For the pattern of IR (%if terminates with a divergent branch.),
divergence analysis will report %phi as uniform to help optimal code
generation.
```
%if
| \
| %then
| /
%endif: %phi = phi [ %uniform, %if ], [ %undef, %then ]
```
In the backend, %phi and %uniform will be assigned a scalar register.
But the %undef from %then will make the scalar register dead in %then.
This will likely cause the register being over-written in %then. To fix
the issue, we will rewrite %undef as %uniform. For details, please refer
the comment in AMDGPURewriteUndefForPHI.cpp. Currently there is no test
changes shown, but this is mandatory for later changes.
Reviewed by: sameerds
Differential Revision: https://reviews.llvm.org/D133840
This patch introduces the priority analysis and the priority advisor,
the default implementation, and the scaffolding for introducing the
other implementations of the advisor.
Reviewed By: mtrofin
Differential Revision: https://reviews.llvm.org/D132835
This pass seems to have very little effect because all it does is hoist
some instructions, but it is followed later in the codegen pipeline by
the IR CodeSinking pass which does the opposite.
Differential Revision: https://reviews.llvm.org/D130258
This was stored in LiveIntervals, but not actually used for anything
related to LiveIntervals. It was only used in one check for if a load
instruction is rematerializable. I also don't think this was entirely
correct, since it was implicitly assuming constant loads are also
dereferenceable.
Remove this and rely only on the invariant+dereferenceable flags in
the memory operand. Set the flag based on the AA query upfront. This
should have the same net benefit, but has the possible disadvantage of
making this AA query nonlazy.
Preserve the behavior of assuming pointsToConstantMemory implying
dereferenceable for now, but maybe this should be changed.
We form VOPD instructions in the GCNCreateVOPD pass by combining
back-to-back component instructions. There are strict register
constraints for creating a legal VOPD, namely that the matching operands
(e.g. src0x and src0y, src1x and src1y) must be in different register
banks. We add a PostRA scheduler
mutation to put possible VOPD components back-to-back.
Depends on D128442, D128270
Reviewed By: #amdgpu, rampitec
Differential Revision: https://reviews.llvm.org/D128656
GFX11 has a new message type MSG_DEALLOC_VGPRS which can be used to
release a shader's VGPRs. Sending this at the end of a shader (just
before the s_endpgm) can help overall system performance in cases where
the s_endpgm would have to wait for outstanding VMEM stores to complete
before releasing the VGPRs.
Differential Revision: https://reviews.llvm.org/D128442
waitcnt vmcnt instructions are currently generated in loop bodies before using
values loaded outside of the loop. In some cases, it is better to flush the
vmcnt counter in a loop preheader before entering the loop body. This patch
detects these cases and generates waitcnt instructions to flush the counter.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D115747
Today, text section prefixes (none, .unlikely, .hot, and .unkown) are determined based on PGO profile. However, Propeller may deem a function hot when PGO doesn't. Besides, when `-Wl,-keep-text-section-prefix=true` Propeller cannot enforce a global section ordering as the linker can only reorder sections within each output section (.text, .text.hot, .text.unlikely).
This patch promotes all functions with Propeller profiles (functions listed in the basic-block-sections profile) to .text.hot. The feature is hidden behind the flag `--bbsections-guided-section-prefix` which defaults to `true`.
The new implementation refactors the parsing of basic block sections profile into a new `BasicBlockSectionsProfileReader` analysis pass. This allows us to use the information earlier in `CodeGenPrepare` in order to set the functions text prefix. `BasicBlockSectionsProfileReader` will be used both by `BasicBlockSections` pass and `CodeGenPrepare`.
Differential Revision: https://reviews.llvm.org/D122930
reapply 62a9b36fcf and fix module build
failue:
1: remove MachineCycleInfoWrapperPass in MachinePassRegistry.def
MachineCycleInfoWrapperPass is a anylysis pass, should not be there.
2: move the definition for MachineCycleInfoPrinterPass to cpp file.
Otherwise, there are module conflicit for MachineCycleInfoWrapperPass
in MachinePassRegistry.def and MachineCycleAnalysis.h after
62a9b36fcf.
MachineCycle can handle irreducible loop. Natural loop
analysis (MachineLoop) can not return correct loop depth if
the loop is irreducible loop. And MachineSink is sensitive
to the loop depth, see MachineSinking::isProfitableToSinkTo().
This patch tries to use MachineCycle so that we can handle
irreducible loop better.
Reviewed By: sameerds, MatzeB
Differential Revision: https://reviews.llvm.org/D123995
MachineCycle can handle irreducible loop. Natural loop
analysis (MachineLoop) can not return correct loop depth if
the loop is irreducible loop. And MachineSink is sensitive
to the loop depth, see MachineSinking::isProfitableToSinkTo().
This patch tries to use MachineCycle so that we can handle
irreducible loop better.
Reviewed By: sameerds, MatzeB
Differential Revision: https://reviews.llvm.org/D123995
This is more precise in the face of indirect calls and aliases, still
assuming the call target is defined somewhere in the current module.
This sometimes changes the order the functions are printed, and also
changes the point where context errors are printed relative to
stdout. This also likely has negative consequences for compile time
and memory usage.
This patch introduces the eviction analysis and the eviction advisor,
the default implementation, and the scaffolding for introducing the
other implementations of the advisor.
Differential Revision: https://reviews.llvm.org/D115707
Run post-RA SIShrinkInstructions just before post-RA scheduling, instead
of afterwards. After the fixes in D112305 and D112317 this seems to make
no difference, but it paves the way for scheduler tweaks that are
sensitive to the e32 vs e64 encoding of VALU instructions.
Differential Revision: https://reviews.llvm.org/D112341
Updating the MachineDominatorTree is easy since SILowerControlFlow only
splits and removes basic blocks. This should save a bit of compile time
because previously we would recompute the dominator tree from scratch
after this pass.
Another reason for doing this is that SILowerControlFlow preserves
LiveIntervals which transitively requires MachineDominatorTree. I think
that means that SILowerControlFlow is obliged to preserve
MachineDominatorTree too as explained here:
https://lists.llvm.org/pipermail/llvm-dev/2020-November/146923.html
although it does not seem to have caused any problems in practice yet.
Differential Revision: https://reviews.llvm.org/D111313
Use GCNHazardRecognizer in postra sched.
Updated tests for the new schedules.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D109536
Change-Id: Ia86ba2ae168f12fb34b4d8efdab491f84d936cde
Previously we assumed all callable functions did not need any
implicitly passed inputs, and added attributes to functions to
indicate when they were necessary. Requiring attributes for
correctness is pretty ugly, and it makes supporting indirect and
external calls more complicated.
This inverts the direction of the attributes, so an undecorated
function is assumed to need all implicit imputs. This enables
AMDGPUAttributor by default to mark when functions are proven to not
need a given input. This strips the equivalent functionality from the
legacy AMDGPUAnnotateKernelFeatures pass.
However, AMDGPUAnnotateKernelFeatures is not fully removed at this
point although it should be in the future. It is still necessary for
the two hacky amdgpu-calls and amdgpu-stack-objects attributes, which
would be better served by a trivial analysis on the IR during
selection. Additionally, AMDGPUAnnotateKernelFeatures still
redundantly handles the uniform-work-group-size attribute to be
removed in a future commit.
At this point when not using -amdgpu-fixed-function-abi, we are still
modifying the ABI based on these newly negated attributes. In the
future, this option will be removed and the locations for implicit
inputs will always be fixed. We will then use the new attributes to
avoid passing the values when unnecessary.
This patch introduces a new code object metadata field, ".kind"
which is used to add support for init and fini kernels.
HSAStreamer will use function attributes, "device-init" and
"device-fini" to distinguish between init and fini kernels from
the regular kernels and will emit metadata with ".kind" set to
"init" and "fini" respectively.
To reduce the number of init and fini kernels, the ctors and
dtors present in the llvm's global.ctors and global.dtors lists
are called from a single init and fini kernel respectively.
Reviewed by: yaxunl
Differential Revision: https://reviews.llvm.org/D105682
This patch introduces a new code object metadata field, ".kind"
which is used to add support for init and fini kernels.
HSAStreamer will use function attributes, "device-init" and
"device-fini" to distinguish between init and fini kernels from
the regular kernels and will emit metadata with ".kind" set to
"init" and "fini" respectively.
To reduce the number of init and fini kernels, the ctors and
dtors present in the llvm's global.ctors and global.dtors lists
are called from a single init and fini kernel respectively.
Reviewed by: yaxunl
Differential Revision: https://reviews.llvm.org/D105682
This is SCC pass, moving it to the end of SCC PM saves one
Function PM. This needs the analysis to take into account
memory access width since it is now places after the
load/store optimizer (D105651).
Differential Revision: https://reviews.llvm.org/D105652
First, collect the register usage in each function, then apply the
maximum register usage of all functions to functions with indirect
calls.
This is more accurate than guessing the maximum register usage without
looking at the actual usage.
As before, assume that indirect calls will hit a function in the
current module.
Differential Revision: https://reviews.llvm.org/D105839
This new MIR pass removes redundant DBG_VALUEs.
After the register allocator is done, more precisely, after
the Virtual Register Rewriter, we end up having duplicated
DBG_VALUEs, since some virtual registers are being rewritten
into the same physical register as some of existing DBG_VALUEs.
Each DBG_VALUE should indicate (at least before the LiveDebugValues)
variables assignment, but it is being clobbered for function
parameters during the SelectionDAG since it generates new DBG_VALUEs
after COPY instructions, even though the parameter has no assignment.
For example, if we had a DBG_VALUE $regX as an entry debug value
representing the parameter, and a COPY and after the COPY,
DBG_VALUE $virt_reg, and after the virtregrewrite the $virt_reg gets
rewritten into $regX, we'd end up having redundant DBG_VALUE.
This breaks the definition of the DBG_VALUE since some analysis passes
might be built on top of that premise..., and this patch tries to fix
the MIR with the respect to that.
This first patch performs bacward scan, by trying to detect a sequence of
consecutive DBG_VALUEs, and to remove all DBG_VALUEs describing one
variable but the last one:
For example:
(1) DBG_VALUE $edi, !"var1", ...
(2) DBG_VALUE $esi, !"var2", ...
(3) DBG_VALUE $edi, !"var1", ...
...
in this case, we can remove (1).
By combining the forward scan that will be introduced in the next patch
(from this stack), by inspecting the statistics, the RemoveRedundantDebugValues
removes 15032 instructions by using gdb-7.11 as a testbed.
Differential Revision: https://reviews.llvm.org/D105279
AMDGPU normally spills SGPRs to VGPRs. Previously, since all register
classes are handled at the same time, this was problematic. We don't
know ahead of time how many registers will be needed to be reserved to
handle the spilling. If no VGPRs were left for spilling, we would have
to try to spill to memory. If the spilled SGPRs were required for exec
mask manipulation, it is highly problematic because the lanes active
at the point of spill are not necessarily the same as at the restore
point.
Avoid this problem by fully allocating SGPRs in a separate regalloc
run from VGPRs. This way we know the exact number of VGPRs needed, and
can reserve them for a second run. This fixes the most serious
issues, but it is still possible using inline asm to make all VGPRs
unavailable. Start erroring in the case where we ever would require
memory for an SGPR spill.
This is implemented by giving each regalloc pass a callback which
reports if a register class should be handled or not. A few passes
need some small changes to deal with leftover virtual registers.
In the AMDGPU implementation, a new pass is introduced to take the
place of PrologEpilogInserter for SGPR spills emitted during the first
run.
One disadvantage of this is currently StackSlotColoring is no longer
used for SGPR spills. It would need to be run again, which will
require more work.
Error if the standard -regalloc option is used. Introduce new separate
-sgpr-regalloc and -vgpr-regalloc flags, so the two runs can be
controlled individually. PBQB is not currently supported, so this also
prevents using the unhandled allocator.
There are cases where infer address spaces pass cannot yet
infer an address space in the opt pipeline and then in the
llc pipeline it runs too late for atomic expand pass to
benefit from a specific address space.
Move atomic expand pass past the infer address spaces.
Fixes: SWDEV-293410
Differential Revision: https://reviews.llvm.org/D105511
This is to allow 64 bit constant rematerialization. If a constant
is split into two separate moves initializing sub0 and sub1 like
now RA cannot rematerizalize a 64 bit register.
This gives 10-20% uplift in a set of huge apps heavily using double
precession math.
Fixes: SWDEV-292645
Differential Revision: https://reviews.llvm.org/D104874