One of the sources is the same size as the destination so that source
doesn't have an overlap with the destination register. By using the _TIED
form we avoid an early clobber contraint for that source.
This matches what was already done for instrinsics. ConvertToThreeAddress
will fix it if it can't stay tied.
Change the costmodel to lower a = b * C where C = -(2^n - 2^m) to
lsl w8, w0, m
sub w0, w8, w0, lsl n
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D134934
VALU use of an SGPR (pair) as mask followed by SALU write to the
same SGPR can cause incorrect execution of subsequent SALU reads
of the SGPR.
Reviewed By: foad, rampitec
Differential Revision: https://reviews.llvm.org/D134151
If True has a Chain result, the other operands of the vmerge may
depend on it through that Chain. We need to ensure it isn't a
predecessor of those operands.
Reviewed By: fakepaper56
Differential Revision: https://reviews.llvm.org/D134980
This stops reporting CostPerUse 1 for `R8`-`R15` and `XMM8`-`XMM31`.
This was previously done because instruction encoding require a REX
prefix when using them resulting in longer instruction encodings. I
found that this regresses the quality of the register allocation as the
costs impose an ordering on eviction candidates. I also feel that there
is a bit of an impedance mismatch as the actual costs occure when
encoding instructions using those registers, but the order of VReg
assignments is not primarily ordered by number of Defs+Uses.
I did extensive measurements with the llvm-test-suite wiht SPEC2006 +
SPEC2017 included, internal services showed similar patterns. Generally
there are a log of improvements but also a lot of regression. But on
average the allocation quality seems to improve at a small code size
regression.
Results for measuring static and dynamic instruction counts:
Dynamic Counts (scaled by execution frequency) / Optimization Remarks:
Spills+FoldedSpills -5.6%
Reloads+FoldedReloads -4.2%
Copies -0.1%
Static / LLVM Statistics:
regalloc.NumSpills mean -1.6%, geomean -2.8%
regalloc.NumReloads mean -1.7%, geomean -3.1%
size..text mean +0.4%, geomean +0.4%
Static / LLVM Statistics:
mean -2.2%, geomean -3.1%) regalloc.NumSpills
mean -2.6%, geomean -3.9%) regalloc.NumReloads
mean +0.6%, geomean +0.6%) size..text
Static / LLVM Statistics:
regalloc.NumSpills mean -3.0%
regalloc.NumReloads mean -3.3%
size..text mean +0.3%, geomean +0.3%
Differential Revision: https://reviews.llvm.org/D133902
When returning from a function with both SCS and PAC-RET enabled, we need to
authenticate the return address from the stack and then load from the SCS,
but this was happening in the reverse order when RETA[AB] were being used.
Fix it by disabling the use of RETA[AB] when SCS is enabled.
Fixes pr58072.
Differential Revision: https://reviews.llvm.org/D134931
1. Save typed pointer type for GlobalVariable/Function instead of the ObjectType.
This will allow use GlobalVariable/Function as value.
2. Save target type for global ctors for Constant.
3. In DXILBitcodeWriter::getTypeID, check PointerMap first for Constant case.
Reviewed By: beanz
Differential Revision: https://reviews.llvm.org/D133283
Simplify and make the pair-wise relocation more precise. If either of
the symbol references are textual, the relocation must be delayed. If
the difference is across sections, delay it as well which partially
matches the behaviour of gas. We unfortunately do not handle the case
where the difference references a symbol that is not yet defined. In
such a case, we simply fail to resolve the difference, which should
hopefully not be too onerous (particularly since no other target
supports cross-section references and it is not clear if this was
intentional on the part of RISCV).
Differential Revision: https://reviews.llvm.org/D132262
Reviewed By: @MaskRay
This code is directly ported from the X86 backend which applies the same rewrite (along with several others). Planning on looking more closely at the other branchless variants from x86 to see if any are worth porting in future changes.
Motivation here is the coremark crc8 routine from https://github.com/eembc/coremark/blob/main/core_util.c#L165. This patch significantly reduces the number of unpredictable branches in the workload.
Differential Revision: https://reviews.llvm.org/D134881
Recognize more opcodes in the function.
Fixes some regressions introduced in D134857 for fdiv.f16 too.
Depends on D134857
Reviewed By: arsenm, foad
Differential Revision: https://reviews.llvm.org/D134862
Preparation patch for D134354 to make V2S16 G_BUILD_VECTOR legal.
Also removes RegBankInfo's scalarization of small BUILD_VECTORs,
replacing it with InstructionSelector logic instead.
This allows for V2S16 BUILD_VECTOR instructions to survive
all the way to ISel so we can select FMA/MAD_MIX instructions
in D134354.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D134433
Using this helper makes work about neutral elements more easier. Although I only
find one case now, I think it will have more chance to be used since so many
combine works are related to neutral elements.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D133866
This is a port of an existing optimization in AArch64 ISelLowering, handling
a case when the same input vector can be used for both ext inputs.
Differential Revision: https://reviews.llvm.org/D134891
In combineOr (X86ISelLowering.cpp) there is a DAG combine that rewrite
a "(0 - SetCC) | C" pattern into something simpler given that a LEA
can be used. Another requirement is that C has some specific value,
for example 1 or 7. When checking those requirements the code used a
32-bit unsigned variable to store the value of C. So for a 64-bit OR
this could miscompile in case any of the 32 most significant bits in
C were non zero.
This patch adds fixes the bug by using a large enough type for the
C value.
The faulty code seem to have been introduced by commit 9bceb8981d
(D131358).
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D134892
Decompose the const 14 can be separated from D132322
Change the costmodel to lower a = b * C where C = 2^n - 2^m to
lsl w8, w0, n
sub w0, w8, w0, lsl m
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D134706
This change updates the costs to make constant pool loads match their actual cost, and adds the broadcast special case to avoid too many regressions. We really need more information about the constants being rematerialized, but this is an incremental improvement.
Differential Revision: https://reviews.llvm.org/D134746
k: A memory operand whose address is formed by a base register and
(optionally scaled) index register.
m: A memory operand whose address is formed by a base register and
offset that is suitable for use in instructions with the same
addressing mode as st.w and ld.w.
ZB: An address that is held in a general-purpose register. The offset
is zero.
ZC: A memory operand whose address is formed by a base register and
offset that is suitable for use in instructions with the same
addressing mode as ll.w and sc.w.
Differential Revision: https://reviews.llvm.org/D134638
This change sets
-amdgpu-assume-{external-call-stack-size | dynamic-stack-object-size}
options to zero by default for code object v5 and later. The runtime is
expected to adjust the scratch size if the amdhsa_uses_dynamic_stack bit
in the kernel descriptor is set.
Differential Revision: https://reviews.llvm.org/D128346
LoongArchELFObjectWriter::getRelocType check IsPCRel for FK_Data_4
(which we produce a R_LARCH_32_PCREL relocation for if IsPCRel).
R_LARCH_32_PCREL is required for FDE relocation.
Differential Revision: https://reviews.llvm.org/D134715
The target selection DAG lowering information is needed for
SelectionDAGBuilder to lower a call like memcmp into an optimized
form.
Differential Revision: https://reviews.llvm.org/D134712
A few issues:
1. There was no legalizer test for G_PTRTOINT
2. Same clamping issue as in many other opcodes
3. AArch64 pointers can only be 64b, so in reality we always have to trunc or
extend with any size other than p0 anyway.
This seems to actually produce more correct selection for narrow types as well.
Differential Revision: https://reviews.llvm.org/D107588
This is intended to be equivalent to the s32 + s64 cases in
AArch64TargetLowering::LowerFCOPYSIGN.
Widen everything and then use G_BIT + a mask to handle the actual copysign
operation. Then, narrow back down to s32/s64.
I wasn't sure about what the best/most canonical INSERT_SUBREG-selectable
pattern is. I chose G_INSERT_VECTOR_ELT + an undef vector because it produces
reasonably okay codegen. (It doesn't produce INSERT_SUBREG right now though.)
If there's a better way to do this then I'm happy to change it.
We also have a couple codegen deficiencies with how we emit vector constants
right now. (We need a GISel equivalent to the tryAdvSIMDModImm64 stuff)
Differential Revision: https://reviews.llvm.org/D108725
This is necessary for custom-legalizing G_FCOPYSIGN.
This is equivalent to the BIT instruction (bitwise insert if true).
Add selection testcases for imported patterns.
Differential Revision: https://reviews.llvm.org/D108714
1. Save typed pointer type for GlobalVariable/Function instead of the ObjectType.
This will allow use GlobalVariable/Function as value.
2. Save target type for global ctors for Constant.
3. In DXILBitcodeWriter::getTypeID, check PointerMap first for Constant case.
Reviewed By: beanz
Differential Revision: https://reviews.llvm.org/D133283