At the moment, LoopAccessAnalysis is a loop analysis for the new pass
manager. The issue with that is that LAI caches SCEV expressions and
modifications in a loop may impact SCEV expressions in other loops, but
we do not have a convenient way to invalidate LAI for other loops
withing a loop pipeline.
To avoid this issue, turn it into a function analysis which returns a
manager object that keeps track of the individual LAI objects per loop.
Fixes#50940.
Fixes#51669.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D134606
Move LCSSA fixup from ::expandCodeForImpl to ::expand(). This has
the advantage that we directly preserve LCSSA nodes here instead of
relying on doing so in rememberInstruction. It also ensures that we
don't add the non-LCSSA-safe value to InsertedExpressions.
Alternative to D132704.
Fixes#57000.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D134739
Fixes#57572
Generally LICM pass is responsible for sinking out code that calculates
invariant address inside loop as it only needed to be calculated once.
But in rare case it does not happen we will not be vectorizing the
loop.
Differential Revision: https://reviews.llvm.org/D133687
Follow up to D133580; adjust the cost model to prefer uniform store lowering for scalable stores which are unpredicated.
The impact here isn't in the uniform store lowering quality itself. InstCombine happily converts the scatter form into the single store form. The main impact is in letting the rest of the cost model make choices based on the knowledge that the vector will be scalarized on use.
Differential Revision: https://reviews.llvm.org/D134460
The dependent code has been changed quite a lot since 151c144 which
b73d2c8 effectively reverts. Now we run into a case where lowering
didn't expect/support the behavior pre 151c144 any longer.
Update the code dealing with scalable pointer inductions to also check
for uniformity in combination with isScalarAfterVectorization. This
should ensure scalable pointer inductions are handled properly during
epilogue vectorization.
Fixes#57912.
This extends the previously added uniform store case to handle stores of loop varying values to a loop invariant address. Note that the placement of this code only allows unpredicated stores; this is important for correctness. (That is "IsPredicated" is always false at this point in the function.)
This patch does not include scalable types. The diff felt "large enough" as it were; I'll handle that in a separate patch. (It requires some changes to cost modeling.)
Differential Revision: https://reviews.llvm.org/D133580
This mainly just adds costs for the targets where we have actual funnelshift/rotate instructions (VBMI2/XOP etc.) - the cases where we expand still need addressing, although for many the default shift+or expansion, especially for uniform cases, isn't that bad.
This was achieved with the 'cost-tables vs llvm-mca' script D103695
This stops Negator from transforming:
`C1 - shl X, C2 --> mul X, (1<<C2) + C1`
...in the general case. There does not seem to be any analysis
benefit to using mul in IR, and there's definitely downside in
codegen (particularly when the multiply has to be expanded).
If `C1` is 0, then there's a stronger argument that the single
mul is a better canonicalization than negate-of-shl, but we may
want to remove that too.
This was noted as a potential conflict for D133667.
Differential Revision: https://reviews.llvm.org/D134310
Epilogue vectorization uses isScalarAfterVectorization to check if
widened versions for inductions need to be generated and bails out in
those cases.
At the moment, there are scenarios where isScalarAfterVectorization
returns true but VPWidenPointerInduction::onlyScalarsGenerated would
return false, causing widening.
This can lead to widened phis with incorrect start values being created
in the epilogue vector body.
This patch addresses the issue by storing the cost-model decision in
VPWidenPointerInductionRecipe and restoring the behavior before 151c144.
This effectively reverts 151c144, but the long-term fix is to properly
support widened inductions during epilogue vectorization
Fixes#57712.
This is the first patch in a series intended for removing flag
-enable-new-pm=0 from lit tests. This is part of a bigger
effort of completely removing legacy code related to legacy
pass manager in favor of currently default new pass manager.
In this patch flag has been removed only from tests where no significant
change has been required because checks has been duplicated for
both PMs.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D134150
This was originally part of D133788. There are no visible
regressions. All of the diffs show a large unsigned constant
becoming a small negative constant. This should be better
for analysis (and slightly less compile-time) and codegen.
Vector shift by const uniform is the cheapest shift instruction we have, non-const uniform have a marginally higher cost - some targets 'splat' the amount internally to use the shift-per-element instruction, others see a higher cost for the explicit zeroing of the upper bits for the (64-bit) shift amount.
This was achieved with an updated version of the 'cost-tables vs llvm-mca' script D103695 (I'll update the patch soon for reference)
This patch adds cost model for vector insert/extract element instructions. In RVV, we could use vector scalar move instruction to insert or extract the first element, and use vslide to move it. But for mask vector or i64 vector in i32 target, we need special instructions to make it.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D133007
This extends the safe-divisor widening scheme recently added for scalable vectors to handle fixed vectors as well.
Differential Revision: https://reviews.llvm.org/D132591
VPReplicateRecipe::isUniform actually means uniform-per-parts, hence a
scalar instruction is generated per-part.
This is a potential alternative D132892. For now the current patch only
catches cases where the address is trivially invariant (defined outside
VPlan), while D132892 catches any address that is considered invariant
by SCEV AFAICT.
It should be possible to hoist fully invariant recipes feeding loads out
of the vector loop region as well, but in practice LICM should do that
already.
This version of the patch artificially limits this to loads to make it
easier to compare, but this restriction should be easily liftable.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D133019
Users of LCSSA may not expect non-phi uses when checking the uses
outside a loop, which may cause crashes. This is due to the fact that we
do not update uses in unreachable blocks.
To ensure all reachable uses outside the loop are phis, update uses in
unreachable blocks to use poison in dead code.
Fixes#57508.
This patch moves the cost-based decision whether to use an intrinsic or
library call to the point where the recipe is created. This untangles
code-gen from the cost model and also avoids doing some extra work as
the information is already computed at construction.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D132585
It looks like the vector loops in the modified test cases
unintentionally never get executed. Update the exit condition to ensure
it does to avoid them getting optimized away in upcoming changes.
This change enables the use of RISCV's variable length vector registers for fixed length vectors in the IR, and implicitly enables various IR transforms which generate fixed length vectors if legal (e.g. LoopVectorize). Specifically, this enables fixed length vectors which are known to be inbounds of the underlying variable hardware size.
For context, remember that the +V extension provides a minimum VLEN of 128. The embedded variants provide lower minimums. The analogy here is essentially vectorizing for SSE on a machine which may or may not include AVX2/AVX512. We won't get full utilization by default, but we will get some benefit. And of course, with an explicit mcpu we can vectorize to the exact target hardware.
The LV impact is mostly related to vectorizer robustness. In cases we haven't yet fully implemented scalable vectorization support, we can fall back to fixed length vectorization.
SLP has been disabled for now, even when fixed vectors are enabled. See a310637 and associated review. There are a few addiitional code quality issues which need worked through before turning SLP on would be reasonable.
Differential Revision: https://reviews.llvm.org/D131508
The simpler diff-checks require pointers with add-recs from the same
innermost loop, but this property wasn't check completely. Add the
missing check to ensure both addrecs are in the innermost loop.
Fixes#57315.
Add a variation of @nested_loop_outer_iv_addrec_invariant_in_inner with
the dependence sink and source swapped to extend test coverage.
Also simplifies the test by removing an unneeded reduction.
When we have a dependency with a dependence distance which can only be hit on an iteration beyond the actual trip count of the loop, we can ignore that dependency when analyzing said loop. We already had this code, but had restricted it solely to unknown dependence distances. This change applies it to all dependence distances.
Without this code, we relied on the vectorizer reducing VF such that our infeasible dependence was respected. This usually worked out to about the same result, but not always. For fixed length vectorization, this could mean a smaller VF than optimal being chosen or additional runtime checks. For scalable vectorization - where the bounds on access implied by VF are broader - we could often not find a feasible VF at all.
Differential Revision: https://reviews.llvm.org/D131924