The OpenMP device runtime needs to support the OpenMP standard. However
constructs like nested parallelism are very uncommon in real application
yet lead to complexity in the runtime that is sometimes difficult to
optimize out. As a stop-gap for performance we should supply an argument
that selectively disables this feature. This patch adds the
`-fopenmp-assume-no-nested-parallelism` argument which explicitly
disables the usee of nested parallelism in OpenMP.
Reviewed By: carlo.bertolli
Differential Revision: https://reviews.llvm.org/D132074
This patch implements omp_get_device_num() in the host and the device.
It uses the already existing getDeviceNum in the device config for the device.
And in the host it uses the omp_get_num_devices().
Two simple tests added
Differential Revision: https://reviews.llvm.org/D128347
The runtime uses thread state values to indicate when we use an ICV or
are in nested parallelism. This is done for OpenMP correctness, but it
not needed in the majority of cases. The new flag added is
`-fopenmp-assume-no-thread-state`.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D120106
A common problem is the device running out of global heap memory and
crashing due to a nullptr dereference when using the data sharing stack.
This explicitly checks that a nullptr was not returned by malloc when
debugging field 1 is enabled.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D112005
This patch adds support for an RAII struct that will print function
traces when placed inside of a function declaration. Each successive
call will increase the indentation to make it easier to visually
inspect.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D110202
This patch adds support for using dynamic shared memory in the new
device runtime. The new function `__kmpc_get_dynamic_shared` will return a
pointer to the buffer of dynamic shared memory. Currently the amount of memory
allocated is set by an environment variable.
In the future this amount will be added to the amount used for the smart stack
which will be configured in a similar way.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D110006
This patch adds fields for the device number and number of devices into
the device environment struct and debugging values.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D110004
The "old" OpenMP GPU device runtime (D14254) has served us well for many
years but modernizing it has caused some pain recently. This patch
introduces an alternative which is mostly written from scratch embracing
OpenMP 5.X, C++, LLVM coding style (where applicable), and conceptual
interfaces. This new runtime is opt-in through a clang flag (D106793).
The new runtime is currently only build for nvptx and has "-new" in its
name.
The design is tailored towards middle-end optimizations rather than
front-end code generation choices, a trend we already started in the old
runtime a while back. In contrast to the old one, state is organized in
a simple manner rather than a "smart" one. While this can induce costs
it helps optimizations. Our expectation is that the majority of codes
can be optimized and a "simple" design is therefore preferable. The new
runtime does also avoid users to pay for things they do not use,
especially wrt. memory. The unlikely case of nested parallelism is
supported but costly to make the more likely case use less resources.
The worksharing and reduction implementation have been taken from the
old runtime and will be rewritten in the future if necessary.
Documentation and debug features are still mostly missing and will be
added over time.
All external symbols start with `__kmpc` for legacy reasons but should
be renamed once we switch over to a single runtime. All internal symbols
are placed in appropriate namespaces (anonymous or `_OMP`) to avoid name
clashes with user symbols.
Differential Revision: https://reviews.llvm.org/D106803