Now that the legacy PM is no longer tested, the huge matrix of
test prefixes used by attributor tests is no longer needed and very
confusing for the casual reader. Reduce the prefixes down to just
CHECK, TUNIT and CGSCC.
This is the first patch in a series intended for removing flag
-enable-new-pm=0 from lit tests. This is part of a bigger
effort of completely removing legacy code related to legacy
pass manager in favor of currently default new pass manager.
In this patch flag has been removed only from tests where no significant
change has been required because checks has been duplicated for
both PMs.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D134150
If we have a dominating must-write access we do not need to know the
initial value of some object to perform reasoning about the potential
values. The dominating must-write has overwritten the initial value.
For the longest time we used `AAValueSimplify` and
`genericValueTraversal` to determine "potential values". This was
problematic for many reasons:
- We recomputed the result a lot as there was no caching for the 9
locations calling `genericValueTraversal`.
- We added the idea of "intra" vs. "inter" procedural simplification
only as an afterthought. `genericValueTraversal` did offer an option
but `AAValueSimplify` did not. Thus, we might end up with "too much"
simplification in certain situations and then gave up on it.
- Because `genericValueTraversal` was not a real `AA` we ended up with
problems like the infinite recursion bug (#54981) as well as code
duplication.
This patch introduces `AAPotentialValues` and replaces the
`AAValueSimplify` uses with it. `genericValueTraversal` is folded into
`AAPotentialValues` as are the instruction simplifications performed in
`AAValueSimplify` before. We further distinguish "intra" and "inter"
procedural simplification now.
`AAValueSimplify` was not deleted as we haven't ported the
re-materialization of instructions yet. There are other differences over
the former handling, e.g., we may not fold trivially foldable
instructions right now, e.g., `add i32 1, 1` is not folded to `i32 2`
but if an operand would be simplified to `i32 1` we would fold it still.
We are also even more aware of function/SCC boundaries in CGSCC passes,
which is good even if some tests look like they regress.
Fixes: https://github.com/llvm/llvm-project/issues/54981
Note: A previous version was flawed and consequently reverted in
6555558a80.
For the longest time we used `AAValueSimplify` and
`genericValueTraversal` to determine "potential values". This was
problematic for many reasons:
- We recomputed the result a lot as there was no caching for the 9
locations calling `genericValueTraversal`.
- We added the idea of "intra" vs. "inter" procedural simplification
only as an afterthought. `genericValueTraversal` did offer an option
but `AAValueSimplify` did not. Thus, we might end up with "too much"
simplification in certain situations and then gave up on it.
- Because `genericValueTraversal` was not a real `AA` we ended up with
problems like the infinite recursion bug (#54981) as well as code
duplication.
This patch introduces `AAPotentialValues` and replaces the
`AAValueSimplify` uses with it. `genericValueTraversal` is folded into
`AAPotentialValues` as are the instruction simplifications performed in
`AAValueSimplify` before. We further distinguish "intra" and "inter"
procedural simplification now.
`AAValueSimplify` was not deleted as we haven't ported the
re-materialization of instructions yet. There are other differences over
the former handling, e.g., we may not fold trivially foldable
instructions right now, e.g., `add i32 1, 1` is not folded to `i32 2`
but if an operand would be simplified to `i32 1` we would fold it still.
We are also even more aware of function/SCC boundaries in CGSCC passes,
which is good even if some tests look like they regress.
Fixes: https://github.com/llvm/llvm-project/issues/54981
Note: A previous version was flawed and consequently reverted in
6555558a80.
For the longest time we used `AAValueSimplify` and
`genericValueTraversal` to determine "potential values". This was
problematic for many reasons:
- We recomputed the result a lot as there was no caching for the 9
locations calling `genericValueTraversal`.
- We added the idea of "intra" vs. "inter" procedural simplification
only as an afterthought. `genericValueTraversal` did offer an option
but `AAValueSimplify` did not. Thus, we might end up with "too much"
simplification in certain situations and then gave up on it.
- Because `genericValueTraversal` was not a real `AA` we ended up with
problems like the infinite recursion bug (#54981) as well as code
duplication.
This patch introduces `AAPotentialValues` and replaces the
`AAValueSimplify` uses with it. `genericValueTraversal` is folded into
`AAPotentialValues` as are the instruction simplifications performed in
`AAValueSimplify` before. We further distinguish "intra" and "inter"
procedural simplification now.
`AAValueSimplify` was not deleted as we haven't ported the
re-materialization of instructions yet. There are other differences over
the former handling, e.g., we may not fold trivially foldable
instructions right now, e.g., `add i32 1, 1` is not folded to `i32 2`
but if an operand would be simplified to `i32 1` we would fold it still.
We are also even more aware of function/SCC boundaries in CGSCC passes,
which is good.
Fixes: https://github.com/llvm/llvm-project/issues/54981
When we run the CGSCC pass we should only invest time on the SCC. We can
initialize AAs with information from the module slice but we should not
update those AAs. We make an exception for are call site of the SCC as
they are helpful providing information for the SCC.
Minor modifications to pointer privatization allow us to perform it even
in the CGSCC pass, similar to ArgumentPromotion.
When we run the CGSCC pass we should only invest time on the SCC. We can
initialize AAs with information from the module slice but we should not
update those AAs.
There was some ad-hoc handling of liveness and manifest to avoid
breaking CGSCC guarantees. Things always slipped through though.
This cleanup will:
1) Prevent us from manifesting any "information" outside the CGSCC.
This might be too conservative but we need to opt-in to annotation
not try to avoid some problematic ones.
2) Avoid running any liveness analysis outside the CGSCC. We did have
some AAIsDeadFunction handling to this end but we need this for all
AAIsDead classes. The reason is that AAIsDead information is only
correct if we actually manifest it, since we don't (see point 1) we
cannot actually derive/use it at all. We are currently trying to
avoid running any AA updates outside the CGSCC but that seems to
impact things quite a bit.
3) Assert, don't check, that our modifications (during cleanup) modifies
only CGSCC functions.
With D106397 we used CFG reasoning to filter out writes that will not
interfere with a given load instruction. With this patch we use the
same logic (modulo the reversal in reachability check order) for store
instructions. As an example, we can now proof stores to shared memory
are dead if all the loads of the shared memory are not reachable from
them.
We have the `clang -cc1` command-line option `-funwind-tables=1|2` and
the codegen option `VALUE_CODEGENOPT(UnwindTables, 2, 0) ///< Unwind
tables (1) or asynchronous unwind tables (2)`. However, this is
encoded in LLVM IR by the presence or the absence of the `uwtable`
attribute, i.e. we lose the information whether to generate want just
some unwind tables or asynchronous unwind tables.
Asynchronous unwind tables take more space in the runtime image, I'd
estimate something like 80-90% more, as the difference is adding
roughly the same number of CFI directives as for prologues, only a bit
simpler (e.g. `.cfi_offset reg, off` vs. `.cfi_restore reg`). Or even
more, if you consider tail duplication of epilogue blocks.
Asynchronous unwind tables could also restrict code generation to
having only a finite number of frame pointer adjustments (an example
of *not* having a finite number of `SP` adjustments is on AArch64 when
untagging the stack (MTE) in some cases the compiler can modify `SP`
in a loop).
Having the CFI precise up to an instruction generally also means one
cannot bundle together CFI instructions once the prologue is done,
they need to be interspersed with ordinary instructions, which means
extra `DW_CFA_advance_loc` commands, further increasing the unwind
tables size.
That is to say, async unwind tables impose a non-negligible overhead,
yet for the most common use cases (like C++ exceptions), they are not
even needed.
This patch extends the `uwtable` attribute with an optional
value:
- `uwtable` (default to `async`)
- `uwtable(sync)`, synchronous unwind tables
- `uwtable(async)`, asynchronous (instruction precise) unwind tables
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D114543
The oversight caused us to ignore call sites that are effectively dead
when we computed reachability (or more precise the call edges of a
function). The problem is that loads in the readonly callee might depend
on stores prior to the callee. If we do not track the call edge we
mistakenly assumed the store before the call cannot reach the load.
The problem is nicely visible in:
`llvm/test/Transforms/Attributor/ArgumentPromotion/basictest.ll`
Caused by D118673.
Fixes https://github.com/llvm/llvm-project/issues/53726
We missed out on AANoRecurse in the module pass because we had no call
graph. With AAFunctionReachability we can simply ask if the function may
reach itself.
Differential Revision: https://reviews.llvm.org/D110099
genericValueTraversal can look through arguments and allow value
simplification across function boundaries. In fact, the latter already
happened unchecked. With this change we allow the user of
genericValueTraversal to opt-out of interprocedural traversal if
required. We explicitly look through arguments now which helps to do
various things, incl. the propagation of constants into OpenMP parallel
regions (on the host).
This fixes a conceptual problem with our AAIsDead usage which conflated
call site liveness with call site return value liveness. Without the
fix tests would obviously miscompile as we make genericValueTraversal
more powerful (in a follow up). The effects on the tests are mixed but
mostly marginal. The most prominent one is the lack of `noreturn` for
functions. The reason is that we make entire blocks live at the same
time (for time reasons). Now that we actually look at the block
liveness, which we need to do, the return instructions are live and
will survive. As an example, `noreturn_async.ll` has been modified
to retain the `noreturn` even with block granularity. We could address
this easily but there is little need in practice.
When we simplify at least one operand in the Attributor simplification
we can use the InstSimplify to work on the simplified operands. This
allows us to avoid duplication of the logic.
Depends on D106189
Differential Revision: https://reviews.llvm.org/D106190
D106185 allows us to determine if a store is needed easily. Using that
knowledge we can start to delete dead stores.
In AAIsDead we now track more state as an instruction can be dead (= the
old optimisitc state) or just "removable". A store instruction can be
removable while being very much alive, e.g., if it stores a constant
into an alloca or internal global. If we would pretend it was dead
instead of only removablewe we would ignore it when we determine what
values a load can see, so that is not what we want.
Differential Revision: https://reviews.llvm.org/D106188
This patch introduces AAPointerInfo which tracks the uses of a pointer
and places them in "bins" based on their offset from the base and access
size.
As with other AAs, any pointer can be tracked but it is up to the user
to make sense of the results. The user in this patch is AAValueSimplify
and AAPotentialValues which both utilize AAPointerInfo to determine the
value of a load. For now, this is restricted to loads of allocas and
internal globals. Through the use of AAPointerInfo and the "bins" we can
track struct members separately. The users also know that storing only
zeros (at unknown indices) will result in loading only 0 (from unknown
indices). Other than that, the users are flow and context insensitive
(for now).
To deal with the "bins" more easily, AAPointerInfo provides a
forallInterfearingAccesses that applies a callback on all accesses
that might interfere with a given load or store.
Differential Revision: https://reviews.llvm.org/D104432
As a first step to simplify loads we only handle `null` and `undef`
underlying objects, as well as objects that have the load as a single user.
Loads of those values can be replaced by the initializer, if any.
Proper reasoning is introduced in a follow up patch
Differential Revision: https://reviews.llvm.org/D103862
Not all attributes are able to handle the interprocedural step and
follow the uses into a call site. Let them be able to combine call site
uses instead. This might result in some unused values/arguments being
leftover but it removes problems where we misused "is dead" even though
it was actually "is simplified/replaced".
We explicitly check for dead values due to constant propagation in
`AAIsDeadValueImpl::areAllUsesAssumedDead` instead.
Differential Revision: https://reviews.llvm.org/D103858
Broke check-clang, see https://reviews.llvm.org/D102307#2869065
Ran `git revert -n ebbe149a6f08535ede848a531a601ae6591cfbc5..269416d41908bb670f67af689155d5ab8eea689a`
Not all attributes are able to handle the interprocedural step and
follow the uses into a call site. Let them be able to combine call site
uses instead. This might result in some unused values/arguments being
leftover but it removes problems where we misused "is dead" even though
it was actually "is simplified/replaced".
We explicitly check for dead values due to constant propagation in
`AAIsDeadValueImpl::areAllUsesAssumedDead` instead.
Differential Revision: https://reviews.llvm.org/D103858
Since D86233 we have `mustprogress` which, in combination with
`readonly`, implies `willreturn`. The idea is that every side-effect
has to be modeled as a "write". Consequently, `readonly` means there
is no side-effect, and `mustprogress` guarantees that we cannot "loop"
forever without side-effect.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D94125
The update_test_checks script can now check for global symbols and is able
to handle them properly when they differ across prefixes, e.g.,
attribute #0 might be different in different runs.
This patch simply updates all the Attributor tests with the new script.
Reviewed By: sstefan1
Differential Revision: https://reviews.llvm.org/D97906
This is a follow-up of D95238's LangRef update.
This patch updates `programUndefinedIfUndefOrPoison(V)` to return true if
`V` is used by any memory-accessing instruction.
Interestingly, this affected many tests in Attributors, mainly about adding noundefs.
The tests are updated using llvm/utils/update_test_checks.py. I checked that the diffs
are about updating noundefs.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D96642
Summary:
The module slice describes which functions we can analyze and transform
while working on an SCC as part of the Attributor-CGSCC pass. So far we
simply restricted it to the SCC.
Reviewers: jdoerfert
Differential Revision: https://reviews.llvm.org/D86319
This patch introduces a new abstract attribute `AANoUndef` which corresponds to `noundef` IR attribute and deduce them.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D85184
All these tests already explicitly test against both legacy PM and NPM.
$ sed -i 's/ -attributor / -attributor -enable-new-pm=0 /g' $(rg --path-separator // -l -- -passes=)
$ sed -i 's/ -attributor-cgscc / -attributor-cgscc -enable-new-pm=0 /g' $(rg --path-separator // -l -- -passes=)
Now all tests in Transforms/Attributor/ pass under NPM.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D84813
Summary:
All tests are updated, except wrapper.ll since it is not working nicely
with newly created functions.
Reviewers: jdoerfert, uenoku, baziotis, homerdin
Subscribers: arphaman, jfb, kuter, bbn, okura, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D84130
Attributor tests are mostly updated using the auto upgrade scripts but
sometimes we forget. If we do it manually or continue using old check
lines that still match we see unrelated changes down the line. This is
just a cleanup.
This patch introduces an improvement in the Alignment of the loads
generated in createReplacementValues() by querying AAAlign attribute for
the best Alignment for the base.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D76550
We should never give up on AAIsDead as it guards other AAs from
unreachable code (in which SSA properties are meaningless). We did
however use required dependences on some queries in AAIsDead which
caused us to invalidate AAIsDead if the queried AA got invalidated.
We now use optional dependences instead. The bug that exposed this is
added to the liveness.ll test and other test changes show the impact.
Bug report by @sdmitriev.
During an update of AAIsDead, new instructions become live. If we query
information from them, the result is often just the initial state, e.g.,
for call site `noreturn` and `nounwind`. We will now trigger an update
for cached attributes during the AAIsDead update, though other AAs might
later use the same API.
In a recent patch we introduced a problem with abstract attributes that
were assumed dead at some point. Since `Attributor::updateAA` was
introduced in 95e0d28b71, we did not
remember the dependence on the liveness AA when an abstract attribute
was assumed dead and therefore not updated.
Explicit reproducer added in liveness.ll.
---
Single run of the Attributor module and then CGSCC pass (oldPM)
for SPASS/clause.c (~10k LLVM-IR loc):
Before:
```
calls to allocation functions: 509242 (345483/s)
temporary memory allocations: 98666 (66937/s)
peak heap memory consumption: 18.60MB
peak RSS (including heaptrack overhead): 103.29MB
total memory leaked: 269.10KB
```
After:
```
calls to allocation functions: 529332 (355494/s)
temporary memory allocations: 102107 (68574/s)
peak heap memory consumption: 19.40MB
peak RSS (including heaptrack overhead): 102.79MB
total memory leaked: 269.10KB
```
Difference:
```
calls to allocation functions: 20090 (1339333/s)
temporary memory allocations: 3441 (229400/s)
peak heap memory consumption: 801.45KB
peak RSS (including heaptrack overhead): 0B
total memory leaked: 0B
```
When the Attributor was created the test update scripts were not well
suited to deal with the challenges of IR attribute checking. This
partially improved.
Since then we also added three additional configurations that need
testing; in total we now have the following four:
{ TUNIT, CGSCC } x { old pass manager (OPM), new pass manager (NPM) }
Finally, the number of developers and tests grew rapidly (partially due
to the addition of ArgumentPromotion and IPConstantProp tests), which
resulted in tests only being run in some configurations, different
prefixes being used, and different "styles" of checks being used.
Due to the above reasons I believed we needed to take another look at
the test update scripts. While we started to use them, via UTC_ARGS:
--enable/disable, the other problems remained. To improve the testing
situation for *all* configurations, to simplify future updates to the
test, and to help identify subtle effects of future changes, we now use
the test update scripts for (almost) all Attributor tests.
An exhaustive prefix list minimizes the number of check lines and makes
it easy to identify and compare configurations.
Tests have been adjusted in the process but we tried to keep their
intend unchanged.
Reviewed By: sstefan1
Differential Revision: https://reviews.llvm.org/D76588
When the Attributor was created the test update scripts were not well
suited to deal with the challenges of IR attribute checking. This
partially improved.
Since then we also added three additional configurations that need
testing; in total we now have the following four:
{ TUNIT, CGSCC } x { old pass manager (OPM), new pass manager (NPM) }
Finally, the number of developers and tests grew rapidly (partially due
to the addition of ArgumentPromotion and IPConstantProp tests), which
resulted in tests only being run in some configurations, different
prefixes being used, and different "styles" of checks being used.
Due to the above reasons I believed we needed to take another look at
the test update scripts. While we started to use them, via UTC_ARGS:
--enable/disable, the other problems remained. To improve the testing
situation for *all* configurations, to simplify future updates to the
test, and to help identify subtle effects of future changes, we now use
the test update scripts for (almost) all Attributor tests.
An exhaustive prefix list minimizes the number of check lines and makes
it easy to identify and compare configurations.
Tests have been adjusted in the process but we tried to keep their
intend unchanged.
Reviewed By: sstefan1
Differential Revision: https://reviews.llvm.org/D76588
Query AAValueSimplify on pointers in memory accessing instructions to take
advantage of the constant propagation (or any other value simplification) of such values.
We used coarse-grained liveness before, thus we looked if the
instruction was executed, but we did not use fine-grained liveness,
hence if the instruction was needed or could be deleted even if the
surrounding ones are live. This patches introduces this level of
liveness checks together with other liveness queries, e.g., for uses.
For more control we enforce that all liveness queries go through the
Attributor.
Test have been adjusted to reflect the changes or augmented to prevent
deletion of the parts we want to check.
Reviewed By: sstefan1
Differential Revision: https://reviews.llvm.org/D73313
In addition to the module pass, this patch introduces a CGSCC pass that
runs the Attributor on a strongly connected component of the call graph
(both old and new PM). The Attributor was always design to be used on a
subset of functions which makes this patch mostly mechanical.
The one change is that we give up `norecurse` deduction in the module
pass in favor of doing it during the CGSCC pass. This makes the
interfaces simpler but can be revisited if needed.
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D70767
If all call sites are in `norecurse` functions we can derive `norecurse`
as the ReversePostOrderFunctionAttrsPass does. This should make
ReversePostOrderFunctionAttrsLegacyPass obsolete once the Attributor is
enabled.
Reviewed By: uenoku
Differential Revision: https://reviews.llvm.org/D72017
A pointer is privatizeable if it can be replaced by a new, private one.
Privatizing pointer reduces the use count, interaction between unrelated
code parts. This is a first step towards replacing argument promotion.
While we can already handle recursion (unlike argument promotion!) we
are restricted to stack allocations for now because we do not analyze
the uses in the callee.
Reviewed By: uenoku
Differential Revision: https://reviews.llvm.org/D68852
This patch modularizes the way we check for no-alias call site arguments
by putting the existing logic into helper functions. The reasoning was
not changed but special cases for readonly/readnone were added.