It might changed the condition of a branch into a constant,
so we should restart and constant-fold terminator,
instead of continuing with the tautological "conditional" branch.
This fixes the issue reported at https://reviews.llvm.org/rGf30a7dff8a5b32919951dcbf92e4a9d56c4679ff
Mainly, i want to add an assertion that `SimplifyCFGOpt::simplifyCondBranch()`
doesn't get asked to deal with non-unconditional branches,
and if i do that, then said assertion fires on existing tests,
and this is what prevents it from firing.
In SimplifyCFG we may simplify the CFG by speculatively executing
certain stores, when they are preceded by a store to the same
location. This patch allows such speculation also when the stores are
similarly preceded by a load.
In order for this transformation to be correct we need to ensure that
the memory location is writable and the store in the new location does
not introduce a data race.
Local objects (created by an `alloca` instruction) are always
writable, so once we are past a read from a location it is valid to
also write to that same location.
Seeing just a load does not guarantee absence of a data race (unlike
if we see a store) - the load may still be part of a race, just not
causing undefined behaviour
(cf. https://llvm.org/docs/Atomics.html#optimization-outside-atomic).
In the original program, a data race might have been prevented by the
condition, but once we move the store outside the condition, we must
be sure a data race wasn't possible anyway, no matter what the
condition evaluates to.
One way to be sure that a local object is never concurrently
read/written is check that its address never escapes the function.
Hence this transformation is restricted to local, non-escaping
objects.
Reviewed By: nikic, lebedev.ri
Differential Revision: https://reviews.llvm.org/D107281
This transform has been restricted to legal types since
https://reviews.llvm.org/rG65df808f6254617b9eee931d00e95d900610b660
in 2012.
This is particularly restrictive on RISCV64 which only has i64
as a legal integer type. i32 is a very common type in code
generated from C, but we won't form a lookup table with it.
This also effects other common types like i8/i16 types on ARM,
AArch64, RISCV, etc.
This patch proposes to allow power of 2 types larger than 8 bit, if
they will fit in the largest legal integer type in DataLayout.
These types are common in C code so generally well handled in
the backends.
We could probably do this for other types like i24 and rely on
alignment and padding to allow the backend to use a single wider
load. This isn't my main concern right now and it will need more
tests.
We could also allow larger types up to some limit and let the
backend split into multiple loads, but we need to define that
limit. It's also not my main concern right now.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D107233
These are some of the basic cases taken from X86.
We currently fail to use lookup tables on many of these cases
because SimplifyCFG requires a legal type to do the transform and
RISCV only has one legal integer type.
When hoisting/moving calls to locations, we strip unknown metadata. Such calls are usually marked `speculatable`, i.e. they are guaranteed to not cause undefined behaviour when run anywhere. So, we should strip attributes that can cause immediate undefined behaviour if those attributes are not valid in the context where the call is moved to.
This patch introduces such an API and uses it in relevant passes. See
updated tests.
Fix for PR50744.
Reviewed By: nikic, jdoerfert, lebedev.ri
Differential Revision: https://reviews.llvm.org/D104641
isSafeToSpeculateStore() looks for a preceding store to the same
location to make sure that introducing a new store of the same
value is safe. It currently bails on intervening mayHaveSideEffect()
instructions. However, I believe just checking mayWriteToMemory()
is sufficient there -- we just need to make sure that we know which
value was stored, we don't care if we can unwind in the meantime.
While looking into this, I started having some doubts about the
correctness of the transform with regard to thread safety. While
we don't try to hoist non-simple stores, I believe we also need
to make sure that the preceding store is simple as well. Otherwise
we could introduce a spurious non-atomic write after an atomic write
-- under our memory model this would result in a subsequent undef
atomic read, even if the second write stores the same value as the
first.
Example: https://alive2.llvm.org/ce/z/q_3YAL
Differential Revision: https://reviews.llvm.org/D106742
If the branch isn't `unpredictable`, and it is predicted to *not* branch
to the block we are considering speculatively executing,
then it seems counter-productive to execute the code that is predicted not to be executed.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D106650
This function is called when some predecessor of an empty return block
ends with a conditional branch, with both successors being empty ret blocks.
Now, because of the way SimplifyCFG works, it might happen to simplify
one of the blocks in a way that makes a conditional branch
into an unconditional one, since it's destinations are now identical,
but it might not have actually simplified said conditional branch
into an unconditional one yet.
So, we have to check that ourselves first,
especially now that SimplifyCFG aggressively tail-merges
all ret and resume blocks.
Even if it was an unconditional branch already,
`SimplifyCFGOpt::simplifyReturn()` doesn't call `FoldReturnIntoUncondBranch()`
by default.
The logical (select) form of and/or will now be a source of problems.
We don't really account for it's inverted form, yet it exists,
and presumably we should treat it just like non-inverted form:
https://alive2.llvm.org/ce/z/BU9AXkhttps://bugs.llvm.org/show_bug.cgi?id=51149 reports a reportedly-serious
perf regression that will hopefully be mitigated by this.
We need to make sure that the value types are the same. Otherwise
we both may not have the necessary dereferenceability implication,
nor can we directly form the desired select pattern.
Without opaque pointers this is enforced implicitly through the
pointer comparison.
`SinkCommonCodeFromPredecessors()` doesn't itself ensure that duplicate PHI nodes aren't created.
I suppose, we could teach it to do that on-the-fly (& account for the already-existing PHI nodes,
& adjust costmodel), the diff will be bigger than this.
The alternative is to schedule a new EarlyCSE pass invocation somewhere later in the pipeline.
Clearly, we don't have any EarlyCSE runs in module optimization passline, so this pattern isn't cleaned up...
That would perhaps better, but it will again have some compile time impact.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D106010
There's a potential change in dereferenceability attribute semantics in the nearish future. See llvm-dev thread "RFC: Decomposing deref(N) into deref(N) + nofree" and D99100 for context.
This change simply adds appropriate attributes to tests to keep transform logic exercised under both old and new/proposed semantics. Note that for many of these cases, O3 would infer exactly these attributes on the test IR.
This change handles the idiomatic pattern of a dereferenceable object being passed to a call which can not free that memory. There's a couple other tests which need more one-off attention, they'll be handled in another change.
This patch fixes the problem of SimplifyBranchOnICmpChain that occurs
when extra values are Undef or poison.
Suppose the %mode is 51 and the %Cond is poison, and let's look at the
case below.
```
%A = icmp ne i32 %mode, 0
%B = icmp ne i32 %mode, 51
%C = select i1 %A, i1 %B, i1 false
%D = select i1 %C, i1 %Cond, i1 false
br i1 %D, label %T, label %F
=>
br i1 %Cond, label %switch.early.test, label %F
switch.early.test:
switch i32 %mode, label %T [
i32 51, label %F
i32 0, label %F
]
```
incorrectness: https://alive2.llvm.org/ce/z/BWScX
Code before transformation will not raise UB because %C and %D is false,
and it will not use %Cond. But after transformation, %Cond is being used
immediately, and it will raise UB.
This problem can be solved by adding freeze instruction.
correctness: https://alive2.llvm.org/ce/z/x9x4oY
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D104569
This reverts commit 52aeacfbf5.
There isn't full agreement on a path forward yet, but there is agreement that
this shouldn't land as-is. See discussion on https://reviews.llvm.org/D105338
Also reverts unreviewed "[clang] Improve `-Wnull-dereference` diag to be more in-line with reality"
This reverts commit f4877c78c0.
And all the related changes to tests:
This reverts commit 9a0152799f.
This reverts commit 3f7c9cc274.
This reverts commit 329f8197ef.
This reverts commit aa9f58cc2c.
This reverts commit 2df37d5ddd.
This reverts commit a72a441812.
This reverts commit 4e413e1621,
which landed almost 10 months ago under premise that the original behavior
didn't match reality and was breaking users, even though it was correct as per
the LangRef. But the LangRef change still hasn't appeared, which might suggest
that the affected parties aren't really worried about this problem.
Please refer to discussion in:
* https://reviews.llvm.org/D87399 (`Revert "[InstCombine] erase instructions leading up to unreachable"`)
* https://reviews.llvm.org/D53184 (`[LangRef] Clarify semantics of volatile operations.`)
* https://reviews.llvm.org/D87149 (`[InstCombine] erase instructions leading up to unreachable`)
clang has `-Wnull-dereference` which will diagnose the obvious cases
of null dereference, it was adjusted in f4877c78c0,
but it will only catch the cases where the pointer is a null literal,
it will not catch the cases where an arbitrary store is expected to trap.
Differential Revision: https://reviews.llvm.org/D105338
There was an alias between 'simplifycfg' and 'simplify-cfg' in the
PassRegistry. That was the original reason for this patch, which
effectively removes the alias.
This patch also replaces all occurrances of 'simplify-cfg'
by 'simplifycfg'. Reason for choosing that form for the name is
that it matches the DEBUG_TYPE for the pass, and the legacy PM name
and also how it is spelled out in other passes such as
'loop-simplifycfg', and in other options such as
'simplifycfg-merge-cond-stores'.
I for some reason the name should be changed to 'simplify-cfg' in
the future, then I think such a renaming should be more widely done
and not only impacting the PassRegistry.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D105627
This replaces the current ad-hoc implementation,
by syncing the code from InstCombine's implementation in `InstCombinerImpl::visitUnreachableInst()`,
with one exception that here in SimplifyCFG we are allowed to remove EH instructions.
Effectively, this now allows SimplifyCFG to remove calls (iff they won't throw and will return),
arithmetic/logic operations, etc.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D105374
Somewhat related to D105338.
While it is up for discussion whether or not volatile store traps,
so far there has been no complaints that volatile load/cmpxchg/atomicrmw also may trap.
And even if simplifycfg currently concervatively believes that to be the case,
instcombine does not: https://godbolt.org/z/5vhv4K5b8
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D105343
Similar to what we already do for `ret` terminators.
As noted by @rnk, clang seems to already generate a single `ret`/`resume`,
so this isn't likely to cause widespread changes.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D104849
Based ontop of D104598, which is a NFCI-ish refactoring.
Here, a restriction, that only empty blocks can be merged, is lifted.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D104597
This changes the approach taken to tail-merge the blocks
to always create a new block instead of trying to reuse some block,
and generalizes it to support dealing not with just the `ret` in the future.
This effectively lifts the CallBr restriction, although this isn't really intentional.
That is the only non-NFC change here, i'm not sure if it's reasonable/feasible to temporarily retain it.
Other restrictions of the transform remain.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D104598
This problem is exposed by D104598, after it tail-merges `ret` in
`@test_inline_constraint_S_label`, the verifier would start complaining
`invalid operand for inline asm constraint 'S'`.
Essentially, taking address of a block is mismodelled in IR.
It should probably be an explicit instruction, a first one in block,
that isn't identical to any other instruction of the same type,
so that it can't be hoisted.
The problematic code pattern in the test is based on:
https://llvm.org/PR50638
If the IfCond is itself the phi that we are trying to remove,
then the loop around line 2835 can end up with something like:
%cmp = select i1 %cmp, i1 false, i1 true
That can then lead to a use-after-free and assert (although
I'm still not seeing that locally in my release + asserts build).
I think this can only happen with unreachable code.
Differential Revision: https://reviews.llvm.org/D104063
We are deleting `phi` nodes within the for loop, so this makes sure we
increment the iterator before we delete the instruction pointed by the
iterator.
This started to break in
a0be081646.
Reviewed By: dschuff, lebedev.ri
Differential Revision: https://reviews.llvm.org/D103181
Ignore ephemeral values (only feeding llvm.assume intrinsics) when
computing the instruction count to decide if a block is small enough for
threading. This is similar to the handling of these values in the
InlineCost computation. These instructions will eventually be removed
and shouldn't count against code size (similar to the existing ignoring
of phis).
Without this change, when enabling -fwhole-program-vtables, which causes
type test / assume sequences to be inserted by clang, we can get
different threading decisions. In particular, when building with
instrumentation FDO it can affect the optimizations decisions before FDO
matching, leading to some mismatches.
Differential Revision: https://reviews.llvm.org/D101494
We need to use a logical or instead of a bitwise or to preserve
poison behavior. Poison from the second condition should not
propagate if the first condition is true.
We were already handling this correctly in FoldBranchToCommonDest(),
but not in this fold. (There are still other folds with this issue.)
When passingValueIsAlwaysUndefined scans for an instruction between an
inst with a null or undef argument and its first use, it was checking
for instructions that may have side effects, which is a superset of the
instructions it intended to find (as per the comments, control flow
changing instructions that would prevent reaching the uses). Switch
to using isGuaranteedToTransferExecutionToSuccessor() instead.
Without this change, when enabling -fwhole-program-vtables, which causes
assumes to be inserted by clang, we can get different simplification
decisions. In particular, when building with instrumentation FDO it can
affect the optimizations decisions before FDO matching, leading to some
mismatches.
I had to modify d83507-knowledge-retention-bug.ll since this fix enables
more aggressive optimization of that code such that it no longer tested
the original bug it was meant to test. I removed the undef which still
provokes the original failure (confirmed by temporarily reverting the
fix) and also changed it to just invoke the passes of interest to narrow
the testing.
Similarly I needed to adjust code for UnreachableEliminate.ll to avoid
an undef which was causing the function body to get optimized away with
this fix.
Differential Revision: https://reviews.llvm.org/D101507
The profitability check is: we don't want to create more than a single PHI
per instruction sunk. We need to create the PHI unless we'll sink
all of it's would-be incoming values.
But there is a caveat there.
This profitability check doesn't converge on the first iteration!
If we first decide that we want to sink 10 instructions,
but then determine that 5'th one is unprofitable to sink,
that may result in us not sinking some instructions that
resulted in determining that some other instruction
we've determined to be profitable to sink becoming unprofitable.
So we need to iterate until we converge, as in determine
that all leftover instructions are profitable to sink.
But, the direct approach of just re-iterating seems dumb,
because in the worst case we'd find that the last instruction
is unprofitable, which would result in revisiting instructions
many many times.
Instead, i think we can get away with just two passes - forward and backward.
However then it isn't obvious what is the most performant way to update
InstructionsToSink.
While we have a known profitability issue for sinking in presence of
non-unconditional predecessors, there isn't any known issues
for having multiple such non-unconditional predecessors,
so said restriction appears to be artificial. Lift it.
There are post-commit notest for e4c61d5 that suggest
the test is failing on certain bots. It looks like
the code there isn't being moved, which suggests
cost-model involvement, which suggests that we need to
hardcode the target triple.
Hopefully this helps?
When replacing a conditional branch by an unconditional one because the targets are identical, transfer the metadata to the new branch instruction.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D101226
When replacing a conditional branch by an unconditional one because the condition is a constant, transfer the metadata to the new branch instruction.
Part of fix for llvm.org/PR50060
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D101141
There is already code in InlineCost.cpp to identify and ignore ephemeral
values (llvm.assume intrinsics and other side-effect free instructions
only feeding the assumes). However, because llvm.type.test intrinsics
were not marked speculatable, they and any instructions specifically
feeding the type test (typically a bitcast) were being counted towards
the instruction cost when inlining. This was causing profile matching
issues in some cases when enabling -fwhole-program-vtables for whole
program devirtualization.
According to the language reference, the speculatable attribute means:
"the function does not have any effects besides calculating its result
and does not have undefined behavior". I see no reason why type tests
cannot be marked with this attribute.
There are 2 test changes:
llvm/test/Transforms/Inline/ephemeral.ll: I added a type test intrinsic
here to verify the fix. Also, I found the test was not actually testing
what it originally intended. Many of the existing instructions were
optimized away by -Oz, and the cost of inlining was negative due to the
benefit of removing the call. So I changed the test to simply invoke the
inline pass and check the number of instructions computed by InlineCost.
I also fixed an instruction that was not actually used anywhere.
llvm/test/Transforms/SimplifyCFG/no-md-sink.ll needed to be made more
robust to code changes that reordered the metadata.
Differential Revision: https://reviews.llvm.org/D101180
Debug intrinsics are free to hoist and should be skipped when looking
for terminator-only blocks. As a consequence, we have to delegate to the
main hoisting loop to hoist any dbg intrinsics instead of jumping to the
terminator case directly.
This fixes PR49982.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D100640
As a side-effect of the change to default HoistCommonInsts to false
early in the pipeline, we fail to convert conditional branch & phis to
selects early on, which prevents vectorization for loops that contain
conditional branches that effectively are selects (or if the loop gets
vectorized, it will get vectorized very inefficiently).
This patch updates SimplifyCFG to perform hoisting if the only
instruction in both BBs is an equal branch. In this case, the only
additional instructions are selects for phis, which should be cheap.
Even though we perform hoisting, the benefits of this kind of hoisting
should by far outweigh the negatives.
For example, the loop in the code below will not get vectorized on
AArch64 with the current default, but will with the patch. This is a
fundamental pattern we should definitely vectorize. Besides that, I
think the select variants should be easier to use for reasoning across
other passes as well.
https://clang.godbolt.org/z/sbjd8Wshx
```
double clamp(double v) {
if (v < 0.0)
return 0.0;
if (v > 6.0)
return 6.0;
return v;
}
void loop(double* X, double *Y) {
for (unsigned i = 0; i < 20000; i++) {
X[i] = clamp(Y[i]);
}
}
```
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D100329
When converting a switch with two cases and a default into a
select, also handle the denegerate case where two cases have the
same value.
Generate this case directly as
%or = or i1 %cmp1, %cmp2
%res = select i1 %or, i32 %val, i32 %default
rather than
%sel1 = select i1 %cmp1, i32 %val, i32 %default
%res = select i1 %cmp2, i32 %val, i32 %sel1
as InstCombine is going to canonicalize to the former anyway.
We handle the case where we have two cases and a default all having
different values, but not the case where two cases happen to have
the same one.
The PhaseOrdering test is a particularly bad example where this
showed up.
These are supposed to test creation of a switch, so make sure
there is some actual code in the branches. Otherwise this could
be turned into a select instead.
`FoldBranchToCommonDest()` has a certain budget (`-bonus-inst-threshold=`)
for bonus instruction duplication. And currently it calculates the cost
as-if it will actually duplicate into each predecessor.
But ignoring the budget, it won't always duplicate into each predecessor,
there are some correctness and profitability checks.
So when calculating the cost, we should first check into which blocks
will we *actually* duplicate, and only then use that block count
to do budgeting.
We clone bonus instructions to the end of the predecessor block,
and then use `SSAUpdater::RewriteUseAfterInsertions()`.
But that only deals with the cases where the use-to-be-rewritten
are either in different block from the def, or come after the def.
But in some loop cases, the external use may be in the beginning of
predecessor block, before the newly cloned bonus instruction.
`SSAUpdater::RewriteUseAfterInsertions()` does not deal with that.
Notably, the external use can't happen to be both in the same block
and *after* the newly-cloned instruction, because of the fold preconditions.
To properly handle these cases, when the use is in the same block,
we should instead use `SSAUpdater::RewriteUse()`.
TBN, they do the same thing for PHI users.
Fixes https://bugs.llvm.org/show_bug.cgi?id=49510
Likely Fixes https://bugs.llvm.org/show_bug.cgi?id=49689
2nd try (original: 27ae17a6b0) with fix/test for crash. We must make
sure that TTI is available before trying to use it because it is not
required (might be another bug).
Original commit message:
This is one step towards solving:
https://llvm.org/PR49336
In that example, we disregard the recommended usage of builtin_expect,
so an expensive (unpredictable) branch is folded into another branch
that is guarding it.
Here, we read the profile metadata to see if the 1st (predecessor)
condition is likely to cause execution to bypass the 2nd (successor)
condition before merging conditions by using logic ops.
Differential Revision: https://reviews.llvm.org/D98898
This reverts commit 27ae17a6b0.
There are bot failures that end with:
#4 0x00007fff7ae3c9b8 CrashRecoverySignalHandler(int) CrashRecoveryContext.cpp:0:0
#5 0x00007fff84e504d8 (linux-vdso64.so.1+0x4d8)
#6 0x00007fff7c419a5c llvm::TargetTransformInfo::getPredictableBranchThreshold() const (/home/buildbots/ppc64le-clang-multistage-test/clang-ppc64le-multistage/stage1.install/bin/../lib/libLLVMAnalysis.so.13git+0x479a5c)
...but not sure how to trigger that yet.
This is one step towards solving:
https://llvm.org/PR49336
In that example, we disregard the recommended usage of builtin_expect,
so an expensive (unpredictable) branch is folded into another branch
that is guarding it.
Here, we read the profile metadata to see if the 1st (predecessor)
condition is likely to cause execution to bypass the 2nd (successor)
condition before merging conditions by using logic ops.
Differential Revision: https://reviews.llvm.org/D98898
The test is reduced from a C source example in:
https://llvm.org/PR49541
It's possible that the test could be reduced further or
the predicate generalized further, but it seems to require
a few ingredients (including the "late" SimplifyCFG options
on the RUN line) to fall into the infinite-loop trap.
This reverts commit 99108c791d.
Clang is miscompiling LLVM with this change, a stage-2 build hits
multiple failures.
As a repro, I built clang in a stage1 directory and used it this way:
cmake -G Ninja ../llvm \
-DCMAKE_CXX_COMPILER=`pwd`/../build-stage1/bin/clang++ \
-DCMAKE_C_COMPILER=`pwd`/../build-stage1/bin/clang \
-DLLVM_TARGETS_TO_BUILD="X86;NVPTX;AMDGPU" \
-DLLVM_ENABLE_PROJECTS=mlir \
-DLLVM_BUILD_EXAMPLES=ON \
-DCMAKE_BUILD_TYPE=Release \
-DLLVM_ENABLE_ASSERTIONS=On
ninja check-mlir
This is a patch that adds folding of two logical and/ors that share one variable:
a && (a && b) -> a && b
a && (a & b) -> a && b
...
This is towards removing the poison-unsafe select optimization (D93065 has more context).
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D96945
This patch makes FoldBranchToCommonDest merge branch conditions into `select i1` rather than `and/or i1` when it is called by SimplifyCFG.
It is known that merging conditions into and/or is poison-unsafe, and this is towards making things *more* correct by removing possible miscompilations.
Currently, InstCombine simply consumes these selects into and/or of i1 (which is also unsafe), so the visible effect would be very small. The unsafe select -> and/or transformation will be removed in the future.
There has been efforts for updating optimizations to support the select form as well, and they are linked to D93065.
The safe transformation is fired when it is called by SimplifyCFG only. This is done by setting the new `PoisonSafe` argument as true.
Another place that calls FoldBranchToCommonDest is LoopSimplify. `PoisonSafe` flag is set to false in this case because enabling it has a nontrivial impact in performance because SCEV is more conservative with select form and InductiveRangeCheckElimination isn't aware of select form of and/or i1.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D95026
In the example based on:
https://llvm.org/PR49218
...we are crashing because poison is a subclass of undef, so we merge blocks and create:
PHI node has multiple entries for the same basic block with different incoming values!
%k3 = phi i64 [ poison, %entry ], [ %k3, %g ], [ undef, %entry ]
If both poison and undef values are incoming, we soften the poison values to undef.
Differential Revision: https://reviews.llvm.org/D97495
This is a simple patch to update SimplifyCFG's passingValueIsAlwaysUndefined to inspect more attributes.
A new function `CallBase::isPassingUndefUB` checks attributes that imply noundef.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D97244
I have previously tried doing that in
b33fbbaa34 / d38205144f,
but eventually it was pointed out that the approach taken there
was just broken wrt how the uses of bonus instructions are updated
to account for the fact that they should now use either bonus instruction
or the cloned bonus instruction. In particluar, all that manual handling
of PHI nodes in successors was just wrong.
But, the fix is actually much much simpler than my initial approach:
just tell SSAUpdate about both instances of bonus instruction,
and let it deal with all the PHI handling.
Alive2 confirms that the reproducers from the original bugs (@pr48450*)
are now handled correctly.
This effectively reverts commit 59560e8589,
effectively relanding b33fbbaa34.
NewBonusInst just took name from BonusInst, so BonusInst has no name,
so BonusInst.getName() makes no sense.
So we need to ask NewBonusInst for the name.
Iff we know we can get rid of the inversions in the new pattern,
we can thus get rid of the inversion in the old pattern,
this decreasing instruction count.
Note that we could position this transformation as just hoisting
of the `not` (still, iff y is freely negatible), but the test changes
show a number of regressions, so let's not do that.
The case where BB ends with an unconditional branch,
and has a single predecessor w/ conditional branch
to BB and a single successor of BB is exactly the pattern
SpeculativelyExecuteBB() transform deals with.
(and in this case they both allow speculating only a single instruction)
Well, or FoldTwoEntryPHINode(), if the final block
has only those two predecessors.
Here, in FoldBranchToCommonDest(), only a weird subset of that
transform is supported, and it's glued on the side in a weird way.
In particular, it took me a bit to understand that the Cond
isn't actually a branch condition in that case, but just the value
we allow to speculate (otherwise it reads as a miscompile to me).
Additionally, this only supports for the speculated instruction
to be an ICmp.
So let's just unclutter FoldBranchToCommonDest(), and leave
this transform up to SpeculativelyExecuteBB(). As far as i can tell,
this shouldn't really impact optimization potential, but if it does,
improving SpeculativelyExecuteBB() will be more beneficial anyways.
Notably, this only affects a single test,
but EarlyCSE should have run beforehand in the pipeline,
and then FoldTwoEntryPHINode() would have caught it.
This reverts commit rL158392 / commit d33f4efbfd.
We tend to assume that the AA pipeline is by default the default AA
pipeline and it's confusing when it's empty instead.
PR48779
Initially reverted due to BasicAA running analyses in an unspecified
order (multiple function calls as parameters), fixed by fetching
analyses before the call to construct BasicAA.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D95117
We tend to assume that the AA pipeline is by default the default AA
pipeline and it's confusing when it's empty instead.
PR48779
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D95117
This patch teaches SimplifyCFG::SimplifyBranchOnICmpChain to understand select form of
(x == C1 || x == C2 || ...) / (x != C1 && x != C2 && ...) and optimize them into switch if possible.
D93065 has more context about the transition, including links to the list of optimizations being updated.
Differential Revision: https://reviews.llvm.org/D93943
DestBB might or might not already be a successor of SelectBB,
and it wasn't we need to ensure that we record the fact in DomTree.
The testcase used to crash in lazy domtree updater mode + non-per-function
domtree validity checks disabled.
Currently SimplifyCFG drops the debug locations of 'bonus' instructions.
Such instructions are moved before the first branch. The reason for the
current behavior is that this could lead to surprising debug stepping,
if the block that's folded is dead.
In case the first branch and the instructions to be folded have the same
debug location, this shouldn't be an issue and we can keep the debug
location.
Reviewed By: vsk
Differential Revision: https://reviews.llvm.org/D93662
I have added it in d15d81c because it *seemed* correct, was holding
for all the tests so far, and was validating the fix added in the same
commit, but as David Major is pointing out (with a reproducer),
the assertion isn't really correct after all. So remove it.
Note that the d15d81c still fine.
One would hope that it would have been already canonicalized into an
unconditional branch, but that isn't really guaranteed to happen
with SimplifyCFG's visitation order.
We only need to remove non-TrueBB/non-FalseBB successors,
and we only need to do that once. We don't need to insert
any new edges, because no new successors will be added.
This pretty much concludes patch series for updating SimplifyCFG
to preserve DomTree. All 318 dedicated `-simplifycfg` tests now pass
with `-simplifycfg-require-and-preserve-domtree=1`.
There are a few leftovers that apparently don't have good test coverage.
I do not yet know what gaps in test coverage will the wider-scale testing
reveal, but the default flip might be close.