead of
the old ARM_THREAD_STATE (value 1); this patch changes lldb to
accept either register set flavor code.
<rdar://problem/24246257>
llvm-svn: 258289
Summary:
The testcase TestNoreturnUnwind.py was failing
because the unwind from the vdso library was not
successful for clang compiler while it was passing
for gcc. It was passing for gcc since the unwind plan
used was the assembly plan and the ebp register was
set by the main function in case of gcc and was not
used by the functions in the call flow to the vdso, whereas
clang did not emit assembly prologue for main and so
the assembly unwind was failing. Normally in case of
failure of assembly unwind, lldb switches to EH CFI frame
based unwinding, but this was not happening for
the first frame. This patch tries to fix this behaviour by
falling to EH CFI frame based unwinding in case of assembly
unwind failure even for the first frame.
The test is still marked as XFAIL since it relys on the fix
of another bug.
Reviewers: lldb-commits, jingham, zturner, tberghammer, jasonmolenda
Subscribers: jasonmolenda
Differential Revision: http://reviews.llvm.org/D15046
llvm-svn: 257465
Summary:
When we construct AppleObjCTrampolineHandler, if m_impl_fn_addr is
invalid, we call CanJIT(). If the gdb remote process does not support
allocating and deallocating memory, this call stack will include a call
to the AppleObjCRuntime constructor. The AppleObjCRuntime constructor
will then call the AppleObjCTrampolineHandler constructor, creating a
recursive call loop that eventually overflows the stack and segfaults.
Avoid this call loop by not constructing the AppleObjCTrampolineHandler
within AppleObjCRuntime until we actually need to use it.
Reviewers: clayborg, jingham
Subscribers: sas, lldb-commits
Differential Revision: http://reviews.llvm.org/D15978
Change by Francis Ricci <fjricci@fb.com>
llvm-svn: 257204
Summary:
- Reason of both bugs:
1. For the very first frame, Unwinder doesn't check the validity
of Full UnwindPlan before creating StackFrame from it:
When 'process launch' command is run after setting a breakpoint
in inferior, the Unwinder runs and saves only Frame 0 (the frame
in which breakpoint was set) in thread's StackFrameList i.e.
m_curr_frames_sp. However, it doesn't check the validity of the
Full UnwindPlan for this frame by unwinding 2 more frames further.
2. Unwinder doesn't update the CFA value of Cursor when Full UnwindPlan
fails and FallBack UnwindPlan succeeds in providing valid CFA values
for frames:
Sometimes during unwinding of stack frames, the Full UnwindPlan
inside the RegisterContextLLDB object may fail to provide valid
CFA values for these frames. Then the Fallback UnwindPlan is used
to unwind the frames.
If the Fallback UnwindPlan succeeds, then it provides a valid new
CFA value. The RegisterContextLLDB::m_cfa field of Cursor object
is updated during the Fallback UnwindPlan execution. However,
UnwindLLDB misses the implementation to update the 'cfa' field
of this Cursor with this valid new CFA value.
- This patch fixes both these issues.
- Remove XFAIL in test files corresponding to these 2 Bugs
Change-Id: I932ea407545ceee2d628f946ecc61a4806d4cc86
Signed-off-by: Abhishek Aggarwal <abhishek.a.aggarwal@intel.com>
Reviewers: jingham, lldb-commits, jasonmolenda
Subscribers: lldb-commits, ovyalov, tberghammer
Differential Revision: http://reviews.llvm.org/D14226
llvm-svn: 253026
Summary:
Since this is within the lldb namespace, the compiler tries to
export a symbol for it. Unfortunately, since it is inlined, the
symbol is hidden and this results in a mess of warnings when
building on OS X with cmake.
Moving it to the lldb_private namespace eliminates that problem.
Reviewers: clayborg
Subscribers: emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D14417
llvm-svn: 252396
set to true, but all plans run by RunThreadPlan need to have this set to false so they will
return control to RunThreadPlan without consulting plans higher on the stack.
Since this seems like a common error, I also modified RunThreadPlan to enforce this behavior.
<rdar://problem/22543166>
llvm-svn: 250084
Summary:
- Changed from 16 bits to 8 bits for Intel Architecture
-- FXSAVE structure now conforms with the layout of FXSAVE
area specified by IA Architecture Software Developer Manual
- Modified Linux and FreeBSD specific files to support this change
-- MacOSX already uses 8 bits for ftag register
- Modified TestRegisters.py and a.cpp:
-- Change allows 8 bit comparison of ftag values
-- Change resolves Bug 24733:
Removed XFAIL for Clang as the test works and passes for
Clang compiler as well
-- Change provides a Generic/Better way of testing Bug 24457
and Bug 25050 by using 'int3' inline assembly in inferior
Signed-off-by: Abhishek Aggarwal <abhishek.a.aggarwal@intel.com>
Reviewers: ovyalov, jingham, clayborg
Subscribers: tfiala, emaste
Differential Revision: http://reviews.llvm.org/D13587
llvm-svn: 250022
* Use .ARM.exidx as a fallback unwind plan for non-call site when the
instruction emulation based unwind failed.
* Work around an old compiler issue where the compiler isn't sort the
entries in .ARM.exidx based on their address.
* Fix unwind info parsing when the virtual file address >= 0x80000000
* Fix bug in unwind info parsing when neither lr nor pc is explicitly
restored.
Differential revision: http://reviews.llvm.org/D13380
llvm-svn: 249119
.ARM.exidx/.ARM.extab sections contain unwind information used on ARM
architecture from unwinding from an exception.
Differential revision: http://reviews.llvm.org/D13245
llvm-svn: 248903
"gcc" register numbers are now correctly referred to as "ehframe"
register numbers. In almost all cases, ehframe and dwarf register
numbers are identical (the one exception is i386 darwin where ehframe
regnums were incorrect).
The old "gdb" register numbers, which I incorrectly thought were
stabs register numbers, are now referred to as "Process Plugin"
register numbers. This is the register numbering scheme that the
remote process controller stub (lldb-server, gdbserver, core file
support, kdp server, remote jtag devices, etc) uses to refer to the
registers. The process plugin register numbers may not be contiguous
- there are remote jtag devices that have gaps in their register
numbering schemes.
I removed all of the enums for "gdb" register numbers that we had
in lldb - these were meaningless - and I put LLDB_INVALID_REGNUM
in all of the register tables for the Process Plugin regnum slot.
This change is almost entirely mechnical; the one actual change in
here is to ProcessGDBRemote.cpp's ParseRegisters() which parses the
qXfer:features:read:target.xml response. As it parses register
definitions from the xml, it will assign sequential numbers as the
eRegisterKindLLDB numbers (the lldb register numberings must be
sequential, without any gaps) and if the xml file specifies register
numbers, those will be used as the eRegisterKindProcessPlugin
register numbers (and those may have gaps). A J-Link jtag device's
target.xml does contain a gap in register numbers, and it only
specifies the register numbers for the registers after that gap.
The device supports many different ARM boards and probably selects
different part of its register file as appropriate.
http://reviews.llvm.org/D12791
<rdar://problem/22623262>
llvm-svn: 247741
RegisterContextPOSIX.h is poorly named and contains only the declaration
of POSIXBreakpointProtocol, which is used for in-process live kernel
debugging. It is now relevant only to FreeBSD.
In source/Plugins/Process/Utility/RegisterContext*.h (after assorted
rework and refactoring) it only served the purpose of #including other
necessary headers as a side-effect. Remove it from them and just include
the required headers directly.
Differential Revision: http://reviews.llvm.org/D12830
llvm-svn: 247558
Summary:
Realtime signals generally do not represent an error condition in an application but are more
like a regular means of IPC. As such, we shouldn't interrupt an application whenever it recieves
one. If any application will use these signals, it will probably use them a lot, rendering it's
debugging tiresome if we stopped at every signal. Furthermore, these signals are likely to be used
in a low level library, and the programmer may not even be aware of their presence.
For these reasons, I am switching the default disposition of realtime signals on all supported
platforms (i.e. Linux and Freebsd) to no-stop, no-notify. Any user still wishing to receive these
signals can always change the default to suit his needs.
Reviewers: ovyalov, emaste
Subscribers: lldb-commits, emaste
Differential Revision: http://reviews.llvm.org/D12795
llvm-svn: 247537
In some special case (e.g. signal handlers, hand written assembly) it is
valid to have 2 stack frame with the same CFA value. This CL change the
looping stack detection code to report a loop only if at least 3
consecutive frames have the same CFA.
Differential revision: http://reviews.llvm.org/D12699
llvm-svn: 247133
Summary:
This doesn't exist in other LLVM projects any longer and doesn't
do anything.
Reviewers: chaoren, labath
Subscribers: emaste, tberghammer, lldb-commits, danalbert
Differential Revision: http://reviews.llvm.org/D12586
llvm-svn: 246749
This was breaking disassembly for arm machines that we force to be
thumb mode all the time because we were only checking for llvm::Triple::arm.
i.e.
armv6m (ARM Cortex-M0)
armv7m (ARM Cortex-M3)
armv7em (ARM Cortex-M4)
<rdar://problem/22334522>
llvm-svn: 245645
This patch :
- Fixes offsets of all register sets for Mips.
- Adds MSA register set and FRE=1 mode support for FP register set.
- Separates lldb register numbers and register infos of freebsd/mips64 from linux/mips64.
- Re-orders the register numbers of all kinds for mips to be consistent with freebsd order of register numbers.
Reviewers: jaydeep, clayborg, jasonmolenda, ovyalov, emaste
Subscribers: tberghammer, ovyalov, emaste, mohit.bhakkad, nitesh.jain, bhushan
Differential: http://reviews.llvm.org/D10919
llvm-svn: 245217
numbers in the key name "ehframe" or "eh_frame" in addition to the deprecated
"gcc" name (e.g. from a plugin.process.gdb-remote.target-definition-file
python file).
llvm-svn: 245151
for eh_frame and stabs register numberings. This is not
complete but it's a step in the right direction. It's almost
entirely mechanical.
lldb informally uses "gcc register numbering" to mean eh_frame.
Why? Probably because there's a notorious bug with gcc on i386
darwin where the register numbers in eh_frame were incorrect.
In all other cases, eh_frame register numbering is identical to
dwarf.
lldb informally uses "gdb register numbering" to mean stabs.
There are no official definitions of stabs register numbers
for different architectures, so the implementations of gdb
and gcc are the de facto reference source.
There were some incorrect uses of these register number types
in lldb already. I fixed the ones that I saw as I made
this change.
This commit changes all references to "gcc" and "gdb" register
numbers in lldb to "eh_frame" and "stabs" to make it clear
what is actually being represented.
lldb cannot parse the stabs debug format, and given that no
one is using stabs any more, it is unlikely that it ever will.
A more comprehensive cleanup would remove the stabs register
numbers altogether - it's unnecessary cruft / complication to
all of our register structures.
In ProcessGDBRemote, when we get register definitions from
the gdb-remote stub, we expect to see "gcc:" (qRegisterInfo)
or "gcc_regnum" (qXfer:features:read: packet to get xml payload).
This patch changes ProcessGDBRemote to also accept "ehframe:"
and "ehframe_regnum" from these remotes.
I did not change GDBRemoteCommunicationServerLLGS or debugserver
to send these new packets. I don't know what kind of interoperability
constraints we might be working under. At some point in the future
we should transition to using the more descriptive names.
Throughout lldb we're still using enum names like "gcc_r0" and "gdb_r0",
for eh_frame and stabs register numberings. These should be cleaned
up eventually too.
The sources link cleanly on macosx native with xcode build. I
don't think we'll see problems on other platforms but please let
me know if I broke anyone.
llvm-svn: 245141
Summary:
For Linux x86 based environments the orig_eax/orig_rax
register should be set to -1 to prevent the instruction pointer
to be decremented, which was the cause for the SIGILL exception.
Fix for Bug 23659
Reviewers: zturner, ashok.thirumurthi, mikesart, jingham, clayborg
Subscribers: clayborg, labath
Differential Revision: http://reviews.llvm.org/D11411
llvm-svn: 244875
This is more preparation for multiple different kinds of types from different compilers (clang, Pascal, Go, RenderScript, Swift, etc).
llvm-svn: 244689