The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Relands 67504c9549 with a fix for
32-bit builds.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
This patch removes llvm::is_trivially_copyable as it seems to be dead.
Once I remove it, HAVE_STD_IS_TRIVIALLY_COPYABLE has no users, so this
patch removes the macro also.
The comment on llvm::is_trivially_copyable mentions GCC 4.9, but note
that we now require GCC 7.1 or higher.
Differential Revision: https://reviews.llvm.org/D132328
Use this instead of `*_LIBDIR_SUFFIX`, from which it is computed.
This gets us ready for D130586, in which `*_LIBDIR_SUFFIX` is
deprecated.
Differential Revision: https://reviews.llvm.org/D132300
We held off on this before as `LLVM_LIBDIR_SUFFIX` conflicted with it.
Now we return this.
`LLVM_LIBDIR_SUFFIX` is kept as a deprecated way to set
`CMAKE_INSTALL_LIBDIR`. The other `*_LIBDIR_SUFFIX` are just removed
entirely.
I imagine this is too potentially-breaking to make LLVM 15. That's fine.
I have a more minimal version of this in the disto (NixOS) patches for
LLVM 15 (like previous versions). This more expansive version I will
test harder after the release is cut.
Reviewed By: sebastian-ne, ldionne, #libc, #libc_abi
Differential Revision: https://reviews.llvm.org/D130586
For now, this only builds the dylib, so using `-fsanitize=undefined`
with `-static-libsan` or `fsanitize-minimal-runtime` still won't
work -- but the common case does work.
Differential Revision: https://reviews.llvm.org/D131969
glibc annotates `process_vm_readv` with `__THROW`.
lldb/include/lldb/Host/linux/Uio.h and
lldb/source/Host/linux/LibcGlue.cpp don't.
Having a mismatch causes an error with c++17:
../../lldb/source/Host/linux/LibcGlue.cpp:18:9:
error: 'process_vm_readv' is missing exception specification 'throw()'
ssize_t process_vm_readv(::pid_t pid, const struct iovec *local_iov,
^
../../lldb/include/lldb/Host/linux/Uio.h:18:9:
note: previous declaration is here
ssize_t process_vm_readv(::pid_t pid, const struct iovec *local_iov,
^
The diagnostic is a bit misleading, since the previous declaration
in the sysroot (in usr/include/x76_64-linux-gnu/bits/uio-ext.h) is
what has the `__THROW`.
In the cmake build, cmake sets `HAVE_PROCESS_VM_READV` correctly based
on header probing.
In the GN build, just set it to 1 unconditionally on linux. If that
turns out to not be good enough everywhere, we'll have to add a GN arg
for this.
(I'm also setting it to 1 on Android. I'm not sure if that's correct --
but we don't build lldb for Android anyways.)
Rename it to clang-tidy-confusable-chars-gen, to make its role
clearer in a wider context.
In cross builds, the caller might want to provide this tool
externally (to avoid needing to rebuild it in the cross build).
In such a case, having the tool properly namespaced makes its role
clearer.
This matches how the clang-pseudo-gen tool was renamed in
a43fef05d4 / D126725.
Differential Revision: https://reviews.llvm.org/D129798
After bc39d7bdd4 (ported to GN in 94c00c10e), libclang uses symbol_exports,
and clang/test/LibClang/symbols.test wants the versioned name to be `LLVM_[0-9]$`
instead of `FOO`.