variable is initialized by a non-constant expression, and pass in the variable
being declared so that earlier-initialized fields' values can be used.
Rearrange VarDecl init evaluation to make this possible, and in so doing fix a
long-standing issue in our C++ constant expression handling, where we would
mishandle cases like:
extern const int a;
const int n = a;
const int a = 5;
int arr[n];
Here, n is not initialized by a constant expression, so can't be used in an ICE,
even though the initialization expression would be an ICE if it appeared later
in the TU. This requires computing whether the initializer is an ICE eagerly,
and saving that information in PCH files.
llvm-svn: 146856
floating literal value does not fit into the destination type. Such casts have
undefined behavior at translation time; treating them as non-ICE matches the
behavior of modern gcc versions.
llvm-svn: 146842
fails within a call to a constexpr function. Add -fconstexpr-backtrace-limit
argument to driver and frontend, to control the maximum number of notes so
produced (default 10). Fix APValue printing to be able to pretty-print all
APValue types, and move the testing for this functionality from a unittest to
a -verify test now that it's visible in clang's output.
llvm-svn: 146749
declarations and definitions) as ObjCInterfaceDecls within the same
redeclaration chain. This new representation matches what we do for
C/C++ variables/functions/classes/templates/etc., and makes it
possible to answer the query "where are all of the declarations of
this class?"
llvm-svn: 146679
redeclaration chain for Objective-C classes, including:
- Using the first declaration as the canonical declaration.
- Using the definition as the primary DeclContext
- Making sure that all declarations have a pointer to the definition
data, and the definition knows that it is the definition.
- Serialization support for when a definition gets added to a
declaration that comes from an AST file.
However, note that we're not taking advantage of much of this code
yet, because we're still re-using ObjCInterfaceDecls.
llvm-svn: 146667
separately-allocated DefinitionData structure, which we manage the
same way as CXXRecordDecl::DefinitionData. This prepares the way for
making ObjCInterfaceDecls redeclarable, to more accurately model
forward declarations of Objective-C classes and eliminate the mutation
of ObjCInterfaceDecl that causes us serious trouble in the AST reader.
Note that ObjCInterfaceDecl's accessors are fairly robust against
being applied to forward declarations, because Clang (and Sema in
particular) doesn't perform RequireCompleteType/hasDefinition() checks
everywhere it has to. Each of these overly-robust cases is marked with
a FIXME, which we can tackle over time.
llvm-svn: 146644
to declaresSameEntity(), as a baby step toward tracking forward
declarations of Objective-C classes precisely. Part of
<rdar://problem/10583531>.
llvm-svn: 146618
whether an expression is a (core) constant expression as a side-effect of
evaluation. This takes us from accepting far too few expressions as ICEs to
accepting slightly too many -- fixes for the remaining cases are coming next.
The diagnostics produced when an expression is found to be non-constant are
currently quite poor (with generic wording but reasonable source locations),
and will be improved in subsequent commits.
llvm-svn: 146289
documentation) with one based on what GCC's __builtin_constant_p is actually
intended to do (discovered by asking a friendly GCC developer).
In particular, an expression which folds to a pointer is now only considered to
be a "constant" by this builtin if it refers to the first character in a string
literal.
This fixes a rather subtle wrong-code issue when building with glibc. Given:
const char cs[4] = "abcd";
int f(const char *p) { return strncmp(p, cs, 4); }
... the macro magic for strncmp produces a (potentially crashing) call to
strlen(cs), because it expands to an expression starting with:
__builtin_constant_p(cs) && strlen(cs) < 4 ? /* ... */
Under the secret true meaning of __builtin_constant_p, this is guaranteed to be
safe!
llvm-svn: 146236
bound to not have side effects(!). Add constant-folding support for expressions
of void type, to ensure that we can still fold ((void)0, 1) as an array bound.
llvm-svn: 146000
evaluator into constant initializer handling / IRGen. The practical consequence
of this is that the bitcast now lives in the constant's definition, rather than
in its uses.
The code in the constant expression evaluator was producing vectors of the wrong
type and size (and possibly of the wrong value for a big-endian int-to-vector
bitcast). We were getting away with this only because we don't yet support
constant-folding of any expressions which inspect vector values.
llvm-svn: 145981
explicit template specializations (which represent actual functions somebody wrote).
Along the way, refactor some other code which similarly cares about whether or
not they are looking at a template instantiation.
llvm-svn: 145547
The new metadata are method @encode strings with additional data.
1. Each Objective-C object is marked with its class name and protocol names.
The same is done for property @encode already.
2. Each block object is marked with its function prototype's @encoding. For
example, a method parameter that is a block object that itself returns void
and takes an int would look like:
@?<v@?i>
These new method @encode strings are stored in a single array pointed to by structs protocol_t and objc_protocol_ext.
Patch provided by Greg Parker!
llvm-svn: 145469
This supports single-element initializer lists for references according to DR1288, as well as creating temporaries and binding to them for other initializer lists.
llvm-svn: 145186
semantics and defaults as the corresponding g++ arguments. The historical g++
argument -ftemplate-depth-N is kept for compatibility, but modern g++ versions
no longer document that option.
Add -cc1 argument -fconstexpr-depth N to implement the corresponding
functionality.
The -ftemplate-depth=N part of this fixes PR9890.
llvm-svn: 145045
of the first type is the same as the aka string of the second type, but both
types are different. Update the logic to print an aka for the first type to
show that they are different.
llvm-svn: 144558
or MemberExpr which refers to it. As a side-effect, MemberExprs which refer to
static member functions and static data members are now emitted as constant
expressions.
llvm-svn: 144468
it is going to be rewritten (and the chain will be serialized again), otherwise we may form a cycle in its
categories list when deserializing.
Also introduce ASTMutationListener::CompletedObjCForwardRef to notify that a forward reference
was completed; using Decl's isChangedSinceDeserialization/setChangedSinceDeserialization
is bug inducing and kinda gross, we should phase it out.
Fixes infinite loop in rdar://10418538.
llvm-svn: 144465
reinstates r144273; a combination of r144333's fix for NoOp rvalue-to-lvalue
casts and some corresponding changes here resolve the regression which that
caused.
This patch also adds support for some additional forms of member function call,
along with additional testing.
llvm-svn: 144369
is currently too inefficient to allow us to use it for array initializers, but
fortunately we usually don't yet need to evaluate such initializers.
llvm-svn: 144260
written, instead of the resolved storage class, which might not be
legal to specify on the declaration (such as out-of-line definitions
of static class members in C++, and __local variables in OpenCL).
Initial patch by Richard Membarth.
llvm-svn: 144062
expression evaluation:
- When folding a non-value-dependent expression, we may try to use the
initializer of a value-dependent variable. If that happens, give up.
- In C++98, actually check that a const, non-volatile DeclRefExpr inside an ICE
is of integral or enumeration type (a reference isn't OK!)
- In C++11, DeclRefExprs for objects of const literal type initialized with
value-dependent expressions are themselves value-dependent.
- So are references initialized with value-dependent expressions (though this
case is missing from the C++11 standard, along with many others).
llvm-svn: 144056
default", make a note of which is used when creating the
initial declaration. Previously, we would wait until later to handle
default/delete as a definition, but this is too late: when adding the
declaration, we already treated the declaration as "user-provided"
when in fact it was merely "user-declared".
Fixes PR10861 and PR10442, along with a bunch of FIXMEs.
llvm-svn: 144011
__int128_t and __uint128_t. Short and unsigned short integer literals support
is only to work around a crasher as reported in PR11179 and will be removed
once Clang no longer builds short integer literals.
llvm-svn: 143977
partially undoes the revert in r143491, but does not introduce any new instances
of the underlying issue (which is not yet fixed) in code which does not use
the 'constexpr' keyword.
llvm-svn: 143905
property references to use a new PseudoObjectExpr
expression which pairs a syntactic form of the expression
with a set of semantic expressions implementing it.
This should significantly reduce the complexity required
elsewhere in the compiler to deal with these kinds of
expressions (e.g. IR generation's special l-value kind,
the static analyzer's Message abstraction), at the lower
cost of specifically dealing with the odd AST structure
of these expressions. It should also greatly simplify
efforts to implement similar language features in the
future, most notably Managed C++'s properties and indexed
properties.
Most of the effort here is in dealing with the various
clients of the AST. I've gone ahead and simplified the
ObjC rewriter's use of properties; other clients, like
IR-gen and the static analyzer, have all the old
complexity *and* all the new complexity, at least
temporarily. Many thanks to Ted for writing and advising
on the necessary changes to the static analyzer.
I've xfailed a small diagnostics regression in the static
analyzer at Ted's request.
llvm-svn: 143867
to allow us to implement the C++11 rule that a non-active union member can't be
read, and use it to implement subobject access for string literals.
llvm-svn: 143677
to types. Enable this flag for code completion, where knowing whether
something is in an anonymous or inline namespace is actually not
useful, since you don't have to type it anyway. Fixes
<rdar://problem/10208818>.
llvm-svn: 143599
it contains give it a USR based on its semantic context, which is the interface.
This follows what we already did for objc methods. rdar://10371669
llvm-svn: 143464
that it retains source location information for the type. Aside from
general goodness (being able to walk the types described in that
information), we now have a proper representation for dependent
delegating constructors. Fixes PR10457 (for real).
llvm-svn: 143410
just integers and floating point types. Since we don't support evaluating class
types or performing lvalue-to-rvalue conversions on array elements yet, this
just means pointer types right now.
llvm-svn: 143298
Track the function invocation where an lvalue referring to a constexpr function
parameter originated from, and use it to substitute the correct argument and to
determine whether such an argument's lifetime has ended.
llvm-svn: 143296
implicitly perform an lvalue-to-rvalue conversion if used on an lvalue
expression. Also improve the documentation of Expr::Evaluate* to indicate which
of them will accept expressions with side-effects.
llvm-svn: 143263
constexpr function arguments outside of their function (passing or returning
them by reference) does not work correctly yet.
Calling constexpr function templates does not work yet, since the bodies are not
instantiated until the end of the translation unit.
llvm-svn: 143234
are present in all the necessary places:
In constant expression evaluation, evaluate lvalues as lvalues and rvalues as
rvalues. Remove special case for caching reference initialization and fix a
cyclic initialization crash in the process.
llvm-svn: 143204
The code had it backwards, thinking size_t was signed, and using that for "%zd".
Also let the analysis get the types for (u)intmax_t while we are at it.
llvm-svn: 143099
expressions: expressions which refer to a logical rather
than a physical l-value, where the logical object is
actually accessed via custom getter/setter code.
A subsequent patch will generalize the AST for these
so that arbitrary "implementing" sub-expressions can
be provided.
Right now the only client is ObjC properties, but
this should be generalizable to similar language
features, e.g. Managed C++'s __property methods.
llvm-svn: 142914
statements. As noted in the documentation for the AST node, the
semantics of __if_exists/__if_not_exists are somewhat different from
the way Visual C++ implements them, because our parsed-template
representation can't accommodate VC++ semantics without serious
contortions. Hopefully this implementation is "good enough".
llvm-svn: 142901
rvalues, as C++11 constant evaluation semantics require. DeclRefs referring to
references can now use the normal initialization-caching codepath, which
incidentally fixes a crash in cyclic initialization of references.
llvm-svn: 142844
addDeclInternal(). This function suppresses any
calls to FindExternalVisibleDeclsByName() while
a Decl is added to a DeclContext. This behavior
is required for the ASTImporter, because in the
case of the LLDB client the ASTImporter would be
called recursively to import the visible decls,
which leads to assertions because the recursive
call is seeing partially-formed types.
I also modified the ASTImporter to use
addDeclInternal() in all places where it would
otherwise use addDecl(). This fix should not
affect the rest of Clang, passes Clang's
testsuite, and fixes several serious LLDB bugs.
llvm-svn: 142634
Add test that a variadic base list which expands to 0 bases doesn't make the
class a non-aggregate. This test passed before the change, too.
llvm-svn: 142411
top-level declarations that occurred inside an ObjC container.
This is useful to keep track of such decls otherwise when e.g. a function
is declared inside an objc interface, it is not passed to HandleTopLevelDecl
and it is not inside the DeclContext of the interface that is returned.
llvm-svn: 142232
avoids loading data from an external source, since those lookups were
causing some "interesting" recursion in LLDB.
This code is not efficient. I plan to remedy this inefficiency in a
follow-up commit.
llvm-svn: 142023
- Remodel Expr::EvaluateAsInt to behave like the other EvaluateAs* functions,
and add Expr::EvaluateKnownConstInt to capture the current fold-or-assert
behaviour.
- Factor out evaluation of bitfield bit widths.
- Fix a few places which would evaluate an expression twice: once to determine
whether it is a constant expression, then again to get the value.
llvm-svn: 141561
the fields if they are already loaded, just ignore them when we are building
the chain in BuildDeclChain.
This fixes an lldb issue where fields were removed and not getting re-added
because lldb is based on ASTImporter adding decls to DeclContext and fields
were already added before by the ASTImporter.
We should really simplify the interaction between DeclContext <-> lldb
going forward..
rdar://10246067
llvm-svn: 141418
definition. Assert this. Change IR generation to not try to
aggressively emit the IR translation of a record during its
own definition. Fixes PR10912.
llvm-svn: 141350
return to one which does not return (has noreturn attribute)
should warn as it is an unsafe assignment. // rdar://10095762
c++ already handles this. This is the c version.
llvm-svn: 141141
-Add the location of the class name to all objc container decls, not just ObjCInterfaceDecl.
-Make objc decls consistent with the rest of the NamedDecls and have getLocation() point to the
class name, not the location of '@'.
llvm-svn: 141061
Instead of always storing all source locations for the selector identifiers
we check whether all the identifiers are in a "standard" position; "standard" position is
-Immediately before the arguments: -(id)first:(int)x second:(int)y;
-With a space between the arguments: -(id)first: (int)x second: (int)y;
-For nullary selectors, immediately before ';': -(void)release;
In such cases we infer the locations instead of storing them.
llvm-svn: 140989
Instead of always storing all source locations for the selector identifiers
we check whether all the identifiers are in a "standard" position; "standard" position is
-Immediately before the arguments: [foo first:1 second:2]
-With a space between the arguments: [foo first: 1 second: 2]
-For nullary selectors, immediately before ']': [foo release]
In such cases we infer the locations instead of storing them.
llvm-svn: 140987
part on patches by Peter Collingbourne.
We diverge from the C++11 standard in a few areas, mostly related to checking
constexpr function declarations, and not just definitions. See WG21 paper
N3308=11-0078 for details.
Function invocation substitution is not available in this patch; constexpr
functions cannot yet be used from within constant expressions.
llvm-svn: 140926
Allow empty initializer lists for scalars, which mean value-initialization.
Constant evaluation for single-element and empty initializer lists for scalars.
Codegen for empty initializer lists for scalars.
Test case comes in next commit.
llvm-svn: 140459
We were failing to set source locations and ranges in isUnusedResultAWarning
for CXXOperatorCallExprs, leading to an "expression result unused" warning
with absolutely no context if the expression was inside a macro.
llvm-svn: 140036
to find the called declaration. Explicit casts can radically
change the semantics of a call, and it's no longer really a
builtin call any more than it would be a builtin call if you stored
the function pointer into a variable and called that.
llvm-svn: 139659
to the consumer without being fully deserialized).
The regression was on compiling boost.python and it was too difficult to get a reduced
test case unfortunately.
Also modify the logic of how objc methods are getting passed to the consumer;
codegen depended on receiving objc methods before the implementation decl.
Since the interesting objc methods are ones with a body and such methods only
exist inside an ObjCImplDecl, deserialize and pass to consumer all the methods
of ObCImplDecl when we see one.
Fixes http://llvm.org/PR10922 & rdar://10117105.
llvm-svn: 139644
language options. Use that .def file to declare the LangOptions class
and initialize all of its members, eliminating a source of annoying
initialization bugs.
AST serialization changes are next up.
llvm-svn: 139605
the lifetime of the block by copying it to the heap, or else we'll get
a dangling reference because the code working with the non-block-typed
object will not know it needs to copy.
There is some danger here, e.g. with assigning a block literal to an
unsafe variable, but, well, it's an unsafe variable.
llvm-svn: 139451
than having CodeGen check whether a declaration comes from an AST file
(which it shouldn't know or care about), make sure that the AST writer and
reader pass along "interesting" declarations that CodeGen needs to
know about.
llvm-svn: 139441
and case statements. Use this to make the logic in the CFG builder more
robust at finding the actual statements within a compound statement,
even when there are many layers of labels obscuring it.
Also extend the test cases for a large chunk of PR10063. Still more work
to do here though.
llvm-svn: 139437
than conversions of C pointers to ObjC pointers. In order to ensure that
we've caught every case, add asserts to CastExpr that strictly determine
which cast kind is used for which kind of bit cast.
llvm-svn: 139352
'id' that can be used (only!) via a contextual keyword as the result
type of an Objective-C message send. 'instancetype' then gives the
method a related result type, which we have already been inferring for
a variety of methods (new, alloc, init, self, retain). Addresses
<rdar://problem/9267640>.
llvm-svn: 139275
to look through SubstNonTypeTemplateParmExprs. Then, update the IR
generation of CallExprs to actually use CallExpr::getCalleeDecl()
rather than attempting to mimick its behavior (badly).
Fixes <rdar://problem/10063539>.
llvm-svn: 139185
builtin types (When requested). This is another step toward making
ASTUnit build the ASTContext as needed when loading an AST file,
rather than doing so after the fact. No actual functionality change (yet).
llvm-svn: 138985
LangOptions, rather than making distinct copies of
LangOptions. Granted, LangOptions doesn't actually get modified, but
this will eventually make it easier to construct ASTContext and
Preprocessor before we know all of the LangOptions.
llvm-svn: 138959
The initial incentive was to fix a crash when PCH chaining categories
to an interface, but the fix was done in the "modules way" that I hear
is popular with the kids these days.
Each module stores the local chain of categories and we combine them
when the interface is loaded. We also warn if non-dependent modules
introduce duplicate named categories.
llvm-svn: 138926
of the function in question when applicable (that is, not for blocks).
Patch by Joerg Sonnenberger with some stylistic tweaks by me.
When discussing this weth Joerg, streaming the decl directly into the
diagnostic didn't work because we have a pointer-to-const, and the
overload doesn't accept such. In order to make my style tweaks to the
patch, I first changed the overload to accept a pointer-to-const, and
then changed the diagnostic printing layer to also use
a pointer-to-const, cleaning up a gross line of code along the way.
llvm-svn: 138854
This makes the code duplication of implicit special member handling even worse,
but the cleanup will have to come later. For now, this works.
Follow-up with tests for explicit defaulting and enabling the __has_feature
flag to come.
llvm-svn: 138821
, such as list of forward @class decls, in a DeclGroup
node. Deal with its consequence throught clang. This
is in preparation for more Sema work ahead. // rdar://8843851.
Feel free to reverse if it breaks something important
and I am unavailable.
llvm-svn: 138709
after having already deserialized the fields, clear out the fields
first. This makes sure that we keep all of the declarations in the
lexical context (including those implicitly added by later
type-checking) within the same list. A test case for this behavior is
coming as part of another commit; testing for this problem in
isolation is a nightmare.
llvm-svn: 138661
table when serializing an AST file. This was a holdover from the days
before chained PCH, and is a complete waste of time and storage
now. It's a good thing it's useless, because I have no idea how I
would have implemented MaterializeVisibleDecls efficiently in the
presence of modules.
llvm-svn: 138496
const int &x = x;
This crashed by inifinetly recursing within the lvalue evaluation
routine. I've added a (somewhat) braindead way of preventing this
recursion. If folks have better suggestions for how to avoid it I'm all
ears.
That said, we have some work to do. This doesn't trigger a single
warning for uninitialized, self-initialized or otherwise completely
wrong code. In some senses, the crash was almost better.
llvm-svn: 138239
even when overloaded and user-defined. These operators are both more
valuable to warn on (due to likely typos) and extremely unlikely to be
reasonable for use to trigger side-effects.
llvm-svn: 137823
Example:
template <class T>
class A {
public:
template <class U> void f(U p) { }
template <> void f(int p) { } // <== class scope specialization
};
This extension is necessary to parse MSVC standard C++ headers, MFC and ATL code.
BTW, with this feature in, clang can parse (-fsyntax-only) all the MSVC 2010 standard header files without any error.
llvm-svn: 137573
type over into the AST context, then make that declaration a
predefined declaration in the AST format. This ensures that different
AST files will at least agree on the (global) declaration ID for 'id',
and eliminates one of the "special" types in the AST file format.
llvm-svn: 137429
ASTContext with accessors/mutators. The only functional change is that
the AST writer won't bother writing the id/Class/SEL redefinition type
if it hasn't been explicitly set; previously, it ended up being
written as a synonym for the built-in id/Class/SEL.
llvm-svn: 137349
enumerations from the ASTContext into CodeGen, so that we don't need
to serialize it to AST files. This appears to be the last of the
low-hanging fruit for SpecialTypes.
llvm-svn: 137124
layout of a constant NSString from the ASTContext over to CodeGen,
since this is solely CodeGen's responsibility. Eliminates one of the
unnecessary "special" types that we serialize.
llvm-svn: 137121
This fixes cases where the anonymous bitfield is followed by a bitfield member.
E.g.,
struct t4
{
char foo;
long : 0;
char bar : 1;
};
rdar://9859156
llvm-svn: 136991
Having a function declaration and definition with different types for a
parameter where the types have same (textual) name can occur when an unqualified
type name resolves to types in different namespaces in each location.
The error messages have been extended by adding notes that point to the first
parameter of the function definition that doesn't match the declaration, instead
of a generic "member declaration nearly matches". The generic message is still
used in cases where the mismatch is not in the paramenter list, such as
mismatched cv qualifiers on the member function itself.
llvm-svn: 136891
alignment. This fixes cases where the anonymous bitfield is followed by a
non-bitfield member. E.g.,
struct t4
{
int foo : 1;
long : 0;
char bar;
};
Part of rdar://9859156
llvm-svn: 136858
broken because the end location of the parameter was the end location of the default arg,
resulting in a source range that could begin in one file and end in another.
llvm-svn: 136572
imported a forward declaration, but later the full definition of the
same entity becomes available. When this happens, import the definition.
llvm-svn: 136537
- Replace calling -zone with 'nil'. -zone is obsolete in ARC.
- Allow removing retain/release on a static global var.
- Fix assertion hit when scanning for name references outside a NSAutoreleasePool scope.
- Automatically add bridged casts for results of objc method calls and when calling CFRetain, for example:
NSString *s;
CFStringRef ref = [s string]; -> CFStringRef ref = (__bridge CFStringRef)([s string]);
ref = s.string; -> ref = (__bridge CFStringRef)(s.string);
ref = [NSString new]; -> ref = (__bridge_retained CFStringRef)([NSString new]);
ref = [s newString]; -> ref = (__bridge_retained CFStringRef)([s newString]);
ref = [[NSString alloc] init]; -> ref = (__bridge_retained CFStringRef)([[NSString alloc] init]);
ref = [[s string] retain]; -> ref = (__bridge_retained CFStringRef)([s string]);
ref = CFRetain(s); -> ref = (__bridge_retained CFTypeRef)(s);
ref = [s retain]; -> ref = (__bridge_retained CFStringRef)(s);
- Emit migrator error when trying to cast to CF type the result of autorelease/release:
for
CFStringRef f3() {
return (CFStringRef)[[[NSString alloc] init] autorelease];
}
emits:
t.m:12:10: error: [rewriter] it is not safe to cast to 'CFStringRef' the result of 'autorelease' message; a __bridge cast may result in a pointer to a destroyed object and a __bridge_retained may leak the object
return (CFStringRef)[[[NSString alloc] init] autorelease];
^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
t.m:12:3: note: [rewriter] remove the cast and change return type of function to 'NSString *' to have the object automatically autoreleased
return (CFStringRef)[[[NSString alloc] init] autorelease];
^
- Before changing attributes to weak/unsafe_unretained, check if the backing ivar
is set to a +1 object, in which case use 'strong' instead.
llvm-svn: 136208
problem where Clang was setting the
hasExternalVisibleDecls() bit for all
DeclContexts it imported. This caused Clang
to make unnecessary calls to
findExternalVisibleDecls() when an external
AST source was installed.
In fact, Clang sometimes interpreted a failure
by one of these spurious calls to find a
Decl as meaning the Decl didn't exist, even
though findExternalLexicalDecls() did locate
that decl. This produced amusing errors of
the form:
-
error: no member named 'b' in 'A'; did you
mean 'b'?
-
Now, if hasExternalVisibleDecls() or
hasExternalLexicalDecls() should be set, the
external AST source must do so itself.
llvm-svn: 135824
This was previously not-const only because it has to lazily construct a chain
of ivars the first time it is called (and after the chain is invalidated).
In practice, all the clients were just const_casting their const Decls;
all those now-unnecessary const_casts have been removed.
llvm-svn: 135741
in ImportDefinition when replacing a previously
forward-declared CXXRecordDecl with its full
definition. The forward-declared type's
DefinitionData had not been intialized for the
forward-declared type, so adding fields to the
Decl caused CXXRecordDecl::addedMember() to
crash when accessing the DefinitionData.
llvm-svn: 135530
to allow clients to specify that they've already (correctly) loaded
declarations, and that no further action is needed.
Also, make sure that we clear the "has external lexical declarations"
bit before calling FindExternalLexicalDecls(), to avoid infinite
recursion.
llvm-svn: 135306
to represent a fully-substituted non-type template parameter.
This should improve source fidelity, as well as being generically
useful for diagnostics and such.
llvm-svn: 135243
block pointers) that don't have any qualification to be POD types. We
were previously considering them to be non-POD types, because this was
convenient in C++ for is_pod-like traits. However, we now end up
inferring lifetime in such cases (template arguments infer __strong),
so it is not necessary.
Moreover, we want rvalues of object type (which have their lifetime
stripped) to be PODs to allow, e.g., va_arg(arglist, id) to function
properly. Fixes <rdar://problem/9758798>.
llvm-svn: 134993
dependent. This covers an odd class of types such as
int (&)[sizeof(sizeof(T() + T()))];
which involve template parameters but, because of some trick typically
involving a form of expression that is never type-dependent, resolve
down to a non-dependent type. Such types need to be mangled
essentially as they were written in the source code (involving
template parameters), rather than via their canonical type.
In general, instantiation-dependent types should be mangled as
they were written in the source. However, since we can't do that now
without non-trivial refactoring of the AST (see the new FIXME), I've
gone for this partial solution: only use the as-written-in-the-source
mangling for these strange types that are instantiation-dependent but
not dependent. This provides better compatibility with previous
incarnations of Clang and with GCC. In the future, we'd like to get
this right.
Fixes <rdar://problem/9663282>.
llvm-svn: 134984
isSugared() and desugar() routines previously provided were never
actually called, since the corresponding types
(DependentTypeOfExprType, DependentDecltypeType) don't have
corresponding type classes. Outside of the current (incomplete) patch
I'm working on, I haven't found a way to trigger this problem.
llvm-svn: 134973
When two different types has the same text representation in the same
diagnostic message, print an a.k.a. after the type if the a.k.a. gives extra
information about the type.
class versa_string;
typedef versa_string string;
namespace std {template <typename T> class vector;}
using std::vector;
void f(vector<string> v);
namespace std {
class basic_string;
typedef basic_string string;
template <typename T> class vector {};
void g() {
vector<string> v;
f(v);
}
}
Old message:
----------------
test.cc:15:3: error: no matching function for call to 'f'
f(&v);
^
test.cc:7:6: note: candidate function not viable: no known conversion from
'vector<string>' to 'vector<string>' for 1st argument
void f(vector<string> v);
^
1 error generated.
New message:
---------------
test.cc:15:3: error: no matching function for call to 'f'
f(v);
^
test.cc:7:6: note: candidate function not viable: no known conversion from
'vector<string>' (aka 'std::vector<std::basic_string>') to
'vector<string>' (aka 'std::vector<versa_string>') for 1st argument
void f(vector<string> v);
^
1 error generated.
llvm-svn: 134904
where we have an immediate need of a retained value.
As an exception, don't do this when the call is made as the immediate
operand of a __bridge retain. This is more in the way of a workaround
than an actual guarantee, so it's acceptable to be brittle here.
rdar://problem/9504800
llvm-svn: 134605
-Remove unnecessary 'return'.
-Remove unnecessary 'if' check (llvm_unreachable make sure attrStr will be non-null)
-Add a test of transferring ownership to a reference cast type.
llvm-svn: 134285
cast type has no ownership specified, implicitly "transfer" the ownership of the cast'ed type
to the cast type:
id x;
static_cast<NSString**>(&x); // Casting as (__strong NSString**).
This currently only works for C++ named casts, C casts to follow.
llvm-svn: 134273
type/expression/template argument/etc. is instantiation-dependent if
it somehow involves a template parameter, even if it doesn't meet the
requirements for the more common kinds of dependence (dependent type,
type-dependent expression, value-dependent expression).
When we see an instantiation-dependent type, we know we always need to
perform substitution into that instantiation-dependent type. This
keeps us from short-circuiting evaluation in places where we
shouldn't, and lets us properly implement C++0x [temp.type]p2.
In theory, this would also allow us to properly mangle
instantiation-dependent-but-not-dependent decltype types per the
Itanium C++ ABI, but we aren't quite there because we still mangle
based on the canonical type in cases like, e.g.,
template<unsigned> struct A { };
template<typename T>
void f(A<sizeof(sizeof(decltype(T() + T())))>) { }
template void f<int>(A<sizeof(sizeof(int))>);
and therefore get the wrong answer.
llvm-svn: 134225
for a template template parameter.
Uses to follow.
I've also made the uniquing of SubstTemplateTemplateParmPacks
use a ContextualFoldingSet as a minor space efficiency.
llvm-svn: 134137
works in a 'while(false)' loop. Simplify this code; it was
complicated only in anticipation of C++0x lambdas, and it can
become complicated again when those happen. :)
llvm-svn: 133761
MaterializeTemporaryExpr captures a reference binding to a temporary
value, making explicit that the temporary value (a prvalue) needs to
be materialized into memory so that its address can be used. The
intended AST invariant here is that a reference will always bind to a
glvalue, and MaterializeTemporaryExpr will be used to convert prvalues
into glvalues for that binding to happen. For example, given
const int& r = 1.0;
The initializer of "r" will be a MaterializeTemporaryExpr whose
subexpression is an implicit conversion from the double literal "1.0"
to an integer value.
IR generation benefits most from this new node, since it was
previously guessing (badly) when to materialize temporaries for the
purposes of reference binding. There are likely more refactoring and
cleanups we could perform there, but the introduction of
MaterializeTemporaryExpr fixes PR9565, a case where IR generation
would effectively bind a const reference directly to a bitfield in a
struct. Addresses <rdar://problem/9552231>.
llvm-svn: 133521
This makes 'isPointerLikeType' a little less confusing, and pulls the
decay check into a separate interface that is much more clear and
concrete. Also, just implement these as logical wrappers around other
predicates. Having a switch based implementation isn't likely to be
necessary. We can try to optimize them later if they show up on
a profile.
llvm-svn: 133405
Trieu, and fix them by checking for array and function types as well as
pointer types.
I've added a predicate method on Type to bundle together the logic we're
using here: isPointerLikeType(). I'd welcome better names for this
predicate, this is the best I came up with. It's implemented as a switch
to be a touch lighter weight than all the chained isa<...> casts that
would result otherwise.
llvm-svn: 133383
qualifiers, so that an __unsafe_unretained-qualified type T in ARC code
will have the same mangling as T in non-ARC code, improving ABI
interoperability. This works now because we infer or require a
lifetime qualifier everywhere one can appear in an external
interface. Another part of <rdar://problem/9595486>.
llvm-svn: 133306
ownership-unqualified retainable object type as __strong. This allows
us to write, e.g.,
std::vector<id>
and we'll infer that the vector's element types have __strong
ownership semantics, which is far nicer than requiring:
std::vector<__strong id>
Note that we allow one to override the ownership qualifier of a
substituted template type parameter, e.g., given
template<typename T>
struct X {
typedef __weak T type;
};
X<id> is treated the same as X<__strong id>. At instantiation type,
the __weak in "__weak T" overrides the (inferred or specified)
__strong on the template argument type, so that we can still provide
metaprogramming transformations.
This is part of <rdar://problem/9595486>.
llvm-svn: 133303
they should still be officially __strong for the purposes of errors,
block capture, etc. Make a new bit on variables, isARCPseudoStrong(),
and set this for 'self' and these enumeration-loop variables. Change
the code that was looking for the old patterns to look for this bit,
and change IR generation to find this bit and treat the resulting
variable as __unsafe_unretained for the purposes of init/destroy in
the two places it can come up.
llvm-svn: 133243
a ConstStmtVisitor. This also required adding some const iteration
support for designated initializers and making some of the getters on
the designators const.
It also made the formatting of StmtProfile.cpp rather awkward. I'm happy
to adjust any of the formatting if folks have suggestions. I've at least
fitted it all within 80 columns.
llvm-svn: 133152
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
were just punting on template argument deduction for a number of type
nodes. Most of them, obviously, didn't matter.
As a consequence of this, make extended vector types (via the
ext_vector_type attribute) actually work properly for several
important cases:
- If the attribute appears in a type-id (i.e, not attached to a
typedef), actually build a proper vector type
- Build ExtVectorType whenever the size is constant; previously, we
were building DependentSizedExtVectorType when the size was constant
but the type was dependent, which makes no sense at all.
- Teach template argument deduction to handle
ExtVectorType/DependentSizedExtVectorType.
llvm-svn: 133060
in a noexcept exception specification because it isn't part of the
canonical type. This ensures that we keep the exact expression written
in the noexcept exception specification, rather than accidentally
"adopting" a previously-written and canonically "equivalent" function
prototype. Fixes PR10087.
llvm-svn: 132998
Related result types apply Cocoa conventions to the type of message
sends and property accesses to Objective-C methods that are known to
always return objects whose type is the same as the type of the
receiving class (or a subclass thereof), such as +alloc and
-init. This tightens up static type safety for Objective-C, so that we
now diagnose mistakes like this:
t.m:4:10: warning: incompatible pointer types initializing 'NSSet *'
with an
expression of type 'NSArray *' [-Wincompatible-pointer-types]
NSSet *array = [[NSArray alloc] init];
^ ~~~~~~~~~~~~~~~~~~~~~~
/System/Library/Frameworks/Foundation.framework/Headers/NSObject.h:72:1:
note:
instance method 'init' is assumed to return an instance of its
receiver
type ('NSArray *')
- (id)init;
^
It also means that we get decent type inference when writing code in
Objective-C++0x:
auto array = [[NSMutableArray alloc] initWithObjects:@"one", @"two",nil];
// ^ now infers NSMutableArray* rather than id
llvm-svn: 132868
This is a follow-up to r132565, and should address the rest of PR9969:
Warn about cases such as
int foo(A a, bool b) {
return a + b ? 1 : 2; // user probably meant a + (b ? 1 : 2);
}
also when + is an overloaded operator call.
llvm-svn: 132784
__builtin_astype(): Used to reinterpreted as another data type of the same size using for both scalar and vector data types.
Added test case.
llvm-svn: 132612
parameter types to be ill-formed. However, it relies on the
completeness of method parameter types when producing metadata, e.g.,
for a protocol, leading IR generating to crash in such cases.
Since there's no real way to tighten down the semantics of Objective-C
here without breaking existing code, do something safe but lame:
suppress the generation of metadata when this happens.
Fixes <rdar://problem/9123036>.
llvm-svn: 132171
behind implicit moves. We now correctly identify move constructors and
assignment operators and update bits on the record correctly. Generation
of implicit moves (declarations or definitions) is not yet supported.
llvm-svn: 132080
type that turns one type into another. This is used as the basis to
implement __underlying_type properly - with TypeSourceInfo and proper
behavior in the face of templates.
llvm-svn: 132017
that the unevaluated subexpressions of &&, ||, and ? : are not
considered when determining whether the expression is a constant
expression. Also, turn the "used in its own initializer" warning into
a runtime-behavior warning, so that it doesn't fire when a variable is
used as part of an unevaluated subexpression of its own initializer.
Fixes PR9999.
llvm-svn: 131968
The general out-of-line case (including explicit instantiation mostly
works except that the definition is being lost somewhere between the AST
and CodeGen, so the definition is never emitted.
llvm-svn: 131933
Type::isUnsignedIntegerOrEnumerationType(), which are like
Type::isSignedIntegerType() and Type::isUnsignedIntegerType() but also
consider the underlying type of a C++0x scoped enumeration type.
Audited all callers to the existing functions, switching those that
need to also handle scoped enumeration types (e.g., those that deal
with constant values) over to the new functions. Fixes PR9923 /
<rdar://problem/9447851>.
llvm-svn: 131735
placement allocation or deallocation functions. These functions cannot be
replaced by the user and are exempt from the normal requirements on
allocation functions (e.g. that they must return unaliased memory).
llvm-svn: 131386
that the destructor body is trivial and that all member variables also have either
trivial destructors or trivial destructor bodies, we don't need to initialize the
vtable pointers since no virtual member functions will be called on the destructor.
Fixes PR9181.
llvm-svn: 131368
Go through and expand the members of bases into the encoding string (and encode the VTable as well).
Unlike gcc which expands virtual bases as many times as they appear in the
hierarchy, clang will only expand them once at the end, to reflect the actual layout.
Note that there doesn't seem to be a way to indicate in the encoding that
packing/alignment of members is different that normal, in which case
the encoding will be out-of-sync with the real layout.
If the runtime switches to just consider the size of types without
taking into account alignment, we could easily make padding explicit in the
encoding (e.g. using arrays of chars). The encoding strings would be
longer then though.
Also encode a flexible array member as array of 0 size, like gcc, not as a pointer.
llvm-svn: 131365
This introduces a generic base class for the expression evaluator
classes, which handles a few common expression types which were
previously handled separately in each class. Also, the expression
evaluator now uses ConstStmtVisitor.
llvm-svn: 131281
hasTrivialDefaultConstructor() really really means it now.
Also implement a fun standards bug regarding aggregates. Doug, if you'd
like, I can un-implement that bug if you think it is truly a defect.
The bug is that non-special-member constructors are never considered
user-provided, so the following is an aggregate:
struct foo {
foo(int);
};
It's kind of bad, but the solution isn't obvious - should
struct foo {
foo (int) = delete;
};
be an aggregate or not?
Lastly, add a missing initialization to FunctionDecl.
llvm-svn: 131101
- New isDefined() function checks for deletedness
- isThisDeclarationADefinition checks for deletedness
- New doesThisDeclarationHaveABody() does what
isThisDeclarationADefinition() used to do
- The IsDeleted bit is not propagated across redeclarations
- isDeleted() now checks the canoncial declaration
- New isDeletedAsWritten() does what it says on the tin.
- isUserProvided() now correct (thanks Richard!)
This fixes the bug that we weren't catching
void foo() = delete;
void foo() {}
as being a redefinition.
llvm-svn: 131013
sense). Fixes <rdar://problem/9366066> by eliminating an inconsistency
between C++ overloading (which handled scoped enumerations correctly)
and C binary operator type-checking (which didn't).
llvm-svn: 130924
Adjacent bit fields are packed into the same 1-, 2-, or
4-byte allocation unit if the integral types are the same
size. // rdar://8823265.
llvm-svn: 130851
Like in r126648, provide (empty) default implementation for pure virtual getMemoryBufferSizes(). Not all use cases have meaningful implementations.
llvm-svn: 130838
if they match that production, i.e. if they're template type parameters
or decltypes (or, as an obvious case not yet described in the ABI document,
if they're template template parameters applied to template arguments).
llvm-svn: 130824
Decl actually found via name lookup & overload resolution when that Decl
is different from the ValueDecl which is actually referenced by the
expression.
This can be used by AST consumers to correctly attribute references to
the spelling location of a using declaration, and otherwise gain insight
into the name resolution performed by Clang.
The public interface to DRE is kept as narrow as possible: we provide
a getFoundDecl() which always returns a NamedDecl, either the ValueDecl
referenced or the new, more precise NamedDecl if present. This way AST
clients can code against getFoundDecl without know when exactly the AST
has a split representation.
For an example of the data this provides consider:
% cat x.cc
namespace N1 {
struct S {};
void f(const S&);
}
void test(N1::S s) {
f(s);
using N1::f;
f(s);
}
% ./bin/clang -fsyntax-only -Xclang -ast-dump x.cc
[...]
void test(N1::S s) (CompoundStmt 0x5b02010 <x.cc:5:20, line:9:1>
(CallExpr 0x5b01df0 <line:6:3, col:6> 'void'
(ImplicitCastExpr 0x5b01dd8 <col:3> 'void (*)(const struct N1::S &)' <FunctionToPointerDecay>
(DeclRefExpr 0x5b01d80 <col:3> 'void (const struct N1::S &)' lvalue Function 0x5b01a20 'f' 'void (const struct N1::S &)'))
(ImplicitCastExpr 0x5b01e20 <col:5> 'const struct N1::S' lvalue <NoOp>
(DeclRefExpr 0x5b01d58 <col:5> 'N1::S':'struct N1::S' lvalue ParmVar 0x5b01b60 's' 'N1::S':'struct N1::S')))
(DeclStmt 0x5b01ee0 <line:7:3, col:14>
0x5b01e40 "UsingN1::;")
(CallExpr 0x5b01fc8 <line:8:3, col:6> 'void'
(ImplicitCastExpr 0x5b01fb0 <col:3> 'void (*)(const struct N1::S &)' <FunctionToPointerDecay>
(DeclRefExpr 0x5b01f80 <col:3> 'void (const struct N1::S &)' lvalue Function 0x5b01a20 'f' 'void (const struct N1::S &)' (UsingShadow 0x5b01ea0 'f')))
(ImplicitCastExpr 0x5b01ff8 <col:5> 'const struct N1::S' lvalue <NoOp>
(DeclRefExpr 0x5b01f58 <col:5> 'N1::S':'struct N1::S' lvalue ParmVar 0x5b01b60 's' 'N1::S':'struct N1::S'))))
Now we can tell that the second call is 'using' (no pun intended) the using
declaration, and *which* using declaration it sees. Without this, we can
mistake calls that go through using declarations for ADL calls, and have no way
to attribute names looked up with using declarations to the appropriate
UsingDecl.
llvm-svn: 130670
parameter node and use this to correctly mangle parameter
references in function template signatures.
A follow-up patch will improve the storage usage of these
fields; here I've just done the lazy thing.
llvm-svn: 130669
NestedNameSpecifierLoc. It predates when we had such an object.
Reference the NNSLoc directly in DREs, and embed it directly into the
MemberNameQualifier struct.
llvm-svn: 130668
Mostly trailing whitespace so that me editor nuking it doesn't muddy the
waters of subsequent commits that do change functionality.
Also nukes a stray statement that was harmless but redundant that
I introduced in r130666.
llvm-svn: 130667
a bitfield in the base class. DREs weren't using any bits here past the
normal Expr bits, so we have plenty of room. This makes the common case
of getting a Decl out of a DRE no longer need to do any masking etc.
Also, while here, clean up code to use the accessor methods rather than
directly poking these bits, and provide a nice comment for DREs that
includes the information previously attached to the bits going into the
pointer union.
No functionality changed here, but DREs should be a tad faster now.
llvm-svn: 130666
As might be surmised from their names, these aren't type traits, they're
expression traits. Amazingly enough, they're expression traits that we
have, and fully implement. These "type" traits are even parsed from the
same tokens as the expression traits. Luckily, the parser only tried the
expression trait parsing for these tokens, so this was all just a pile
of dead code.
llvm-svn: 130643
SubstTemplateTypeParmType to be 'getIdentifier' instead of 'getName' as
it returns an identifier. This makes them more consistent with the
NamedDecl interface.
Also, switch back to using this interface to acquire the indentifier in
TypePrinter.cpp. I missed this in r130628.
llvm-svn: 130629
accompanying fixes to make it work today.
The core of this patch is to provide a link from a TemplateTypeParmType
back to the TemplateTypeParmDecl node which declared it. This in turn
provides much more precise information about the type, where it came
from, and how it functions for AST consumers.
To make the patch work almost a year after its first attempt, it needed
serialization support, and it now retains the old getName() interface.
Finally, it requires us to not attempt to instantiate the type in an
unsupported friend decl -- specifically those coming from template
friend decls but which refer to a specific type through a dependent
name.
A cleaner representation of the last item would be to build
FriendTemplateDecl nodes for these, storing their template parameters
etc, and to perform proper instantation of them like any other template
declaration. They can still be flagged as unsupported for the purpose of
access checking, etc.
This passed an asserts-enabled bootstrap for me, and the reduced test
case mentioned in the original review thread no longer causes issues,
likely fixed at somewhere amidst the 24k revisions that have elapsed.
llvm-svn: 130628
partial ordering of function templates, use a simple superset
relationship rather than the convertibility-implying
isMoreQualifiedThan/compatibilyIncludes relationship. Fixes partial
ordering between references and address-space-qualified references.
llvm-svn: 130612
types after looking through arrays. Arrays with an unknown bound seem to
be specifically allowed in the library type traits in C++0x, and GCC's
builtin __is_trivial returns 'true' for the type 'int[]'. Now Clang
agrees with GCC about __is_trivial here.
Also hardens these methods against dependent types by just returning false.
llvm-svn: 130605
a Type method isStandardLayoutType, to keep our user API matching the
type trait builtins as closely as possible. Also, implement it in terms
of other Type APIs rather than in terms of other type traits. This
models the implementation on that of isLiteralType and isTrivialType.
There remain some common problems with these traits still, so this is
a bit of a WIP. However, we can now fix all of these traits at the same
time and in a consistent manner.
llvm-svn: 130602
type trait. The previous implementation suffered from several problems:
1) It implemented all of the logic in RecordType by walking over every
base and field in a CXXRecordDecl and validating the constraints of
the standard. This made for very straightforward code, but is
extremely inefficient. It also is conceptually wrong, the logic tied
to the C++ definition of standard-layout classes should be in
CXXRecordDecl, not RecordType.
2) To address the performance problems with #1, a cache bit was added to
CXXRecordDecl, and at the completion of every C++ class, the
RecordType was queried to determine if it was a standard layout
class, and that state was cached. Two things went very very wrong
with this. First, the caching version of the query *was never
called*. Even within the recursive steps of the walk over all fields
and bases the caching variant was not called, making each query
a full *recursive* walk. Second, despite the cache not being used, it
was computed for every class declared, even when the trait was never
used in the program. This probably significantly regressed compile
time performance for edge-case files.
3) An ASTContext was required merely to query the type trait because
querying it performed the actual computations.
4) The caching bit wasn't managed correctly (uninitialized).
The new implementation follows the system for all the other traits on
C++ classes by encoding all the state needed in the definition data and
building up the trait incrementally as each base and member are added to
the definition of the class.
The idiosyncracies of the specification of standard-layout classes
requires more state than I would like; currently 5 bits. I could
eliminate one of the bits easily at the expense of both clarity and
resilience of the code. I might be able to eliminate one of the other
bits by computing its state in terms of other state bits in the
definition. I've already done that in one place where there was a fairly
simple way to achieve it.
It's possible some of the bits could be moved out of the definition data
and into some other structure which isn't serialized if the serialized
bloat is a problem. That would preclude serialization of a partial class
declaration, but that's likely already precluded.
Comments on any of these issues welcome.
llvm-svn: 130601
definition of POD. Specifically, this allows certain non-aggregate
types due to their data members being private.
The representation of C++11 POD testing is pretty gross. Any suggestions
for improvements there are welcome. Especially the name
'isCXX11PODType()' seems truly unfortunate.
llvm-svn: 130492
Teaches isLiteralType and isTrivialType to behave plausibly and most
importantly not crash on normal RecordDecls.
Sadly I have no real way to test this. I stumbled onto it by
mis-implementing a warning.
llvm-svn: 130483
Patch authored by John Wiegley.
These are array type traits used for parsing code that employs certain
features of the Embarcadero C++ compiler: __array_rank(T) and
__array_extent(T, Dim).
llvm-svn: 130351
Patch authored by John Wiegley.
These type traits are used for parsing code that employs certain features of
the Embarcadero C++ compiler. Several of these constructs are also desired by
libc++, according to its project pages (such as __is_standard_layout).
llvm-svn: 130342
The size of the array may not be aligned according to alignment of its elements if an alignment attribute is
specified in a typedef. Fixes rdar://8665729 & http://llvm.org/PR5637.
llvm-svn: 130242
member function, i.e. something of the form 'x.f' where 'f' is a non-static
member function. Diagnose this in the general case. Some of the new diagnostics
are probably worse than the old ones, but we now get this right much more
universally, and there's certainly room for improvement in the diagnostics.
llvm-svn: 130239
Patch authored by David Abrahams.
These two expression traits (__is_lvalue_expr, __is_rvalue_expr) are used for
parsing code that employs certain features of the Embarcadero C++ compiler.
llvm-svn: 130122
I've sent off an email requesting clarification on a few things that
I wasn't sure how to handle.
This also necessitated making prefixes and unresolved-prefixes get
mangled separately.
llvm-svn: 130083
APInt::toString doesn't do those, but it's easy to postprocess that output,
and that's probably better than adding another knob to that method.
llvm-svn: 130081
operators in C++ record declarations.
This patch starts off by updating a bunch of the standard citations to
refer to the draft 0x standard so that the semantics intended for move
varianst is clear. Where necessary these are duplicated so they'll be
available in doxygen.
It adds bit fields to keep track of the state for the move constructs,
and updates all the code necessary to track this state (I think) as
members are declared for a class. It also wires the state into the
various trait-like accessors in the AST's API, and tests that the type
trait expressions now behave correctly in the presence of move
constructors and move assignment operators.
This isn't complete yet due to these glaring FIXMEs:
1) No synthesis of implicit move constructors or assignment operators.
2) I don't think we correctly enforce the new logic for both copy and
move trivial checks: that the *selected* copy/move
constructor/operator is trivial. Currently this requires *all* of them
to be trivial.
3) Some of the trait logic needs to be folded into the fine-grained
trivial bits to more closely match the wording of the standard. For
example, many of the places we currently set a bit to track POD-ness
could be removed by querying other more fine grained traits on
demand.
llvm-svn: 130076
This introduces a few APIs on the AST to bundle up the standard-based
logic so that programmatic clients have access to exactly the same
behavior.
There is only one serious FIXME here: checking for non-trivial move
constructors and move assignment operators. Those bits need to be added
to the declaration and accessors provided.
This implementation should be enough for the uses of __is_trivial in
libstdc++ 4.6's C++98 library implementation.
Ideas for more thorough test cases or any edge cases missing would be
appreciated. =D
llvm-svn: 130057
double data[20000000] = {0};
we would blow out the memory by creating 20M Exprs to fill out the initializer.
To fix this, if the initializer list initializes an array with more elements than
there are initializers in the list, have InitListExpr store a single 'ArrayFiller' expression
that specifies an expression to be used for value initialization of the rest of the elements.
Fixes rdar://9275920.
llvm-svn: 129896
alignment, which causes traps further down the line. Fixes
<rdar://problem/9109755>, which contains a test case far too large to
commit :(
llvm-svn: 129861
out-of-line destructors can result in the addition of redundant
destructors to a class. It's not harmful to the AST. Fixes
<rdar://problem/9158632>.
llvm-svn: 129860
gcc's unused warnings which don't get emitted if the function is referenced even in an unevaluated context
(e.g. in templates, sizeof, etc.). Also, saying that a function is 'unused' because it won't get codegen'ed
is somewhat misleading.
- Don't emit 'unused' warnings for functions that are referenced in any part of the user's code.
- A warning that an internal function/variable won't get emitted is useful though, so introduce
-Wunneeded-internal-declaration which will warn if a function/variable with internal linkage is not
"needed" ('used' from the codegen perspective), e.g:
static void foo() { }
template <int>
void bar() {
foo();
}
test.cpp:1:13: warning: function 'foo' is not needed and will not be emitted
static void foo() { }
^
Addresses rdar://8733476.
llvm-svn: 129794
CL_AddressableVoid is the expression classification used for void
expressions whose address can be taken, i.e. the result of [], *
or void variable references in C, as opposed to things like the
result of a void function call.
llvm-svn: 129783
AAPCS+VFP), similar to fastcall / stdcall / whatevercall seen on x86.
In particular, all library functions should always be AAPCS regardless of floating point ABI used.
llvm-svn: 129534
for __unknown_anytype resolution to destructively modify the AST. So that's
what it does now, which significantly simplifies some of the implementation.
Normal member calls work pretty cleanly now, and I added support for
propagating unknown-ness through &.
llvm-svn: 129331
represents a dynamic cast where we know that the result is always null.
For example:
struct A {
virtual ~A();
};
struct B final : A { };
struct C { };
bool f(B* b) {
return dynamic_cast<C*>(b);
}
llvm-svn: 129256
The idea is that you can create a VarDecl with an unknown type, or a
FunctionDecl with an unknown return type, and it will still be valid to
access that object as long as you explicitly cast it at every use. I'm
still going back and forth about how I want to test this effectively, but
I wanted to go ahead and provide a skeletal implementation for the LLDB
folks' benefit and because it also improves some diagnostic goodness for
placeholder expressions.
llvm-svn: 129065
a couple of operator overloads which form interesting expressions in the
AST.
I added test cases for both bugs with the c-index-test's token
annotation feature. Also, thanks to John McCall for confirming that this
is the correct solution.
llvm-svn: 128768
from how we process ordinary function calls, had a tremendous about of redundancy, and relied
strictly on inlining behavior (which was incomplete) to provide semantics instead of falling
back to the conservative analysis we use for C functions. This is a significant step into
making C++ analyzer support more useful.
llvm-svn: 128557
platform implies default visibility. To achieve these, refactor our
lookup of explicit visibility so that we search for both an explicit
VisibilityAttr and an appropriate AvailabilityAttr, favoring the
VisibilityAttr if it is present.
llvm-svn: 128336
which versions of an OS provide a certain facility. For example,
void foo()
__attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6)));
says that the function "foo" was introduced in 10.2, deprecated in
10.4, and completely obsoleted in 10.6. This attribute ties in with
the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that
we want to deploy back to Mac OS X 10.1). There are several concrete
behaviors that this attribute enables, as illustrated with the
function foo() above:
- If we choose a deployment target >= Mac OS X 10.4, uses of "foo"
will result in a deprecation warning, as if we had placed
attribute((deprecated)) on it (but with a better diagnostic)
- If we choose a deployment target >= Mac OS X 10.6, uses of "foo"
will result in an "unavailable" warning (in C)/error (in C++), as
if we had placed attribute((unavailable)) on it
- If we choose a deployment target prior to 10.2, foo() is
weak-imported (if it is a kind of entity that can be weak
imported), as if we had placed the weak_import attribute on it.
Naturally, there can be multiple availability attributes on a
declaration, for different platforms; only the current platform
matters when checking availability attributes.
The only platforms this attribute currently works for are "ios" and
"macosx", since we already have -mxxxx-version-min flags for them and we
have experience there with macro tricks translating down to the
deprecated/unavailable/weak_import attributes. The end goal is to open
this up to other platforms, and even extension to other "platforms"
that are really libraries (say, through a #pragma clang
define_system), but that hasn't yet been designed and we may want to
shake out more issues with this narrower problem first.
Addresses <rdar://problem/6690412>.
As a drive-by bug-fix, if an entity is both deprecated and
unavailable, we only emit the "unavailable" diagnostic.
llvm-svn: 128127
they don't collide with file-scope extern functions from the same
translation unit. This is basically a matter of applying the same
logic to FunctionDecls as we were previously applying to VarDecls.
llvm-svn: 128072
add support for the OpenCL __private, __local, __constant and
__global address spaces, as well as the __read_only, _read_write and
__write_only image access specifiers. Patch originally by ARM;
language-specific address space support by myself.
llvm-svn: 127915
Change the interface to expose the new information and deal with the enormous fallout.
Introduce the new ExceptionSpecificationType value EST_DynamicNone to more easily deal with empty throw specifications.
Update the tests for noexcept and fix the various bugs uncovered, such as lack of tentative parsing support.
llvm-svn: 127537
template (not a specialization!), use the "injected" function template
arguments, which correspond to the template parameters of the function
template. This is required when substituting into the default template
parameters of template template parameters within a function template.
Fixes PR9016.
llvm-svn: 127092
use the translation unit as its declaration context, then deserialize
the actual lexical and semantic DeclContexts after the template
parameter is complete. This avoids problems when the DeclContext
itself (e.g., a class template) is dependent on the template parameter
(e.g., for the injected-class-name).
llvm-svn: 127056
Allow remapping a file by specifying another filename whose contents should be loaded if the original
file gets loaded. This allows to override files without having to create & load buffers in advance.
llvm-svn: 127052
to cope with non-type templates by providing appropriate
errors. Previously, we would either assert, crash, or silently build a
dependent type when we shouldn't. Fixes PR9226.
llvm-svn: 127037
DeclContext once we've created it. This mirrors what we do for
function parameters, where the parameters start out with
translation-unit context and then are adopted by the appropriate
DeclContext when it is created. Also give template parameters public
access and make sure that they don't show up for the purposes of name
lookup.
Fixes PR9400, a regression introduced by r126920, which implemented
substitution of default template arguments provided in template
template parameters (C++ core issue 150).
How on earth could the DeclContext of a template parameter affect the
handling of default template arguments?
I'm so glad you asked! The link is
Sema::getTemplateInstantiationArgs(), which determines the outer
template argument lists that correspond to a given declaration. When
we're instantiating a default template argument for a template
template parameter within the body of a template definition (not it's
instantiation, per core issue 150), we weren't getting any outer
template arguments because the context of the template template
parameter was the translation unit. Now that the context of the
template template parameter is its owning template, we get the
template arguments from the injected-class-name of the owning
template, so substitution works as it should.
llvm-svn: 127004
computing for a nested decl with explicit visibility. This is all part
of the general philosophy of explicit visibility attributes, where
any information that was obviously available at the attribute site
should probably be ignored. Fixes PR9371.
llvm-svn: 126992
template arguments. I believe that this is the last place in the AST
where we were storing a source range for a nested-name-specifier
rather than a proper nested-name-specifier location structure. (Yay!)
There is still a lot of cleanup to do in the TreeTransform, which
doesn't take advantage of nested-name-specifiers with source-location
information everywhere it could.
llvm-svn: 126844
of an Objective-C method to be overridden on a case-by-case basis. This
is a higher-level tool than ns_returns_retained &c.; it lets users specify
that not only does a method have different retain/release semantics, but
that it semantically acts differently than one might assume from its name.
This in turn is quite useful to static analysis.
llvm-svn: 126839
conventional categories into Basic and AST. Update the self-init checker
to use this logic; CFRefCountChecker is complicated enough that I didn't
want to touch it.
llvm-svn: 126817
template specialization types. This also required some parser tweaks,
since we were losing track of the nested-name-specifier's source
location information in several places in the parser. Other notable
changes this required:
- Sema::ActOnTagTemplateIdType now type-checks and forms the
appropriate type nodes (+ source-location information) for an
elaborated-type-specifier ending in a template-id. Previously, we
used a combination of ActOnTemplateIdType and
ActOnTagTemplateIdType that resulted in an ElaboratedType wrapped
around a DependentTemplateSpecializationType, which duplicated the
keyword ("class", "struct", etc.) and nested-name-specifier
storage.
- Sema::ActOnTemplateIdType now gets a nested-name-specifier, which
it places into the returned type-source location information.
- Sema::ActOnDependentTag now creates types with source-location
information.
llvm-svn: 126808
template specialization types. There are still a few rough edges to
clean up with some of the parser actions dropping
nested-name-specifiers too early.
llvm-svn: 126776
nested-name-speciciers within elaborated type names, e.g.,
enum clang::NestedNameSpecifier::SpecifierKind
Fixes in this iteration include:
(1) Compute the type-source range properly for a dependent template
specialization type that starts with "template template-id ::", as
in a member access expression
dep->template f<T>::f()
This is a latent bug I triggered with this change (because now we're
checking the computed source ranges for dependent template
specialization types). But the real problem was...
(2) Make sure to set the qualifier range on a dependent template
specialization type appropriately. This will go away once we push
nested-name-specifier locations into dependent template
specialization types, but it was the source of the
valgrind errors on the buildbots.
llvm-svn: 126765
information for qualifier type names throughout the parser to address
several problems.
The commit message from r126737:
Push nested-name-specifier source location information into elaborated
name types, e.g., "enum clang::NestedNameSpecifier::SpecifierKind".
Aside from the normal changes, this also required some tweaks to the
parser. Essentially, when we're looking at a type name (via
getTypeName()) specifically for the purpose of creating an annotation
token, we pass down the flag that asks for full type-source location
information to be stored within the returned type. That way, we retain
source-location information involving nested-name-specifiers rather
than trying to reconstruct that information later, long after it's
been lost in the parser.
With this change, test/Index/recursive-cxx-member-calls.cpp is showing
much improved results again, since that code has lots of
nested-name-specifiers.
llvm-svn: 126748
name types, e.g., "enum clang::NestedNameSpecifier::SpecifierKind".
Aside from the normal changes, this also required some tweaks to the
parser. Essentially, when we're looking at a type name (via
getTypeName()) specifically for the purpose of creating an annotation
token, we pass down the flag that asks for full type-source location
information to be stored within the returned type. That way, we retain
source-location information involving nested-name-specifiers rather
than trying to reconstruct that information later, long after it's
been lost in the parser.
With this change, test/Index/recursive-cxx-member-calls.cpp is showing
much improved results again, since that code has lots of
nested-name-specifiers.
llvm-svn: 126737
DependentNameTypeLoc. Teach the recursive AST visitor and libclang how to
walk DependentNameTypeLoc nodes.
Also, teach libclang about TypedefDecl source ranges, so that we get
those. The massive churn in test/Index/recursive-cxx-member-calls.cpp
is a good thing: we're annotating a lot more of this test correctly
now.
llvm-svn: 126729
source-location information into a NestedNameSpecifierLocBuilder
class, which lives within the AST library and centralize all knowledge
of the format of nested-name-specifier location information here.
No functionality change.
llvm-svn: 126716
UnresolvedLookupExpr and UnresolvedMemberExpr.
Also, improve the computation that checks whether the base of a member
expression (either unresolved or dependent-scoped) is implicit. The
previous check didn't cover all of the cases we use in our
representation, which threw off source-location information for these
expressions (which, in turn, caused some breakage in libclang's token
annotation).
llvm-svn: 126681
CXXDependentScopeMemberExpr, and clean up instantiation of
nested-name-specifiers with dependent template specialization types in
the process.
llvm-svn: 126663
dependent template names. There is still a lot of redundant code in
TreeTransform to cope with TemplateSpecializationTypes, which I'll
remove in stages.
llvm-svn: 126656
* Add default implementations (no-op) for ExternalASTSource's pure virtual functions. There are valid use cases that can live with these defaults.
* Move ExternalASTSource's out of line implementations into separate source file.
* Whitespace, forward decl, #include cleanup.
llvm-svn: 126648
they are known to be exact multiples of the width of the char type. Add a
test case to CodeGen/union.c that would have caught the problem with the
previous attempt. No change in functionality intended.
llvm-svn: 126628
nested-name-specifier, e.g.,
T::template apply<U>::
represent the dependent template name specialization as a
DependentTemplateSpecializationType, rather than a
TemplateSpecializationType with a dependent TemplateName.
llvm-svn: 126593
This successfully performs constructor lookup and verifies that a
delegating initializer is the only initializer present.
This does not perform loop detection in the initialization, but it also
doesn't codegen delegating constructors at all, so this won't cause
runtime infinite loops yet.
llvm-svn: 126552
silliness, and actually use the existing facilities of raw_ostream to do
escaping.
This will also hopefully fix an assert when building with signed char
(MSVC I think).
llvm-svn: 126505
UnresolvedUsingValueDecl to use NestedNameSpecifierLoc rather than the
extremely-lossy NestedNameSpecifier/SourceRange pair it used to use,
improving source-location information.
Various infrastructure updates to support NestedNameSpecifierLoc:
- AST/PCH (de-)serialization
- Recursive AST visitor
- libclang traversal (including the first tests of this
functionality)
llvm-svn: 126459
I tried to add test cases for these, but I can't because variables
aren't warned on the way functions are and the codegen layer appears to
use different logic for determining that 'a' and 'g' in the test case
should receive C mangling. I've included the test so that if we ever
switch the codegen layer to use these functions, we won't regress due to
latent bugs.
llvm-svn: 126453
nested-name-specifiers throughout the parser, and provide a new class
(NestedNameSpecifierLoc) that contains a nested-name-specifier along
with its type-source information.
Right now, this information is completely useless, because we don't
actually store the source-location information anywhere in the
AST. Call this Step 1/N.
llvm-svn: 126391
way it keeps track of namespaces. Previously, we would map from the
namespace alias to its underlying namespace when building a
nested-name-specifier, losing source information in the process.
llvm-svn: 126358
with getter and setter methods in both bit units and CharUnits. This will help
simplify some of the unit mismatch in the parts of the code where sizes are
known to be exact multiples of the width of the char type.
Assertions in the getters help guard against accidentally converting to
CharUnits when sizes are not exact multiples of the char width.
llvm-svn: 126354
invocation function into the debug info. Rather than faking up a class,
which is tricky because of the custom layout we do, we just emit a struct
directly from the layout information we've already got.
Also, don't emit an unnecessarily parameter alloca for this "variable".
llvm-svn: 126255
When the mismatch is due to a larger input operand that is
a constant, truncate it down to the size of the output. This
allows us to accept some cases in the linux kernel and elsewhere.
Pedantically speaking, we generate different code than GCC, though
I can't imagine how it would matter:
Clang:
movb $-1, %al
frob %al
GCC:
movl $255, %eax
frob %al
llvm-svn: 126148
* Flag indicating 'we're parsing this auto typed variable's initializer' moved from VarDecl to Sema
* Temporary template parameter list for auto deduction is now allocated on the stack.
* Deduced 'auto' types are now uniqued.
llvm-svn: 126139
logic from CXXMemberCallExpr and by making it check for
CXXOperatorCallExpr in order to defer. This is not really an awesome solution,
but I don't have a better idea.
llvm-svn: 126114
lead to a serious slowdown (4%) on parsing of Cocoa.h. This memory
optimization should be revisited later, when we have time to look at
the generated code.
llvm-svn: 126033
without defining them. This should be an error, but I'm paranoid about
"uses" that end up not actually requiring a definition. I'll revisit later.
Also, teach IR generation to not set internal linkage on variable
declarations, just for safety's sake. Doing so produces an invalid module
if the variable is not ultimately defined.
Also, fix several places in the test suite where we were using internal
functions without definitions.
llvm-svn: 126016
that was ignored in a few places (most notably, code
completion). Introduce Selector::getNameForSlot() for the common case
where we only care about the name. Audit all uses of
getIdentifierInfoForSlot(), switching many over to getNameForSlot(),
fixing a few crashers.
Fixed <rdar://problem/8939352>, a code-completion crasher.
llvm-svn: 125977
bugs from other clients that don't expect to see a LabelDecl in a DeclStmt,
but if so they should be easy to fix.
This implements most of PR3429 and rdar://8287027
llvm-svn: 125817
making them be template instantiated in a more normal way and
make them handle attributes like other decls.
This fixes the used/unused label handling stuff, making it use
the same infrastructure as other decls.
llvm-svn: 125771
reducing the size of all declarations by one pointer. For a 64-bit
Clang parsing Cocoa.h, this saves ~630k of memory (about 3.5% of
ASTContext's memory usage for this header).
llvm-svn: 125756
class and to bind the shared value using OpaqueValueExpr. This fixes an
unnoticed problem with deserialization of these expressions where the
deserialized form would lose the vital pointer-equality trait; or rather,
it fixes it because this patch also does the right thing for deserializing
OVEs.
Change OVEs to not be a "temporary object" in the sense that copy elision is
permitted.
This new representation is not totally unawkward to work with, but I think
that's really part and parcel with the semantics we're modelling here. In
particular, it's much easier to fix things like the copy elision bug and to
make the CFG look right.
I've tried to update the analyzer to deal with this in at least some
obvious cases, and I think we get a much better CFG out, but the printing
of OpaqueValueExprs probably needs some work.
llvm-svn: 125744
LabelDecl and LabelStmt. There is a 1-1 correspondence between the
two, but this simplifies a bunch of code by itself. This is because
labels are the only place where we previously had references to random
other statements, causing grief for AST serialization and other stuff.
This does cause one regression (attr(unused) doesn't silence unused
label warnings) which I'll address next.
This does fix some minor bugs:
1. "The only valid attribute " diagnostic was capitalized.
2. Various diagnostics printed as ''labelname'' instead of 'labelname'
3. This reduces duplication of label checking between functions and blocks.
Review appreciated, particularly for the cindex and template bits.
llvm-svn: 125733
parameter type to see what's behind it, so that we don't end up
printing silly things like "float const *" when "const float *" would
make more sense. Also, replace the pile of "isa" tests with a simple
switch enumerating all of the cases, making a few more obvious cases
use prefix qualifiers.
llvm-svn: 125729
is unqualified but its initialized is qualified.
This is for c only and fixes the imm. problem.
c++ is more involved and is wip.
// rdar://8979379
llvm-svn: 125386
linkage into Decl.cpp. Disable this logic for extern "C" functions, because
the operative rule there is weaker. Fixes rdar://problem/8898466
llvm-svn: 125268
there were only three virtual methods of any significance.
The primary way to grab child iterators now is with
Stmt::child_range children();
Stmt::const_child_range children() const;
where a child_range is just a std::pair of iterators suitable for
being llvm::tie'd to some locals. I've left the old child_begin()
and child_end() accessors in place, but it's probably a substantial
penalty to grab the iterators individually now, since the
switch-based dispatch is kindof inherently slower than vtable
dispatch. Grabbing them together is probably a slight win over the
status quo, although of course we could've achieved that with vtables, too.
I also reclassified SwitchCase (correctly) as an abstract Stmt
class, which (as the first such class that wasn't an Expr subclass)
required some fiddling in a few places.
There are somewhat gross metaprogramming hooks in place to ensure
that new statements/expressions continue to implement
getSourceRange() and children(). I had to work around a recent clang
bug; dgregor actually fixed it already, but I didn't want to
introduce a selfhosting dependency on ToT.
llvm-svn: 125183
- BlockDeclRefExprs always store VarDecls
- BDREs no longer store copy expressions
- BlockDecls now store a list of captured variables, information about
how they're captured, and a copy expression if necessary
With that in hand, change IR generation to use the captures data in
blocks instead of walking the block independently.
Additionally, optimize block layout by emitting fields in descending
alignment order, with a heuristic for filling in words when alignment
of the end of the block header is insufficient for the most aligned
field.
llvm-svn: 125005
might be queried in places where we absolutely require a valid
location (e.g., for template instantiation). Fixes some major
brokenness in the use of __is_convertible_to.
llvm-svn: 124465
semantics after the C++0x is_convertible type trait. This
implementation is not 100% complete, because it allows access errors
to be hard errors (rather than just evaluating false).
Original patch by Steven Watanabe!
llvm-svn: 124425
deallocation function has a two-argument form. Store the result of this
check in new[] and delete[] nodes.
Fixes rdar://problem/8913519
llvm-svn: 124373
using rules that I just made up this morning. This encoding has now
been proposed to the Itanium C++ ABI group for inclusion, but of
course it's still possible that the mangling will change.
llvm-svn: 124296
- Add ref-qualifiers to the type system; they are part of the
canonical type. Print & profile ref-qualifiers
- Translate the ref-qualifier from the Declarator chunk for
functions to the function type.
- Diagnose mis-uses of ref-qualifiers w.r.t. static member
functions, free functions, constructors, destructors, etc.
- Add serialization and deserialization of ref-qualifiers.
llvm-svn: 124281
generate meaningful [*] template argument location information.
[*] Well, as meaningful as possible, given that this entire code path
is a hack for when we've lost type-source information.
llvm-svn: 124211