This reverts commit 1c62af3e23.
The commit causes the test below to fail. Revert for now to get the bots
back to green.
Failing test:
lvm/test/Transforms/LoopVectorize/AArch64/masked-op-cost.ll
This patch removes the aarch64 instrinsic svget/svset/svcreate from llvm.
It also implements the InstCombine for vector.extract that used to be in svget.
Depends on: D131547
Differential Revision: https://reviews.llvm.org/D131548
Inlining must be disabled when the call-site needs to toggle PSTATE.SM or
when the callee's function body is executed in a different streaming mode than
its caller. This is needed because function calls are the boundaries for
streaming mode changes.
More details about the SME attributes and design can be found
in D131562.
Differential Revision: https://reviews.llvm.org/D131581
If we don't have NEON, we use the generic fallback, which takes 12
instructions. Make sure the costs reflect that.
(On a related note, we could optimize the generic fallback a bit. It
currently uses sequences like lsr+and+add; if we use and+lsr+add
instead, we can fold the lsr into the add.)
Differential Revision: https://reviews.llvm.org/D133154
1) Tablegen patterns exist to use 'xtn' and 'uzp1' for trunc [1]. Cost table entries are updated based on the actual number of {xtn, uzp1} instructions generated.
2) Without this, an IR instruction like trunc <8 x i16> %v to <8 x i8> is considered free and might be sinked to other basic blocks. As a result, the sinked 'trunc' is in a different basic block with its (usually not-free) vector operand and misses the chance to be combined during instruction selection. (examples in [2])
3) It's a lot of effort to teach CodeGenPrepare.cpp to sink the operand of trunc without introducing regressions, since the instruction to compute the operand of trunc could be faster (e.g., throughput) than the instruction corresponding to "trunc (bin-vector-op". For instance in [3], sinking %1 (as trunc operand) into bb.1 and bb.2 means to replace 2 xtn with 2 shrn (shrn has a throughput of 1 and only utilize v1 pipeline), which is not necessarily good, especially since ushr result needs to be preserved for store operation in bb.0. Meanwhile, it's too optimistic (for CodeGenPrepare pass) to assume machine-cse will always be able to de-dup shrn from various basic blocks into one shrn.
[1] For {v8i16->v8i8, v4i32->v4i16, v2i64->v2i32}, 813ae2871d/llvm/lib/Target/AArch64/AArch64InstrInfo.td (L4472).
For concat (trunc, trunc) -> uzip1, 813ae2871d/llvm/lib/Target/AArch64/AArch64InstrInfo.td (L5428-L5437)
[2] examples
- trunc(umin(X, 255)) -> UQXTRN v8i8 (and other {u,s}x{min,max} pattern for v8i16 operands) from 813ae2871d/llvm/lib/Target/AArch64/AArch64InstrInfo.td (L4515-L4528)
- trunc (AArch64vlshr v8i16, imm) -> SHRNv8i8 (same missed for SHRNv2i32) from 813ae2871d/llvm/lib/Target/AArch64/AArch64InstrInfo.td (L6743-L6748)
[3]
---
; instruction latency / throughput / pipeline on `neoverse-n1`
bb.0:
%1 = lshr <8 x i16> %10, <i16 4, i16 4, i16 4, i16 4, i16 4, i16 4, i16 4, i16 4> ; ushr, latency 2, throughput 1, pipeline V1
%2 = trunc <8 x i16> %1 to <8 x i8> ; xtn, latency 2, throughput 2, pipeline V
%3 = store <8 x i8> %1, ptr %addr
br cond i1 cond, label bb.1, label bb.2
bb.1:
%4 = trunc <8 x i16> %1 to <8 x i8> ; xtn
bb.2:
%5 = trunc <8 x i16> %1 to <8 x i8> ; xtn
---
Differential Revision: https://reviews.llvm.org/D132784
AArch64TTIImpl::getSpliceCost() is now used more aggressively and
LNT (MultiSource/Benchmarks/mafft) exposed a failure case for
<vscale x 1 x i1>. I've tested other element types and whilst they
can be costed they cannot be code generated, so this patch returns
InstructionCost::getInvalid() for all cases.
This has the effect of exposing the power-of-two property for use in memory op costing, but no target actually uses it yet. The main point of this change is simple consistency with the recently changes getArithmeticInstrCost, and to remove the last (interface) use of OperandValueKind.
This change completes the process of replacing OperandValueKind and OperandValueProperties which were previously passed independently in this API with a single container class which contains both.
This is the change which motivated the whole sequence which preceeded it. In an original spike version of this change, I'd noticed a nasty bug: I'd changed the signature without changing names, and as result, we silently passed additional information through a callsite which previously dropped the power-of-two fact. This might be harmless in most cases, but at least a couple clearly dependend for correctness on not passing that property through.
I did my best to split off prior changes which reduced the scope of this one, and which made it possible to use compiler assistance. For instance, every parameter which changes type in this change also changes name. This was intentional to make sure that every call site possible effected must show up in the diff. This let me audit each one closely.
This is part of an ongoing transition to use OperandValueInfo which combines OperandValueKind and OperandValueProperties. This change adds some accessor methods and uses them to simplify backend code. The primary motivation of doing so is removing uses of the parameters so that an upcoming api change is less error prone.
A fixed length SK_Splice shuffle vector is lowered to a Ext under
AArch64, which should have a cost of 1.
Differential Revision: https://reviews.llvm.org/D132299
Defaults to TCK_RecipThroughput - as most explicit calls were assuming TCK_RecipThroughput (vectorizers) or was just doing a before-vs-after comparison (vectorcombiner). Calls via getInstructionCost were just dropping the CostKind, so again there should be no change at this time (as getShuffleCost and its expansions don't use CostKind yet) - but it will make it easier for us to better account for size/latency shuffle costs in inline/unroll passes in the future.
Differential Revision: https://reviews.llvm.org/D132287
If the incoming previous value of a fixed-order recurrence is a phi in
the header, go through incoming values from the latch until we find a
non-phi value. Use this as the new Previous, all uses in the header
will be dominated by the original phi, but need to be moved after
the non-phi previous value.
At the moment, fixed-order recurrences are modeled as a chain of
first-order recurrences.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D119661
TragetLowering had two last InstructionCost related `getTypeLegalizationCost()`
and `getScalingFactorCost()` members, but all other costs are processed in TTI.
E.g. it is not comfortable to use other TTI members in these two functions
overrided in a target.
Minor refactoring: `getTypeLegalizationCost()` now doesn't need DataLayout
parameter - it was always passed from TTI.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D117723
If we have interleave groups in the loop we want to vectorise then
we should fall back on normal vectorisation with a scalar epilogue. In
such cases when tail-folding is enabled we'll almost certainly go on to
create vplans with very high costs for all vector VFs and fall back on
VF=1 anyway. This is likely to be worse than if we'd just used an
unpredicated vector loop in the first place.
Once the vectoriser has proper support for analysing all the costs
for each combination of VF and vectorisation style, then we should
be able to remove this.
Added an extra test here:
Transforms/LoopVectorize/AArch64/sve-tail-folding-option.ll
Differential Revision: https://reviews.llvm.org/D128342
2xi64 is the legalized type for wide reductions (like 16xi64) and setting the
cost to 2 makes `load-reduce` and `load-zext-reduce` patterns profitable.
The few performance measurments that I did on an aarch64 machine confirm that
these patterns are actually faster when vectorized.
Differential Revision: https://reviews.llvm.org/D130740
This patch adds the AArch64 hook for preferPredicateOverEpilogue,
which currently returns true if SVE is enabled and one of the
following conditions (non-exhaustive) is met:
1. The "sve-tail-folding" option is set to "all", or
2. The "sve-tail-folding" option is set to "all+noreductions"
and the loop does not contain reductions,
3. The "sve-tail-folding" option is set to "all+norecurrences"
and the loop has no first-order recurrences.
Currently the default option is "disabled", but this will be
changed in a later patch.
I've added new tests to show the options behave as expected here:
Transforms/LoopVectorize/AArch64/sve-tail-folding-option.ll
Differential Revision: https://reviews.llvm.org/D129560
These intrinsics are now fundemental for SVE code generation and have been
present for a year and a half, hence move them out of the experimental
namespace.
Differential Revision: https://reviews.llvm.org/D127976
D127680 added some unnecessary funnel shift costs for AArch64 to "match
the legacy behaviour". The default costs are closer to the correct
values and line up with the scalar/neon costs better. Remove the lines
again to clean up the code, they can be added back at a later date with
better values if needed.
This change removes an explicit scalable vector bailout for fshl and fshr. This bailout was added in 60e4698b9a, when sinking a unconditional bailout for all intrinsics into selected cases. Its not clear if the bailout was originally unneeded, or if our cost model infrastructure has simply matured in the meantime. Either way, the generic code appears to handle scalable vectors without issue.
Note that the RISC-V cost model changes here aren't particularly interesting. They do probably better match the current lowering, but the main point is to have coverage of the BasicTTI path and simply show lack of crashing.
AArch64 costing was changed to preserve legacy behavior. There will most likely be an upcoming change to use the generic costs there too, but I didn't want to make that change not being particularly familiar with the target.
Differential Revision: https://reviews.llvm.org/D127680
TTI::prefersVectorizedAddressing() try to vectorize the addresses that lead to loads.
For aarch64, only gather/scatter (supported by SVE) can deal with vectors of addresses.
This patch specializes the hook for AArch64, to return true only when we enable SVE.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D124612
The patch extends AArch64TTIImpl::instCombineIntrinsic to simplify
llvm.aarch64.neon.f{min,max}nm(a, a) -> a.
This helps with simplifying code written using the ACLE, e.g.
see https://godbolt.org/z/jYxsoc89c
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D125234
This adds some extra costs for reverse shuffles under AArch64, filling
in the i16/f16/i8 gaps in the cost model.
Differential Revision: https://reviews.llvm.org/D124786
This builds on top of the target-independent cost model added in D124269
to add aarch64 specific costs for fptoui_sat and fptosi_sat intrinsics.
For many common types they will be legal instructions as the AArch64
instructions will saturate naturally. For unsupported pairs of integer
and floating point types, an additional min/max clamp is needed.
Differential Revision: https://reviews.llvm.org/D124357
Given a larger-than-legal shuffle mask, the final codegen will split
into multiple sub-vectors. This attempts to model that in
AArch64TTIImpl::getShuffleCost, splitting masks up according to the size
of the legalized vectors. If the sub-masks have at most 2 input sources
we can call getShuffleCost on them and sum the costs, to get a more
accurate final cost for the entire shuffle. The call to
improveShuffleKindFromMask helps to improve the shuffle kind for the
sub-mask cost call.
Differential Revision: https://reviews.llvm.org/D123414
Given a shuffle with 4 elements size 16 or 32, we can use the costs
directly from the PerfectShuffle tables to get a slightly more accurate
cost for the resulting shuffle.
Differential Revision: https://reviews.llvm.org/D123409
Before this patch `Args` was used to pass a broadcat's arguments by SLP.
This patch changes this. `Args` is now used for passing the operands of
the shuffle.
Differential Revision: https://reviews.llvm.org/D124202
The original patch (https://reviews.llvm.org/D121354) targets x86 and adjusts
the lookahead score of splat loads ad they can be done by the `movddup`
instruction that combines the load and the broadcast and is cheap to execute.
A similar issue shows up on AArch64. The `ld1r` instruction performs a broadcast
load and is cheap to execute.
This patch implements the TargetTransformInfo hooks for AArch64.
Differential Revision: https://reviews.llvm.org/D123638
An insert subvector under aarch64 can often be done as a single lane mov
operation. For example a v4i8 inserted into a v16i8 is a s-reg mov, so
long as the index is a multiple of 4. This teaches the cost model that,
using code copied over from the X86 backend.
Some of the costs (v16i16_4_0) are still high because they get matched
as a SK_Select, not an SK_InsertSubvector. D120879 has some codegen
tests for inserting subvectors, which I were added as
llvm/test/CodeGen/AArch64/insert-subvector.ll.
Differential Revision: https://reviews.llvm.org/D120880
The cost of a v2i64 multiply was special cased in D92208 as scalarized
into 4*extract + 2*insert + 2*mul. Scalarizing to/from gpr registers are
expensive though, and the cost wasn't high enough to prevent vectorizing
in places where it can be detrimental for performance. This increases it
so that the costs of copying to/from GPRs is increased to 2 each, with
the total cost increasing to 14. So long as umull/smull are handled
correctly (as in D123006) this seems to lead to better vectorization
factors and better performance.
Differential Revision: https://reviews.llvm.org/D123007
A vector mul(sext, sext) or mul(zext, zext) will be code generated as a
single smull or umull instruction. This most notably effects v2i64
multiplies, which are otherwise not legal and need to be expanded.
The oneuse check has also been slightly changed, as it is already
checked from the use of isWideningInstruction in getCastInstrCost.
Differential Revision: https://reviews.llvm.org/D123006