This patch implements the following floating point negative absolute value
builtins that required for compatibility with the XL compiler:
```
double __fnabs(double);
float __fnabss(float);
```
These builtins will emit :
- fnabs on PWR6 and below, or if VSX is disabled.
- xsnabsdp on PWR7 and above, if VSX is enabled.
Differential Revision: https://reviews.llvm.org/D125506
Add a compiler option and the instructions required to set the
special Data Stream Control Register (DSCR). The special register will
not be set by default.
Original patch by: Muhammad Usman
Reviewed By: nemanjai, #powerpc
Differential Revision: https://reviews.llvm.org/D117013
The LDMX instruction was to be potentially added in P9 but it was never added
in either ISA 3.0 or ISA 3.1. This patch removes that instruction as it is
currently still an invalid instruction.
Reviewed By: lei
Differential Revision: https://reviews.llvm.org/D118074
Add support for Return Oriented Programming (ROP) protection for 32 bit.
This patch also adds a testing for AIX on both 64 and 32 bit.
Reviewed By: amyk
Differential Revision: https://reviews.llvm.org/D111362
The patch expands the existing 32-bit toc-data attribute support to 64-bit.
In both 32-bit and 64-bit it is supported for small code model only.
Differential Revision: https://reviews.llvm.org/D114654
Support for builtins that use bcdadd./bcdsub. to add/subtract
Binary Coded Decimal values as well as to determine validity
and compare BCD values.
Differential revision: https://reviews.llvm.org/D114088
Currently, the floating point instructions that depend on
rounding mode are correctly marked in the PPC back end with
an implicit use of the RM register. Similarly, instructions
that explicitly define the register are marked with an
implicit def of the same register. So for the most part,
RM-using code won't be moved across RM-setting instructions.
However, calls are not marked as RM-setting instructions so
code can be moved across calls. This is generally desired,
but so is the ability to turn off this behaviour with an
appropriate option - and -frounding-math really should be
that option.
This patch provides a set of call instructions (for direct
and indirect calls) that are marked with an implicit def of
the RM register. These will be used for calls that are marked
with the strictfp attribute.
Differential revision: https://reviews.llvm.org/D111433
Add builtin and intrinsic for `__addex`.
This patch is part of a series of patches to provide builtins for
compatibility with the XL compiler.
Reviewed By: stefanp, nemanjai, NeHuang
Differential Revision: https://reviews.llvm.org/D107002
Add td definitions and asm/disasm tests for the addex instruction introduced in
ISA 3.0.
Reviewed By: nemanjai, amyk, NeHuang
Differential Revision: https://reviews.llvm.org/D106666
This provides intrinsics for emitting instructions that set the FPSCR (`mtfsf/mtfsfi`).
The patch also conservatively marks the rounding mode as an implicit def for both since they both may set the rounding mode depending on the operands.
Reviewed By: #powerpc, qiucf
Differential Revision: https://reviews.llvm.org/D105957
This patch implements the `__popcntb` XL compatibility builtin for 32bit in the frontend and backend. This patch also updates tests for `__popcntb` and other XL Compat sync related builtins.
Reviewed By: #powerpc, nemanjai, amyk
Differential Revision: https://reviews.llvm.org/D105360
There are four new PowerPC instructions that are introduced in
Power 10. They are hashst, hashchk, hashstp, hashchkp.
These instructions will be used for ROP Protection.
This patch adds the four instructions.
Reviewed By: nemanjai, amyk, #powerpc
Differential Revision: https://reviews.llvm.org/D99375
There are four new PowerPC instructions that are introduced in
Power 10. They are hashst, hashchk, hashstp, hashchkp.
These instructions will be used for ROP Protection.
This patch adds the four instructions.
Reviewed By: nemanjai, amyk, #powerpc
Differential Revision: https://reviews.llvm.org/D99375
Copy-paste P9 insns were added back in 2016,
however, looks like the opcodes has changed in ISA3.1.
Reviewed By: #powerpc, nemanjai
Differential Revision: https://reviews.llvm.org/D97416
This patch adds support for Vector Multiply-Sum Unsigned Doubleword Modulo
instruction; vmsumudm.
Differential Revision: https://reviews.llvm.org/D80294
We use o suffix to indicate record form instuctions,
(as it is similar to dot '.' in mne?)
This was fine before, as we did not support XO-form.
However, with https://reviews.llvm.org/D66902,
we now have XO-form support.
It becomes confusing now to still use 'o' for record form,
and it is weird to have something like 'Oo' .
This patch rename all 'o' instructions to use '_rec' instead.
Also rename `isDot` to `isRecordForm`.
Reviewed By: #powerpc, hfinkel, nemanjai, steven.zhang, lkail
Differential Revision: https://reviews.llvm.org/D70758
Extends the desciptor-based indirect call support for 32-bit codegen,
and enables indirect calls for AIX.
In-depth Description:
In a function descriptor based ABI, a function pointer points at a
descriptor structure as opposed to the function's entry point. The
descriptor takes the form of 3 pointers: 1 for the function's entry
point, 1 for the TOC anchor of the module containing the function
definition, and 1 for the environment pointer:
struct FunctionDescriptor {
void *EntryPoint;
void *TOCAnchor;
void *EnvironmentPointer;
};
An indirect call has several steps of loading the the information from
the descriptor into the proper registers for setting up the call. Namely
it has to:
1) Save the caller's TOC pointer into the TOC save slot in the linkage
area, and then load the callee's TOC pointer into the TOC register
(GPR 2 on AIX).
2) Load the function descriptor's entry point into the count register.
3) Load the environment pointer into the environment pointer register
(GPR 11 on AIX).
4) Perform the call by branching on count register.
5) Restore the caller's TOC pointer after returning from the indirect call.
A couple important caveats to the above:
- There is no way to directly load a value from memory into the count register.
Instead we populate the count register by loading the entry point address into
a gpr and then moving the gpr to the count register.
- The TOC restore has to come immediately after the branch on count register
instruction (i.e., the 1st instruction executed after we return from the
call). This is an implementation limitation. We could, in theory, schedule
the restore elsewhere as long as no uses of the TOC pointer fall in between
the call and the restore; however, to keep it simple, we insert a pseudo
instruction that represents both the indirect branch instruction and the
load instruction that restores the caller's TOC from the linkage area. As
they flow through the compiler as a single pseudo instruction, nothing can be
inserted between them and the caller's TOC is then valid at any use.
Differtential Revision: https://reviews.llvm.org/D70724
Summary:
This is found during https://reviews.llvm.org/D70758
All the other record forms are having suffix o at the end.
ANDIo8 and ANDISo8 are the only two that put o before 8.
This patch rename them to be consistent with others.
Reviewers: #powerpc, hfinkel, nemanjai, lei, steven.zhang, echristo, jhibbits, joerg
Reviewed By: jhibbits
Subscribers: wuzish, hiraditya, kbarton, shchenz, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70928
The Overflow version of XO-Form instruction uses the SO, OV and
OV32 special registers.
This changes modifies existing multiclasses and instruction
definitions to allow for the use of the XER register to record
the various types if overflow from possible add, subtract and
multiply instructions. It then modifies the existing instructions
as to use these multiclasses as needed.
Patch By: Kamau Bridgeman
Differential Revision: https://reviews.llvm.org/D66902
Summary:
Reported in https://github.com/opencv/opencv/issues/15413.
We have serveral extended mnemonics for Move To/From Vector-Scalar Register Instructions
eg: mffprd,mtfprd etc.
We only support one of them, this patch add the others.
Reviewers: nemanjai, steven.zhang, hfinkel, #powerpc
Reviewed By: hfinkel
Subscribers: wuzish, qcolombet, hiraditya, kbarton, MaskRay, shchenz, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66963
llvm-svn: 370411
Summary:
xxspltib/vspltisb are 3 cycle PM instructions,
xxleqv is 2 cycle ALU instruction.
We should use xxleqv to set all one vectors.
Reviewers: hfinkel, nemanjai, steven.zhang
Subscribers: hiraditya, kbarton, MaskRay, shchenz, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65529
llvm-svn: 369006
Summary:
Since we are planning to add ADDIStocHA for 32bit in later patch, we decided
to change 64bit one first to follow naming convention with 8 behind opcode.
Patch by: Xiangling_L
Differential Revision: https://reviews.llvm.org/D64814
llvm-svn: 366731
Summary:
`extsw` and `sldi` are supposed to be combined if they are in the same
BB in instruction selection phase. This patch handles the case where
extsw and sldi are not in the same BB.
Differential Revision: https://reviews.llvm.org/D63806
llvm-svn: 365430
This is to address some of the problems in existing P9 resource modeling,
especially about the dispatching rules.
Instead of using a hypothetical DISPATCHER , we try to use the number of
actual dispatch slots, and define SchedWriteRes to model dispatch rules,
then update instruction classes according to dispatch rules.
All the dispatch rules and instruction classes update are made according
to POWER9 User Manual.
Differential Revision: https://reviews.llvm.org/D61873
llvm-svn: 362509
Summary:dd
This patch implements call lowering for calls without parameters
on AIX as initial support.
Reviewers: sfertile, hubert.reinterpretcast, aheejin, efriedma
Differential Revision: https://reviews.llvm.org/D61948
llvm-svn: 361669
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This patch aims to improve the codegen for vector loads involving the
scalar_to_vector (load X) sequence. Initially, ld->mv instructions were used
for scalar_to_vector (load X), so this patch allows scalar_to_vector (load X)
to utilize:
LXSD and LXSDX for i64 and f64
LXSIWAX for i32 (sign extension to i64)
LXSIWZX for i32 and f64
Committing on behalf of Amy Kwan.
Differential Revision: https://reviews.llvm.org/D48950
llvm-svn: 339260
Legalize and emit code for round & convert float128 to double precision and
single precision.
Differential Revision: https://reviews.llvm.org/D46997
llvm-svn: 336299
The X-form TLS load/store instructions added for optimizing the initial-exec
sequence in https://reviews.llvm.org/rL327635 fail to assemble. llvm-mc fails
with the error: invalid operand for instruction. This patch adds these
instructions into a block with isAsmParserOnly, similar to how ADD8TLS_ is
currently handled.
Differential Revision: https://reviews.llvm.org/D47382
llvm-svn: 333374
The Power 9 scheduler model should now include the TLS instructions.
We can now, once again, mark the model as complete.
From now on, if instructions are added to Power 9 but are not
added to the model the build should produce an error. Hopefully
that will alert the developer who is adding new instructions
that they should also be added to the scheulder model.
llvm-svn: 330060
Did some code cleanup up removing ItinRW that are not needed and resource types
that are no longer used.
Also added more comments to the td files related to the Power 9 sheduler model.
llvm-svn: 327174
Adding more instructions using InstRW so that we can move away from ItinRW
and ultimately have a complete Power 9 scheduler.
Differential Revision: https://reviews.llvm.org/D43899
llvm-svn: 326447
This is the first in a series of patches that will define more
instructions using InstRW so that we can move away from ItinRW
and ultimately have a complete Power 9 scheduler.
Differential Revision: https://reviews.llvm.org/D43635
llvm-svn: 325956
The VSX versions have the advantage of a full 64-register target whereas the FP
ones have the advantage of lower latency and higher throughput. So what we’re
after is using the faster instructions in low register pressure situations and
using the larger register file in high register pressure situations.
The heuristic chooses between the following 7 pairs of instructions.
PPC::LXSSPX vs PPC::LFSX
PPC::LXSDX vs PPC::LFDX
PPC::STXSSPX vs PPC::STFSX
PPC::STXSDX vs PPC::STFDX
PPC::LXSIWAX vs PPC::LFIWAX
PPC::LXSIWZX vs PPC::LFIWZX
PPC::STXSIWX vs PPC::STFIWX
Differential Revision: https://reviews.llvm.org/D38486
llvm-svn: 318651
A number of record form instructions were missing from the P9 scheduling
model. Added those instructions and marked the P9 model as complete.
Differential Revision: https://reviews.llvm.org/D38560
llvm-svn: 315313