The basic idea here is that given a zero extended narrow IV, we can prove the inner IV to be NUW if we can prove there's a value the inner IV must take before overflow which must exit the loop.
Differential Revision: https://reviews.llvm.org/D109457
The basic problem being solved is that we largely give up when encountering a trip count involving an IV which is not an addrec. We will fall back to the brute force constant eval, but that doesn't have the information about the fact that we can't cycle back through the same set of values.
There's a high level design question of whether this is the right place to handle this, and if not, where that place is. The major alternative here would be to return a conservative upper bound, and then rely on two invocations of indvars to add the facts to the narrow IV, and then reconstruct SCEV. (I have not implemented the alternative and am not 100% sure this would work out.) That's arguably more in line with existing code, but I find this substantially easier to reason about. During review, no one expressed a strong opinion, so we went with this one.
Differential Revision: D108651
Only tests in llvm/test/Analysis.
-analyze is legacy PM-specific.
This only touches files with `-passes`.
I looked through everything and made sure that everything had a new PM equivalent.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D109040