This is an unusual canonicalization because we create an extra instruction,
but it's likely better for analysis and codegen (similar reasoning as D133399).
InstCombine::Negator may create this kind of multiply from negate and shift,
but this should not conflict because of the narrow negation.
I don't know how to create a fully general proof for this kind of transform in
Alive2, but here's an example with bitwidths similar to one of the regression
tests:
https://alive2.llvm.org/ce/z/J3jTjR
Differential Revision: https://reviews.llvm.org/D133667
This ensures PreservedCFGCheckerAnalysis is always added, independent of
whether opt was built with assertions enabled or not.
This fixes a few buildbot failures for bots that don't have assertions
enabled.
At the moment, LoopAccessAnalysis is a loop analysis for the new pass
manager. The issue with that is that LAI caches SCEV expressions and
modifications in a loop may impact SCEV expressions in other loops, but
we do not have a convenient way to invalidate LAI for other loops
withing a loop pipeline.
To avoid this issue, turn it into a function analysis which returns a
manager object that keeps track of the individual LAI objects per loop.
Fixes#50940.
Fixes#51669.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D134606
Update both memprof and callsite metadata to reflect inlined functions.
For callsite metadata this is simply a concatenation of each cloned
call's call stack with that of the inlined callsite's.
For memprof metadata, each profiled memory info block (MIB) is either
moved to the cloned allocation call or left on the original allocation
call depending on whether its context matches the newly refined call
stack context on the cloned call. We also reapply context trimming
optimizations based on the refined set of contexts on each of the calls
(cloned and original).
Depends on D128142.
Reviewed By: snehasish
Differential Revision: https://reviews.llvm.org/D128143
This reverts commit 0d7f3464ce and
commit f9403ca41e. The latter was
"Profile matching and IR annotation for memprof profiles." and was left
from a bad rebase from a commit already pushed upstream.
Update both memprof and callsite metadata to reflect inlined functions.
For callsite metadata this is simply a concatenation of each cloned
call's call stack with that of the inlined callsite's.
For memprof metadata, each profiled memory info block (MIB) is either
moved to the cloned allocation call or left on the original allocation
call depending on whether its context matches the newly refined call
stack context on the cloned call. We also reapply context trimming
optimizations based on the refined set of contexts on each of the calls
(cloned and original), via utilities in MemoryProfileInfo.
Depends on D128142.
Differential Revision: https://reviews.llvm.org/D128143
This stops reporting CostPerUse 1 for `R8`-`R15` and `XMM8`-`XMM31`.
This was previously done because instruction encoding require a REX
prefix when using them resulting in longer instruction encodings. I
found that this regresses the quality of the register allocation as the
costs impose an ordering on eviction candidates. I also feel that there
is a bit of an impedance mismatch as the actual costs occure when
encoding instructions using those registers, but the order of VReg
assignments is not primarily ordered by number of Defs+Uses.
I did extensive measurements with the llvm-test-suite wiht SPEC2006 +
SPEC2017 included, internal services showed similar patterns. Generally
there are a log of improvements but also a lot of regression. But on
average the allocation quality seems to improve at a small code size
regression.
Results for measuring static and dynamic instruction counts:
Dynamic Counts (scaled by execution frequency) / Optimization Remarks:
Spills+FoldedSpills -5.6%
Reloads+FoldedReloads -4.2%
Copies -0.1%
Static / LLVM Statistics:
regalloc.NumSpills mean -1.6%, geomean -2.8%
regalloc.NumReloads mean -1.7%, geomean -3.1%
size..text mean +0.4%, geomean +0.4%
Static / LLVM Statistics:
mean -2.2%, geomean -3.1%) regalloc.NumSpills
mean -2.6%, geomean -3.9%) regalloc.NumReloads
mean +0.6%, geomean +0.6%) size..text
Static / LLVM Statistics:
regalloc.NumSpills mean -3.0%
regalloc.NumReloads mean -3.3%
size..text mean +0.3%, geomean +0.3%
Differential Revision: https://reviews.llvm.org/D133902
This is an extension of the existing min/max+select fold (which already
has a very large number of variations) to allow a vector shuffle because
that's what we have in the motivating example from issue #42100.
A couple of Alive2 checks of variants (I don't know how to generalize
these in Alive):
https://alive2.llvm.org/ce/z/jUFAqT
And verify the PR42100 test:
https://alive2.llvm.org/ce/z/3EcASf
It's possible there is some generalization of the fold or a
VectorCombine/SLP answer for the motivating test, but I haven't found a
better/smaller solution yet.
We can also add even more variants here as follow-up patches. For example,
we can have shuffle followed by min/max; we also don't have this
canonicalization or the reverse:
https://alive2.llvm.org/ce/z/StHD9f
Differential Revision: https://reviews.llvm.org/D134879
Revert rGef89409a59f3b79ae143b33b7d8e6ee6285aa42f "Fix 'unused-lambda-capture' gcc warning. NFCI."
Revert rG926ccfef032d206dcbcdf74ca1e3a9ebf4d1be45 "[SLP] ScalarizationOverheadBuilder - demand all elements for scalarization if the extraction index is unknown / out of bounds"
Revert ScalarizationOverheadBuilder sequence from D134605 - when accumulating extraction costs by Type (instead of specific Value), we are not distinguishing enough when they are coming from the same source or not, and we always just count the cost once. This needs addressing before we can use getScalarizationOverhead properly.
Disallow this meaningless combination. Doing so simplifies analysis
of LLVM code w.r.t t DLL storage-class, and prevents mistakes with
DLL storage class.
- Change the assembler to reject DLL storage class on symbols with
local linkage.
- Change the bitcode reader to clear the DLL Storage class when the
linkage is local for auto-upgrading
- Update LangRef.
There is an existing restriction on non-default visibility and local
linkage which this is modelled on.
Differential Review: https://reviews.llvm.org/D134784
Move LCSSA fixup from ::expandCodeForImpl to ::expand(). This has
the advantage that we directly preserve LCSSA nodes here instead of
relying on doing so in rememberInstruction. It also ensures that we
don't add the non-LCSSA-safe value to InsertedExpressions.
Alternative to D132704.
Fixes#57000.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D134739
For noop store of the form of LoadI and StoreI,
An invariant should be kept is that the memory state of the related
MemoryLoc before LoadI is the same as before StoreI.
For this example:
```
define void @pr49927(i32* %q, i32* %p) {
%v = load i32, i32* %p, align 4
store i32 %v, i32* %q, align 4
store i32 %v, i32* %p, align 4
ret void
}
```
Here the definition of the store's destination is different with the
definition of the load's destination, which it seems that the
invariant mentioned above is broken. But the definition of the
store's destination would write a value that is LoadI, actually, the
invariant is still kept. So we can safely ignore it.
Fixes https://github.com/llvm/llvm-project/issues/49271
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D132657
The phase ordering test is the almost unoptimized IR for the example
in issue #42100; it was passed through -mem2reg to reduce obvious
excessive load/store and other noise.
D134879
This change updates the costs to make constant pool loads match their actual cost, and adds the broadcast special case to avoid too many regressions. We really need more information about the constants being rematerialized, but this is an incremental improvement.
Differential Revision: https://reviews.llvm.org/D134746
The previous version of the patch would incorrect convert an
existing argmemonly attribute into an inaccessiblemem_or_argmemonly
attribute.
-----
This updates checkFunctionMemoryAccess() to infer a precise
FunctionModRefBehavior, rather than an approximation split into
read/write and argmemonly.
Afterwards, we still map this back to imprecise function attributes.
This still allows us to infer some cases that we previously did not
handle, namely inaccessiblememonly and inaccessiblemem_or_argmemonly.
In practice, this means we get better memory attributes in the
presence of intrinsics like @llvm.assume.
Differential Revision: https://reviews.llvm.org/D134527
- Before this patch, loop metadata (if exists) will override the metadata of each predecessor; if the predecessor block already has loop metadata, the orignal loop metadata won't be preserved and could cause missed loop transformations (see 'test2' in llvm/test/Transforms/SimplifyCFG/preserve-llvm-loop-metadata.ll).
To illustrate how inner-loop metadata might be dropped before this patch:
CFG Before
entry
|
v
---> while.cond -------------> while.end
| |
| v
| while.body
| |
| v
| for.body <---- (md1)
| | |______|
| v
| while.cond.exit (md2)
| |
|_______|
CFG After
entry
|
v
---> while.cond.rewrite -------------> while.end
| |
| v
| while.body
| |
| v
| for.body <---- (md2)
|_______| |______|
Basically, when 'while.cond.exit' is folded into 'while.cond', 'md2' overrides 'md1' and 'md1' is dropped from the CFG.
Differential Revision: https://reviews.llvm.org/D134152
This removes the ptrtoint from the load's pointer operand, although we
can't entirely eliminate these to get the LSB shift. In a future
patch, this will avoid ptrtoint in the case where the atomic is
overaligned to the word size.
The patch simplifies some of the patterns as below
1. (ZExt(L1) << shift1) | (ZExt(L2) << shift2) -> ZExt(L3) << shift1
2. (ZExt(L1) << shift1) | ZExt(L2) -> ZExt(L3)
The pattern is indicative of the fact that the loads are being merged to a wider load and the only use of this pattern is with a wider load. In this case for a non-atomic/non-volatile loads reduce the pattern to a combined load which would improve the cost of inlining, unrolling, vectorization etc.
Fix the error reported on reverse load merge.
Differential Revision: https://reviews.llvm.org/D127392
We don't combine generic shuffles together in IR, but select
shuffles are a special-case because a select shuffle of a
select shuffle is just another select shuffle; codegen is
expected to efficiently lower those (select shuffles are also
the canonical form of a vector select with constant condition).
A User like the PHINode may be visited multiple times for the same pointer along
different def-use edges. The uninitialized state of OffsetInfo at the first
visit needs to be distinct from the Unknown value that may be assigned after
processing the PHINode. Without that, a PHINode with all inputs Unknown is never
followed to its uses. This results in incorrect optimization because some
interfering accessess are missed.
Differential Revision: https://reviews.llvm.org/D134704
Fixes#57572
Generally LICM pass is responsible for sinking out code that calculates
invariant address inside loop as it only needed to be calculated once.
But in rare case it does not happen we will not be vectorizing the
loop.
Differential Revision: https://reviews.llvm.org/D133687