For "int i = NULL;" we would produce:
null.cpp:5:11: warning: implicit conversion of NULL constant to integer [-Wconversion]
int i = NULL;
~ ^~~~
null.cpp:1:14: note: expanded from macro 'NULL'
\#define NULL __null
^~~~~~
But we really shouldn't trace that macro expansion back into the header, yet we
still want macro back traces for code like this:
\#define FOO NULL
int i = FOO;
or
\#define FOO int i = NULL;
FOO
While providing appropriate tagging at different levels of the expansion, etc.
The included test case exercises these cases & does some basic validation (to
ensure we don't have macro expansion notes where we shouldn't, and do where we
should) - but doesn't go as far as to validate the source location/ranges
used in those notes and warnings.
llvm-svn: 152940
scoped enumeration members. Later uses of an enumeration temploid as a nested
name specifier should cause its instantiation. Plus some groundwork for
explicit specialization of member enumerations of class templates.
llvm-svn: 152750
- As with DiagnosticBuilder, it is very important that SemaDiagnosticBuilder be
completely inline to ensure that the compiler can rip it apart and sink it to
registers.
This is good for another 30k reduction in code size.
llvm-svn: 152708
The deferred lookup table building step couldn't accurately tell which Decls
should be included in the lookup table, and consequently built different tables
in some cases.
Fix this by removing lazy building of DeclContext name lookup tables. In
practice, the laziness was frequently not worthwhile in C++, because we
performed lookup into most DeclContexts. In C, it had a bit more value,
since there is no qualified lookup.
In the place of lazy lookup table building, we simply don't build lookup tables
for function DeclContexts at all. Such name lookup tables are not useful, since
they don't capture the scoping information required to correctly perform name
lookup in a function scope.
The resulting performance delta is within the noise on my testing, but appears
to be a very slight win for C++ and a very slight loss for C. The C performance
can probably be recovered (if it is a measurable problem) by avoiding building
the lookup table for the translation unit.
llvm-svn: 152608
ObjCInterfaceDecl::getReferencedProtocols(), because the iterators are safe to use
even if the caller did not check that the interface is a definition.
llvm-svn: 152597
the diagnostic for assigning to a copied block capture. This has
the pleasant side-effect of letting us special-case the diagnostic
for assigning to a copied lambda capture as well, without introducing
a new non-modifiable enumerator for it.
llvm-svn: 152593
functions that includes an explicit template argument list, perform
an inner deduction against each of the function templates in that list
and, if successful, use the result of that deduction for the outer
template argument deduction. Fixes PR11713.
llvm-svn: 152575
serialized
-Don't add methods of invalid objc containers to the global method pool.
This protects us from trying to serialize a method whose container was not
serialized.
Part of rdar://11007039.
llvm-svn: 152566
being defined here: [] () -> struct S {} does not define struct S.
In passing, implement DR1318 (syntactic disambiguation of 'final').
llvm-svn: 152551
structural comparison of non-dependent types. Otherwise, we end up
rejecting cases where the non-dependent types don't match due to
qualifiers in, e.g., a pointee type. Fixes PR12132.
llvm-svn: 152529
access expression is the start of a template-id, ignore function
templates found in the context of the entire postfix-expression. Fixes
PR11856.
llvm-svn: 152520
track whether the referenced declaration comes from an enclosing
local context. I'm amenable to suggestions about the exact meaning
of this bit.
llvm-svn: 152491
enum is scoped or not, which is not relevant here. Instead, phrase the loop in
the same terms that the standard uses, instead of this awkward set of
conditions that is *nearly* equal.
llvm-svn: 152489
When an error made a record member invalid, the record would stay as "isBeingDefined" and
not "completeDefinition". Even easily recoverable errors ended up propagating records in
such "beingDefined" state, for example:
struct A {
~A() const; // expected-error {{'const' qualifier is not allowed on a destructor}}
};
struct B : A {}; // A & B would stay as "not complete definition" and "being defined".
This weird state was impending lookups in the records and hitting assertion in the ASTWriter.
Part of rdar://11007039
llvm-svn: 152432
- getSourceRange().getBegin() is about as awesome a pattern as .copy().size().
I already killed the hot paths so this doesn't seem to impact performance on my
tests-of-the-day, but it is a much more sensible (and shorter) pattern.
llvm-svn: 152419
This renames the -Wformat-non-standard flag to -Wformat-non-iso,
rewords the current warnings a bit (pointing out that a format string
is not supported by ISO C rather than being "non standard"),
and adds a warning about positional arguments.
llvm-svn: 152403
- This function is not at all free; pass it around along some hot paths instead
of recomputing it deep inside various VarDecl methods.
llvm-svn: 152363
starting with an underscore is ill-formed.
Since this rule rejects programs that were using <inttypes.h>'s macros, recover
from this error by treating the ud-suffix as a separate preprocessing-token,
with a DefaultError ExtWarn. The approach of treating such cases as two tokens
is under discussion for standardization, but is in any case a conforming
extension and allows existing codebases to keep building while the committee
makes up its mind.
Reword the warning on the definition of literal operators not starting with
underscores (which are, strangely, legal) to more explicitly state that such
operators can't be called by literals. Remove the special-case diagnostic for
hexfloats, since it was both triggering in the wrong cases and incorrect.
llvm-svn: 152287
analysis to make the AST representation testable. They are represented by a
new UserDefinedLiteral AST node, which is a sugared CallExpr. All semantic
properties, including full CodeGen support, are achieved for free by this
representation.
UserDefinedLiterals can never be dependent, so no custom instantiation
behavior is required. They are mangled as if they were direct calls to the
underlying literal operator. This matches g++'s apparent behavior (but not its
actual mangling, which is broken for literal-operator-ids).
User-defined *string* literals are now fully-operational, but the semantic
analysis is quite hacky and needs more work. No other forms of user-defined
literal are created yet, but the AST support for them is present.
This patch committed after midnight because we had already hit the quota for
new kinds of literal yesterday.
llvm-svn: 152211
This submission improves Clang sema handling by using Clang tablegen
to generate common boilerplate code. As a start, it implements AttributeList
enumerator generation and case statements for AttributeList::getKind.
A new field "SemaHandler" is introduced in Attr.td and by default set to 1
as most of attributes in Attr.td have semantic checking in Sema. For a small
number of attributes that don't appear in Sema, the value is set to 0.
Also there are a small number of attributes that only appear in Sema but not
in Attr.td. Currently these attributes are still hardcoded in Sema AttributeList.
Reviewed by Delesley Hutchins.
llvm-svn: 152169
blocks with unknown return types. This allows
LLDB to call blocks even when their return types
aren't provided in the debug information.
llvm-svn: 152147
NSNumber, and boolean literals. This includes both Sema and Codegen support.
Included is also support for new Objective-C container subscripting.
My apologies for the large patch. It was very difficult to break apart.
The patch introduces changes to the driver as well to cause clang to link
in additional runtime support when needed to support the new language features.
Docs are forthcoming to document the implementation and behavior of these features.
llvm-svn: 152137
In the included testcase, soma thinks that we already have a definition after we
see the out of line decl. Codegen puts it in a deferred list, to be output if
a use is seen. This would break when we saw an explicit template instantiation
definition, since codegen would not be notified.
This patch adds a method to the consumer interface so that soma can notify
codegen that this decl is now required.
llvm-svn: 152024
early, since their values can be used in constant expressions in C++11. For
odr-use checking, the opposite change is required, since references are
odr-used whether or not they satisfy the requirements for appearing in a
constant expression.
llvm-svn: 151881
But it is in the underlying c part of clang. clang crashes
in IRGen when passing an incomplete type argument to
variadic function (instead of diagnosing the bug).
// rdar://10961370
llvm-svn: 151862
Note that this transformation has a substantial semantic effect outside of ARC: it gives the converted lambda lifetime semantics similar to a block literal. With ARC, the effect is much less obvious because the lifetime of blocks is already managed.
llvm-svn: 151797
The bug that was caught by Apple's internal buildbots was valid and also showed another bug in my implementation.
These are now fixed, with regression tests added to catch them both (not Darwin-specific).
Original log:
====================
Revert r151638 because it causes assertion hit on PCH creation for Cocoa.h
Original log:
---------------------
Correctly track tags and enum members defined in the prototype of a function, and ensure they are properly scoped.
This fixes code such as:
enum e {x, y};
int f(enum {y, x} n) {
return 0;
}
This finally fixes PR5464 and PR5477.
---------------------
I also reverted r151641 which was enhancement on top of r151638.
====================
llvm-svn: 151712
of the SmallPtrSet way up to avoid commonly reallocating the buffer size.
- I didn't see a good argument against it, so I bumped the limit to cover the
max size we see during parsing Cocoa.h.
llvm-svn: 151698
Original log:
---------------------
Correctly track tags and enum members defined in the prototype of a function, and ensure they are properly scoped.
This fixes code such as:
enum e {x, y};
int f(enum {y, x} n) {
return 0;
}
This finally fixes PR5464 and PR5477.
---------------------
I also reverted r151641 which was enhancement on top of r151638.
llvm-svn: 151667
make sure to record the source location of the ivar name.
[libclang] When indexing @synthesized objc methods, report the @implementation
as the lexical container.
Fixes rdar://10905472
llvm-svn: 151635
- variant members with nontrivial destructors make the containing class's
destructor deleted
- check for a virtual destructor after checking for overridden methods in the
base class(es)
- check for an inaccessible operator delete for a class with a virtual
destructor.
Do not try to call an anonymous union field's destructor from the destructor of
the containing class.
llvm-svn: 151483
trivial if the implicit declaration would be. Don't forget to set the Trivial
flag on the special member as well as on the class. It doesn't seem ideal that
we have two separate mechanisms for storing this information, but this patch
does not attempt to address that.
This leaves us in an interesting position where the has_trivial_X trait for a
class says 'yes' for a deleted but trivial X, but is_trivially_Xable says 'no'.
This seems to be what the standard requires.
llvm-svn: 151465
associated classes, since it can find friend functions declared within them,
but overload resolution does not otherwise require argument types to be
complete.
llvm-svn: 151434
explicit conversion functions to initialize the argument to a
copy/move constructor that itself is the subject of direct
initialization. Since we don't have that much context in overload
resolution, we end up threading more flags :(.
Fixes <rdar://problem/10903741> / PR10456.
llvm-svn: 151409
A defaulted default constructor for a class X is defined as deleted if [...]
- X is a union and all of its variant members are of const-qualified type.
A pedantic reading therefore says that
union X { };
has a deleted default constructor, which is both silly and almost
certainly unintended. Pretend as if this this read
- X is a union with one or more variant members, and all of its
variant members are of const-qualified type.
llvm-svn: 151394
- Make sure that the block expression is instantiation-dependent if the
block is in a dependent context
- Make sure that the C++ 'this' expression gets captured even if we
don't rebuild the AST node during template instantiation. This would
also have manifested as a bug for lambdas.
Fixes <rdar://problem/10832617>.
llvm-svn: 151372
that provides the behavior of the C++11 library trait
std::is_trivially_constructible<T, Args...>, which can't be
implemented purely as a library.
Since __is_trivially_constructible can have zero or more arguments, I
needed to add Yet Another Type Trait Expression Class, this one
handling arbitrary arguments. The next step will be to migrate
UnaryTypeTrait and BinaryTypeTrait over to this new, more general
TypeTrait class.
Fixes the Clang side of <rdar://problem/10895483> / PR12038.
llvm-svn: 151352
* Handle some situations where we should never make a decl more visible,
even when merging in an explicit visibility.
* Handle attributes in members of classes that are explicitly specialized.
Thanks Nico for the report and testing, Eric for the initial review, and dgregor
for the awesome test27 :-)
llvm-svn: 151236
lambda closure type's function pointer conversion over user-defined
conversion via a lambda closure type's block pointer conversion,
always. This is a preference for more-standard code (since blocks
are an extension) and a nod to efficiency, since function pointers
don't require any memory management. Fixes PR12063.
llvm-svn: 151170
This adds the -Wformat-non-standard flag (off by default,
enabled by -pedantic), which warns about non-standard
things in format strings (such as the 'q' length modifier,
the 'S' conversion specifier, etc.)
llvm-svn: 151154
block pointer that returns a block literal which captures (by copy)
the lambda closure itself. Some aspects of the block literal are left
unspecified, namely the capture variable (which doesn't actually
exist) and the body (which will be filled in by IRgen because it can't
be written as an AST).
Because we're switching to this model, this patch also eliminates
tracking the copy-initialization expression for the block capture of
the conversion function, since that information is now embedded in the
synthesized block literal. -1 side tables FTW.
llvm-svn: 151131
function call (or a comma expression with a function call on its right-hand
side), possibly parenthesized, then the return type is not required to be
complete and a temporary is not bound. Other subexpressions inside a decltype
expression do not get this treatment.
This is implemented by deferring the relevant checks for all calls immediately
within a decltype expression, then, when the expression is fully-parsed,
checking the relevant constraints and stripping off any top-level temporary
binding.
Deferring the completion of the return type exposed a bug in overload
resolution where completion of the argument types was not attempted, which
is also fixed by this change.
llvm-svn: 151117
expression after we've finished the function body of the corresponding
function call operator. Otherwise, ActOnFinishFunctionBody() will see
the (unfinished) evaluation context of the lambda expression
itself. Fixes PR12031.
llvm-svn: 151082
arguments. There are two aspects to this:
- Make sure that when marking the declarations referenced in a
default argument, we don't try to mark local variables, both because
it's a waste of time and because the semantics are wrong: we're not
in a place where we could capture these variables again even if it
did make sense.
- When a lambda expression occurs in a default argument of a
function template, make sure that the corresponding closure type is
considered dependent, so that it will get properly instantiated. The
second bit is a bit of a hack; to fix it properly, we may have to
rearchitect our handling of default arguments, parsing them only
after creating the function definition. However, I'd like to
separate that work from the lambdas work.
llvm-svn: 151076
stable mangling, since these lambdas can end up in multiple
translation units. Sema is responsible for deciding when this is the
case, because it's already responsible for choosing the mangling
number.
llvm-svn: 151029
default arguments of function parameters. This simple-sounding task is
complicated greatly by two issues:
(1) Default arguments aren't actually a real context, so we need to
maintain extra state within lambda expressions to track when a
lambda was actually in a default argument.
(2) At the time that we parse a default argument, the FunctionDecl
doesn't exist yet, so lambda closure types end up in the enclosing
context. It's not clear that we ever want to change that, so instead
we introduce the notion of the "effective" context of a declaration
for the purposes of name mangling.
llvm-svn: 151011
explicit specialization of a function template, mark the instantiation as
constexpr if the specialization is, rather than requiring them to match.
llvm-svn: 151001
and introducing the lambda closure type and its function call
operator. Previously, we assumed that the lambda closure type would
land directly in the current context, and not some parent context (as
occurs with linkage specifications). Thanks to Richard for the test case.
llvm-svn: 150987
name mangling in the Itanium C++ ABI for lambda expressions is so
dependent on context, we encode the number used to encode each lambda
as part of the lambda closure type, and maintain this value within
Sema.
Note that there are a several pieces still missing:
- We still get the linkage of lambda expressions wrong
- We aren't properly numbering or mangling lambda expressions that
occur in default function arguments or in data member initializers.
- We aren't (de-)serializing the lambda numbering tables
llvm-svn: 150982
eliminating a bunch of redundant code and properly modeling how the
captures of outside blocks/lambdas affect the types seen by inner
captures.
This new scheme makes two passes over the capturing scope stack. The
first pass goes up the stack (from innermost to outermost), assessing
whether the capture looks feasible and stopping when it either hits
the scope where the variable is declared or when it finds an existing
capture. The second pass then walks down the stack (from outermost to
innermost), capturing the variable at each step and updating the
captured type and the type that an expression referring to that
captured variable would see. It also checks type-specific
restrictions, such as the inability to capture an array within a
block. Note that only the first odr-use of each
variable needs to do the full walk; subsequent uses will find the
capture immediately, so multiple walks need not occur.
The same routine that builds the captures can also compute the type of
the captures without signaling errors and without actually performing
the capture. This functionality is used to determine the type of
declaration references as well as implementing the weird decltype((x))
rule within lambda expressions.
The capture code now explicitly takes sides in the debate over C++
core issue 1249, which concerns the type of captures within nested
lambdas. We opt to use the more permissive, more useful definition
implemented by GCC rather than the one implemented by EDG.
llvm-svn: 150875
We had two separate issues here: firstly, varions functions were assuming that
they did not need to perform semantic checks on trivial destructors (this is
not true in C++11, where a trivial destructor can nonetheless be private or
deleted), and a bunch of DiagnoseUseOfDecl calls were missing for uses of
destructors.
llvm-svn: 150866
decent diagnostics. Finish the work of combining all the 'ShouldDelete'
functions into one. In unifying the code, fix a minor bug where an anonymous
union with a deleted default constructor as a member of a union wasn't being
considered as making the outer union's default constructor deleted.
llvm-svn: 150862
We now generate temporary arrays to back std::initializer_list objects
initialized with braces. The initializer_list is then made to point at
the array. We support both ptr+size and start+end forms, although
the latter is untested.
Array lifetime is correct for temporary std::initializer_lists (e.g.
call arguments) and local variables. It is untested for new expressions
and member initializers.
Things left to do:
Massively increase the amount of testing. I need to write tests for
start+end init lists, temporary objects created as a side effect of
initializing init list objects, new expressions, member initialization,
creation of temporary objects (e.g. std::vector) for initializer lists,
and probably more.
Get lifetime "right" for member initializers and new expressions. Not
that either are very useful.
Implement list-initialization of array new expressions.
llvm-svn: 150803
conversion to function pointer. Rather than having IRgen synthesize
the body of this function, we instead introduce a static member
function "__invoke" with the same signature as the lambda's
operator() in the AST. Sema then generates a body for the conversion
to function pointer which simply returns the address of __invoke. This
approach makes it easier to evaluate a call to the conversion function
as a constant, makes the linkage of the __invoke function follow the
normal rules for member functions, and may make life easier down the
road if we ever want to constexpr'ify some of lambdas.
Note that IR generation is responsible for filling in the body of
__invoke (Sema just adds a dummy body), because the body can't
generally be expressed in C++.
Eli, please review!
llvm-svn: 150783
loop and switch statements, by teaching Scope that a function scope never has
a continue/break parent for the purposes of control flow. Remove the hack in
block and lambda expressions which worked around this by pretending that such
expressions were continue/break scopes.
Remove Scope::ControlParent, since it's unused.
In passing, teach default statements to recover properly from a missing ';', and
add a fixit for same to both default and case labels (the latter already
recovered correctly).
llvm-svn: 150776
Don't try to typo-correct a method redeclaration to declarations not in
the current record as it could lead to infinite recursion if CorrectTypo
finds more than one correction candidate in a parent record.
llvm-svn: 150735
even if they are not within a function scope. Teach template
instantiation to treat them as such, and make sure that we have a
local instantiation scope when instantiating default arguments and
static data members.
llvm-svn: 150725
Also fix the fixit (oh the irony) when it uses CFBridgingRetain/CFBridgingRelease;
they are supposed to be calls with the casted expression as parameter, they should
not be inserted into the cast like the __bridge keywords.
llvm-svn: 150705
Holding the constructor directly makes no sense when list-initialized arrays come into play. The constructor is now held in a CXXConstructExpr, if construction is what is done. The new design can also distinguish properly between list-initialization and direct-initialization, as well as implicit default-initialization constructors and explicit value-initialization constructors. Finally, doing it this way removes redundance from the AST because CXXNewExpr doesn't try to handle both the allocation and the initialization responsibilities.
This breaks the static analysis of new expressions. I've filed PR12014 to track this.
llvm-svn: 150682
pointers and block pointers). We use dummy definitions to keep the
invariant that an implicit, used definition has a body; IR generation
will substitute the actual contents, since they can't be represented
as C++.
For the block pointer case, compute the copy-initialization needed to
capture the lambda object in the block, which IR generation will need
later.
llvm-svn: 150645
Snooping in other namespaces when the identifier being corrected is
already qualified (i.e. a valid CXXScopeSpec is passed to CorrectTypo)
and ranking synthesized namespace qualifiers relative to the existing
qualifier is now performed. Support for disambiguating the string
representation of synthesized namespace qualifers has also been added
(the change to test/Parser/cxx-using-directive.cpp is an example of an
ambiguous relative qualifier).
llvm-svn: 150622
function, provide a specialized diagnostic that indicates the kind of
special member function (default constructor, copy assignment
operator, etc.) and that it was implicitly deleted. Add a hook where
we can provide more detailed information later.
llvm-svn: 150611
This commit makes PrintfSpecifier::fixType() and ScanfSpecifier::fixType()
only fix a conversion specification enough that Clang wouldn't warn about it,
as opposed to always changing it to use the "canonical" conversion specifier.
(PR11975)
This preserves the user's choice of conversion specifier in cases like:
printf("%a", (long double)1);
where we previously suggested "%Lf", we now suggest "%La"
printf("%x", (long)1);
where we previously suggested "%ld", we now suggest "%lx".
llvm-svn: 150578
expression is referenced, defined, then referenced again, make sure we
instantiate it the second time it's referenced. This is the static data member
analogue of r150518.
llvm-svn: 150560
is general goodness because representations of member pointers are
not always equivalent across member pointer types on all ABIs
(even though this isn't really standard-endorsed).
Take advantage of the new information to teach IR-generation how
to do these reinterprets in constant initializers. Make sure this
works when intermingled with hierarchy conversions (although
this is not part of our motivating use case). Doing this in the
constant-evaluator would probably have been better, but that would
require a *lot* of extra structure in the representation of
constant member pointers: you'd really have to track an arbitrary
chain of hierarchy conversions and reinterpretations in order to
get this right. Ultimately, this seems less complex. I also
wasn't quite sure how to extend the constant evaluator to handle
foldings that we don't actually want to treat as extended
constant expressions.
llvm-svn: 150551
lambda expressions. Because these issue was pulled back from Ready
status at the Kona meeting, we still emit an ExtWarn when using
default arguments for lambda expressions.
llvm-svn: 150519
template is defined, and then the specialization is referenced again, don't
forget to instantiate the template on the second reference. Use the source
location of the first reference as the point of instantiation, though.
llvm-svn: 150518
* if, switch, range-based for: warn if semicolon is on the same line.
* for, while: warn if semicolon is on the same line and either next
statement is compound statement or next statement has more
indentation.
Replacing the semicolon with {} or moving the semicolon to the next
line will always silence the warning.
Tests from SemaCXX/if-empty-body.cpp merged into SemaCXX/warn-empty-body.cpp.
llvm-svn: 150515
used to construct an object of union type with a deleted default constructor
(plus fixes for some related value-initialization corner cases).
llvm-svn: 150502
Replace the simple Levenshtein edit distance for typo correction
candidates--and the hacky way adding namespace qualifiers would affect
the edit distance--with a synthetic "edit distance" comprised of several
factors and their relative weights. This also allows the typo correction
callback object to convey more information about the viability of a
correction candidate than simply viable or not viable.
llvm-svn: 150495
the instantiation of a constexpr function temploid is now always constexpr, a
defaulted constexpr function temploid is often ill-formed by the rule in
[dcl.fct.def.default]p2 that an explicitly-defaulted constexpr function must
have a constexpr implicit definition. To avoid making loads of completely
reasonable code ill-formed, do not apply that rule to templates.
llvm-svn: 150453
expression with the original call operator, so that we don't try to
separately instantiate the call operator. Test and tweak a few more
bits for template instantiation of lambda expressions.
llvm-svn: 150440
constructor, and that constructor is used to initialize an object of static
storage duration such that all members and bases are initialized by constant
expressions, constant initialization is performed. In this case, the object
can still have a non-trivial destructor, and if it does, we must emit a dynamic
initializer which performs no initialization and instead simply registers that
destructor.
llvm-svn: 150419
expressions. This is mostly a simple refact, splitting the main "start
a lambda expression" function into smaller chunks that are driven
either from the parser (Sema::ActOnLambdaExpr) or during AST
transformation (TreeTransform::TransformLambdaExpr). A few minor
interesting points:
- Added new entry points for TreeTransform, so that we can
explicitly establish the link between the lambda closure type in the
template and the lambda closure type in the instantiation.
- Added a bit into LambdaExpr specifying whether it had an explicit
result type or not. We should have had this anyway.
This code is 'lightly' tested.
llvm-svn: 150417
LambdaExpr over to the CXXRecordDecl. This allows us to eliminate the
back-link from the closure type to the LambdaExpr, which will simplify
and lazify AST deserialization.
llvm-svn: 150393
1358, 1360, 1452 and 1453.
- Instantiations of constexpr functions are always constexpr. This removes the
need for separate declaration/definition checking, which is now gone.
- This makes it possible for a constexpr function to be virtual, if they are
only dependently virtual. Virtual calls to such functions are not constant
expressions.
- Likewise, it's now possible for a literal type to have virtual base classes.
A constexpr constructor for such a type cannot actually produce a constant
expression, though, so add a special-case diagnostic for a constructor call
to such a type rather than trying to evaluate it.
- Classes with trivial default constructors (for which value initialization can
produce a fully-initialized value) are considered literal types.
- Classes with volatile members are not literal types.
- constexpr constructors can be members of non-literal types. We do not yet use
static initialization for global objects constructed in this way.
llvm-svn: 150359
[dcl.type.simple]p4, which treats all xvalues as returning T&&. We had
previously implemented a pre-standard variant of decltype() that
doesn't cope with, e.g., static_ast<T&&>(e) very well.
llvm-svn: 150348
id-expression 'x' will compute the type based on the assumption that
'x' will be captured, even if it isn't captured, per C++11
[expr.prim.lambda]p18. There are two related refactors that go into
implementing this:
1) Split out the check that determines whether we should capture a
particular variable reference, along with the computation of the
type of the field, from the actual act of capturing the
variable.
2) Always compute the result of decltype() within Sema, rather than
AST, because the decltype() computation is now context-sensitive.
llvm-svn: 150347
instead of having a special-purpose function.
- ActOnCXXDirectInitializer, which was mostly duplication of
AddInitializerToDecl (leading e.g. to PR10620, which Eli fixed a few days
ago), is dropped completely.
- MultiInitializer, which was an ugly hack I added, is dropped again.
- We now have the infrastructure in place to distinguish between
int x = {1};
int x({1});
int x{1};
-- VarDecl now has getInitStyle(), which indicates which of the above was used.
-- CXXConstructExpr now has a flag to indicate that it represents list-
initialization, although this is not yet used.
- InstantiateInitializer was renamed to SubstInitializer and simplified.
- ActOnParenOrParenListExpr has been replaced by ActOnParenListExpr, which
always produces a ParenListExpr. Placed that so far failed to convert that
back to a ParenExpr containing comma operators have been fixed. I'm pretty
sure I could have made a crashing test case before this.
The end result is a (I hope) considerably cleaner design of initializers.
More importantly, the fact that I can now distinguish between the various
initialization kinds means that I can get the tricky generalized initializer
test cases Johannes Schaub supplied to work. (This is not yet done.)
This commit passed self-host, with the resulting compiler passing the tests. I
hope it doesn't break more complicated code. It's a pretty big change, but one
that I feel is necessary.
llvm-svn: 150318
cv-unqualified type. This is essential in order to allow move-only objects of
const-qualified types to be copy-initialized via a converting constructor.
llvm-svn: 150309
to the pattern template that it came from, otherwise we had this situation:
template <typename T1, typename T2>
struct S {
};
template <typename T>
struct S<T, int> {
};
void f() {
S<int, int> s; // location of declaration "S<int, int>" was of "S<T1, T2>" not "S<T, int>"
}
llvm-svn: 150290
default is '=', and reword the warning about explicitly capturing
'this' in such lambdas to indicate that only explicit capture is
banned.
Introduce Fix-Its for this and other "save the programmer from
themself" rules regarding what can be explicitly captured and what
must be implicitly captured.
llvm-svn: 150256
nested captures. We currently don't get odr-use correct in array
bounds, so that bit is commented out while we sort out what we need to
do.
llvm-svn: 150255
have finished parsing the body, so that name lookup will never find
anything within the closure type. Then, add this operator() and the
conversion function (if available) before completing the class.
llvm-svn: 150252
o Correct the handling of the restrictions on usage of cv-qualified and
ref-qualified function types.
o Fix a bug where such types were rejected in template type parameter default
arguments, due to such arguments not being treated as a template type arg
context.
o Remove the ExtWarn for usage of such types as template arguments; that was
a standard defect, not a GCC extension.
o Improve the wording and unify the code for diagnosing cv-qualifiers with the
code for diagnosing ref-qualifiers.
llvm-svn: 150244
to pretty-print such function types better, and to fix a case where we were not
instantiating templates in lexical order. In passing, move the Variadic bit from
Type's bitfields to FunctionProtoType to get the Type bitfields down to 32 bits.
Also ensure that we always substitute the return type of a function when
substituting explicitly-specified arguments, since that can cause us to bail
out with a SFINAE error before we hit a hard error in parameter substitution.
llvm-svn: 150241
has been declared in its primary class, superclass,
or in one of their protocols, no need to issue unimplemented method.
// rdar://10823023
llvm-svn: 150206
[expr.prim.lambda]p4, including the current suggested resolution of
core isue 975, which allows multiple return statements so long as the
types match. ExtWarn when user code is actually making use of this
extension.
llvm-svn: 150168
function call operator (to the lambda class). This allows us to IRgen
calls to simple (non-capturing) lambdas, e.g.,
[](int i, int j) -> int { return i + j; }(1, 2)
Eli will be providing test cases as he brings up more IRgen.
llvm-svn: 150166
empty union. This still rejects anonymous member structs or unions which only
contain such empty class types, pending standard wording defining exactly what
an empty class type is.
llvm-svn: 150157
- Complete the lambda class when we finish the lambda expression
(previously, it was left in the "being completed" state)
- Actually return the LambdaExpr object and bind to the resulting
temporary when needed.
- Detect when cleanups are needed while capturing a variable into a
lambda (e.g., due to default arguments in the copy constructor), and
make sure those cleanups apply for the whole of the lambda
expression.
llvm-svn: 150123
only add 'const' for variables captured by copy in potentially
evaluated expressions of non-mutable lambdas. (The "by copy" part was
missing).
llvm-svn: 150088
the sign bit doesn't have undefined behavior, but a signed left shift of a 1 bit
out of the sign bit still does. As promised to Howard :)
The suppression of the potential constant expression checking in system headers
is also removed, since the problem it was working around is gone.
llvm-svn: 150059
that is referencing the member function, so we can index the referenced function.
Fixes rdar://10762375&10324915 & http://llvm.org/PR11192
llvm-svn: 150033
a typedef of std::pair. This slightly improves type-safety, but mostly
makes code using it clearer to read as well as making it possible to add
methods to the type.
Add such a method for efficiently single-step desugaring a split type.
Add a method to single-step desugaring a locally-unqualified type.
Implement both the SplitQualType and QualType methods in terms of that.
Also, fix a typo ("ObjCGLifetime").
llvm-svn: 150028
This seems to negatively affect compile time onsome ObjC tests
(which use a lot of partial diagnostics I assume). I have to come
up with a way to keep them inline without including Diagnostic.h
everywhere. Now adding a new diagnostic requires a full rebuild
of e.g. the static analyzer which doesn't even use those diagnostics.
This reverts commit 6496bd10dc3a6d5e3266348f08b6e35f8184bc99.
This reverts commit 7af19b817ba964ac560b50c1ed6183235f699789.
This reverts commit fdd15602a42bbe26185978ef1e17019f6d969aa7.
This reverts commit 00bd44d5677783527d7517c1ffe45e4d75a0f56f.
This reverts commit ef9b60ffed980864a8db26ad30344be429e58ff5.
llvm-svn: 150006
Parsing of @implementations was based on modifying global state from
the parser; the logic for late parsing of methods was spread in multiple places
making it difficult to have a robust error recovery.
-it was difficult to ensure that we don't neglect parsing the lexed methods.
-it was difficult to setup the original objc container context for parsing the lexed methods
after completing ParseObjCAtImplementationDeclaration and returning to top level context.
Enhance parsing of @implementations by centralizing it in Parser::ParseObjCAtImplementationDeclaration().
ParseObjCAtImplementationDeclaration now returns only after an @implementation is fully parsed;
all the data and logic for late parsing of methods is now in one place.
This allows us to provide code-completion for late parsed methods with mis-matched braces.
rdar://10775381
llvm-svn: 149987
- Capturing variables by-reference and by-copy within a lambda
- The representation of lambda captures
- The creation of the non-static data members in the lambda class
that store the captured variables
- The initialization of the non-static data members from the
captured variables
- Pretty-printing lambda expressions
There are a number of FIXMEs, both explicit and implied, including:
- Creating a field for a capture of 'this'
- Improved diagnostics for initialization failures when capturing
variables by copy
- Dealing with temporaries created during said initialization
- Template instantiation
- AST (de-)serialization
- Binding and returning the lambda expression; turning it into a
proper temporary
- Lots and lots of semantic constraints
- Parameter pack captures
llvm-svn: 149977
MaxEditDistance was effectively unused as it being initialized to the max
unsigned valued but never updated. Removing it avoids conversion
headaches once the "edit distance" of a typo correction is a weighted
composite of several values instead of roughly the number of characters
changed; comparing the weighted composite value to the number of
characters in a typo would require some form of normalization to make it
comparable to the old, character-based notion of edit distance.
llvm-svn: 149953
The new info is propagated to TSTLoc on template instantiation, getting rid of 3 FIXMEs in TreeTransform.h and another one Parser.cpp.
Simplified code in TypeSpecLocFiller visitor methods for DTSTLoc and DependentNameTypeLoc by removing what now seems to be dead code (adding corresponding assertions).
llvm-svn: 149923
can't produce a constant expression is not ill-formed (so long as some
instantiation of that function can produce a constant expression).
llvm-svn: 149802
Fix all the files that depended on transitive includes of Diagnostic.h.
With this patch in place changing a diagnostic no longer requires a full rebuild of the StaticAnalyzer.
llvm-svn: 149781
value of class type, look for a unique conversion operator converting to
integral or unscoped enumeration type and use that. Implements [expr.const]p5.
Sema::VerifyIntegerConstantExpression now performs the conversion and returns
the converted result. Some important callers of Expr::isIntegralConstantExpr
have been switched over to using it (including all of those required for C++11
conformance); this switch brings a side-benefit of improved diagnostics and, in
several cases, simpler code. However, some language extensions and attributes
have not been moved across and will not perform implicit conversions on
constant expressions of literal class type where an ICE is required.
In passing, fix static_assert to perform a contextual conversion to bool on its
argument.
llvm-svn: 149776
array new expression. This lays some groundwork for the implicit conversion to
integral or unscoped enumeration which C++11 ICEs undergo.
llvm-svn: 149772
new, is well-formed with defined semantics of throwing (a type which can be
caught by a handler for) std::bad_array_new_length, unlike in C++98 where it is
somewhere nebulous between undefined behavior and ill-formed.
If the array size is an integral constant expression and satisfies one of these
criteria, we would previous the array new expression, but now in C++11 mode, we
merely issue a warning (the code is still rejected in C++98 mode, naturally).
We don't yet implement new C++11 semantics correctly (see PR11644), but we do
implement the overflow checking, and (for the default operator new) convert such
expressions to an exception, so accepting such code now does not seem especially
unsafe.
llvm-svn: 149767
want to provide "po"-like functionality which
treats the result of an expression implicitly as
"id" (if it is not otherwise known) and prints
it as an Objective-C object.
This has in the past been gated by the
"DebuggerSupport" language option, but that is
too general. Debuggers also provide other commands
like "print" that do not make any assumptions
about whether the object is an Objective-C object.
This patch makes the assumption conditional on a
new language option: DebuggerCastResultToId. I
have also made corresponding modifications to the
testsuite.
llvm-svn: 149735
The recent support for potential constant expressions exposed a bug in the
implementation of libstdc++4.6, where numeric_limits<int>::min() is defined
as (int)1 << 31, which isn't a constant expression. Disable the 'constexpr
function never produces a constant expression' error inside system headers
to compensate.
llvm-svn: 149729
template without a corresponding parameter pack, don't immediately
substitute the alias template. This is under discussion in the C++
committee, and may become ill-formed, but for now we match GCC.
llvm-svn: 149697
template. Such pack expansions can easily fail at template
instantiation time, if the expanded parameter packs are of the wrong
length. Fixes <rdar://problem/10040867>, PR9021, and the example that
came up today at Going Native.
llvm-svn: 149685
* When we detect that a CFG block has inconsistent lock sets, point the
diagnostic at the location where we found the inconsistency, and point a note
at somewhere the inconsistently-locked mutex was locked.
* Fix the wording of the normal (non-loop, non-end-of-function) case of this
diagnostic to not suggest that the mutex is going out of scope.
* Fix the diagnostic emission code to keep a warning and its note together when
sorting the diagnostics into source location order.
llvm-svn: 149669
a cast to the same type is allowed so long as it does not cast away constness.
Fix for PR11747. Patch by Aaron Ballman. Reviewed by Eli.
llvm-svn: 149664
argument in strncat.
The warning is ignored by default since it needs more qualification.
TODO: The warning message and the note are messy when
strncat is a builtin due to the macro expansion.
llvm-svn: 149524
cleans up and improves a few things:
- We get rid of the ugly dance of computing all of the captures in
data structures that clone those of CapturingScopeInfo, centralizing
the logic for accessing/updating these data structures
- We re-use the existing capture logic for 'this', which actually
works now.
Cleaned up some diagnostic wording in minor ways as well.
llvm-svn: 149516
- Actually building the var -> capture mapping properly (there was an off-by-one error)
- Keeping track of the source location of each capture
- Minor QoI improvements, e.g, highlighing the prior capture if
there are multiple captures, pointing at the variable declaration we
found if we reject it.
As part of this, add standard citations for the various semantic
checks we perform, and note where we're not performing those checks as
we should.
llvm-svn: 149462
CFBridgingRetain/CFBridgingRelease calls instead
of __bridge_retained/__bridge_transfer casts as preferred
way of moving cf objects to arc land. // rdar://10207950
llvm-svn: 149449
This is to prevent diagnostic when using NSLocalizedString or CFCopyLocalizedString
macros which are usually used in place of NS and CF strings literals.
llvm-svn: 149268
- Remove the printf0 special handling as we treat it as printf anyway.
- Perform basic checks (non-literal, empty) for all formats and not only printf/scanf.
llvm-svn: 149236
like Darwin that don't support it. We should also complain about
invalid -fvisibility=protected, but that information doesn't seem
to exist at the most appropriate time, so I've left a FIXME behind.
llvm-svn: 149186
function definition can produce a constant expression. This also provides the
last few checks for [dcl.constexpr]p3 and [dcl.constexpr]p4.
llvm-svn: 149108
declarator just because we were able to build an invalid decl
for it. The invalid-type diagnostics, in particular, are still useful
to know, and may indicate something about why the decl is invalid.
Also, recover from an illegal pointer/reference-to-unqualified-retainable
type using __strong instead of __autoreleasing; in general, a random
object is much more likely to be __strong, so this avoids unnecessary
cascading errors in the most common case.
llvm-svn: 149074
Pass a typo correction callback object from ParseCastExpr to
Sema::ActOnIdExpression to be a bit more selective about what kinds of
corrections will be allowed for unknown identifiers.
llvm-svn: 148973
The new callback, in addition to limiting which keywords to include in
the pool of typo correction candidates, also filters out non-keyword
candidates that don't refer to (template) functions that accept the
number of arguments that are present for the call being recovered.
llvm-svn: 148962
iff its substitution contains an unexpanded parameter pack. This has the effect
that we now reject declarations such as this (which we used to crash when
expanding):
template<typename T> using Int = int;
template<typename ...Ts> void f(Int<Ts> ...ints);
The standard is inconsistent on how this case should be treated.
llvm-svn: 148905
additional data from the external Sema source. This properly copes
with modules that are imported after we have already searched in the
global method pool for a given selector. For PCH, it's a slight
pessimization to be fixed soon.
llvm-svn: 148891
return pre-built lists. Instead, it feeds the methods it deserializes
to Sema so that Sema can unique them, which keeps the chains shorter.
llvm-svn: 148889
address safety analysis (such as e.g. AddressSanitizer or SAFECode) for a specific function.
When building with AddressSanitizer, add AddressSafety function attribute to every generated function
except for those that have __attribute__((no_address_safety_analysis)).
With this patch we will be able to
1. disable AddressSanitizer for a particular function
2. disable AddressSanitizer-hostile optimizations (such as some cases of load widening) when AddressSanitizer is on.
llvm-svn: 148842
pointer to incomplete type from an ExtWarn to an error. We put the
ExtWarn in place as part of a workaround for Boost (PR6527), but it
(1) doesn't actually match a GCC extension and (2) has been fixed for
two years in Boost, and (3) causes us to emit code that fails badly at
run time, so it's a bad idea to keep it. Fixes PR11803.
llvm-svn: 148838
when it actually has changed (and not, e.g., when we've simply attached a
deserialized macro definition). Good for ~1.5% reduction in module
file size, mostly in the identifier table.
llvm-svn: 148808
This is the last piece of N3031 (decltype in weird places) - supporting
the use of decltype in a class ctor's member-initializer-list to
specify the base classes to initialize.
Reviewed by Richard Smith.
llvm-svn: 148789
Fix some review comments.
Add a test for deduction when std::initializer_list isn't available yet.
Fix redundant error messages. This fixes and outstanding FIXME too.
llvm-svn: 148735
Previously, for unqualified lookups, a positive cache hit is used as the
only non-keyword correction and a negative cache hit immediately returns
an empty TypoCorrection. With the new callback objects, this behavior
causes false negatives by not accounting for the fact that callback
objects alter the set of potential/allowed corrections. The new behavior
is to seed the set of corrections with the cached correction (for
positive hits) to estabilishing a baseline edit distance. Negative cache
hits are only stored or used when either no callback object is provided
or when it returns true for a call to ValidateCandidate with an empty
TypoCorrection (i.e. when ValidateCandidate does not seem to be doing
any checking of the TypoCorrection, such as when an instance of the base
callback class is used solely to specify the set of keywords to be accepted).
llvm-svn: 148720
to an error, so that users can turn them off if necessary. Note that
this does *not* change the behavior of in a SFINAE context, where we
still flag an error even if the warning is disabled. This matches
GCC's behavior.
llvm-svn: 148701
Clang previously implemented -Wswitch-enum the same as -Wswitch. This patch
corrects the behavior to match GCC's. The critical/only difference being that
-Wswitch-enum is not silenced by the presence of a default case in the switch.
llvm-svn: 148679
MSVC2010's pair class has a move assignment operator but no explicit copy
constructor, which makes it unusable without this change.
For symmetry, let move copy constructors not mark the default assignment
operator as deleted either. Both changes match cl.exe's behavior. Fixes
pr11826.
Also update the standard excerpt to point to the right paragraph.
llvm-svn: 148675
For consistency with GCC & reasonable sanity. The FIXME suggests that the
original author was perhaps using the default check for some other purpose,
not realizing the more obvious limitation/false-negatives it creates, but this
doesn't seem to produce any regressions & fixes the included test.
llvm-svn: 148649
This warning acts as the complement to the main -Wswitch-enum warning (which
warns whenever a switch over enum without a default doesn't cover all values of
the enum) & has been an an-doc coding convention in LLVM and Clang in my
experience. The purpose is to ensure there's never a "dead" default in a
switch-over-enum because this would hide future -Wswitch-enum errors.
The name warning has a separate flag name so it can be disabled but it's grouped
under -Wswitch-enum & is on-by-default because of this.
The existing violations of this rule in test cases have had the warning disabled
& I've added a specific test for the new behavior (many negative cases already
exist in the same test file - and none regressed - so I didn't add more).
Reviewed by Ted Kremenek ( http://lists.cs.uiuc.edu/pipermail/cfe-commits/Week-of-Mon-20120116/051690.html )
llvm-svn: 148640
argument, which was broken and very ugly (and even had a test case to
make *sure* it was broken and ugly). Fixes <rdar://problem/10609117>.
llvm-svn: 148606
values and non-type template arguments of integral and enumeration types.
This change causes some legal C++98 code to no longer compile in C++11 mode, by
enforcing the C++11 rule that narrowing integral conversions are not permitted
in the final implicit conversion sequence for the above cases.
llvm-svn: 148439
Includes tests highlighting the cases where accuracy has improved
(there is one call that does no filtering beyond selecting the set
of allowed keywords, and one call that only triggers for ObjC code
for which a test by someone who knows ObjC would be welcome). Also
fixes a small typo in one of the suggestion messages, and drops a
malformed "expected-note" for a suggestion that did not occur even
when the malformed note was committed as r145930.
llvm-svn: 148420
No new unit tests yet as there is no behavioral change
(except for slightly more specific filtering in
Sema::ActOnStartOfLambdaDefinition). Tests will be added
as the code paths are traced in greater depth to determine
how to improve the results--there are at least one or two
known bugs that require those improvements. This commit
lays the groundwork for those changes.
llvm-svn: 148382
for it to be used in converted constant expression checking, and fix a couple
of issues:
- Conversion operators implicitly invoked prior to the narrowing conversion
were not being correctly handled when determining whether a constant value
was narrowed.
- For conversions from floating-point to integral types, the diagnostic text
incorrectly always claimed that the source expression was not a constant
expression.
llvm-svn: 148381
There are 5 functions of this name in Sema, and 6 more static helpers in
SemaTemplateDeduction.cpp. The Sema functions have jobs like "deduce for
function call", "deduce for taking the address", etc. The static helpers
have jobs like "deduce by comparing two types", "deduce by comparing two
lists of types", "deduce by comparing two template arguments", etc.
The fact that they all are called the same and only differ in two of their
6 or more arguments makes the code using them very hard to read.
Here I rename the one function that concerns me most at the moment, but
as a matter of cleanup, the others will eventually be renamed as well.
llvm-svn: 148351
PR 10274: format function attribute with the NSString archetype yields no compiler warnings
PR 10275: format function attribute isn't checked in Objective-C methods
llvm-svn: 148324
does not depend on Sema, it accepts an ASTContext and a Preprocessor.
Step towards making clang_getCursorCompletionString not depend on Sema.
llvm-svn: 148278
for FunctionDecl::getMemoryFunctionKind().
This is a follow up on the Chris's review for r148142: We don't want to
pollute FunctionDecl with an extra enum. (To make this work, added
memcmp and family to the library builtins.)
llvm-svn: 148267
- Add atomic-to/from-nonatomic cast types
- Emit atomic operations for arithmetic on atomic types
- Emit non-atomic stores for initialisation of atomic types, but atomic stores and loads for every other store / load
- Add a __atomic_init() intrinsic which does a non-atomic store to an _Atomic() type. This is needed for the corresponding C11 stdatomic.h function.
- Enables the relevant __has_feature() checks. The feature isn't 100% complete yet, but it's done enough that we want people testing it.
Still to do:
- Make the arithmetic operations on atomic types (e.g. Atomic(int) foo = 1; foo++;) use the correct LLVM intrinsic if one exists, not a loop with a cmpxchg.
- Add a signal fence builtin
- Properly set the fenv state in atomic operations on floating point values
- Correctly handle things like _Atomic(_Complex double) which are too large for an atomic cmpxchg on some platforms (this requires working out what 'correctly' means in this context)
- Fix the many remaining corner cases
llvm-svn: 148242
not integer constant expressions. In passing, fix the 'folding is an extension'
diagnostic to not claim we're accepting the code, since that's not true in
-pedantic-errors mode, and add this diagnostic to -Wgnu.
llvm-svn: 148209
we have a redeclarable type, and only use the new virtual versions
(getPreviousDeclImpl() and getMostRecentDeclImpl()) when we don't have
that type information. This keeps us from penalizing users with strict
type information (and is the moral equivalent of a "final" method).
Plus, settle on the names getPreviousDecl() and getMostRecentDecl()
throughout.
llvm-svn: 148187
To avoid malloc thrashing give OverloadCandidateSet an inline capacity for conversion sequences.
We use the fact that OverloadCandidates never outlive the OverloadCandidateSet and have a fixed
amount of conversion sequences.
This eliminates the oversized SmallVector from OverloadCandidate shrinking it from 752 to 208 bytes.
On the test case from the "Why is CLANG++ so freaking slow" thread on llvmdev this avoids one gig
of vector reallocation (including memcpy) which translates into 5-10% speedup on Lion/x86_64.
Overload candidate computation is still the biggest malloc contributor when compiling templated
c++ code.
llvm-svn: 148186
virtual functions that provide previous/most recent redeclaration
information for any declaration. Use this to eliminate the redundant,
less efficient getPreviousDecl() functions.
llvm-svn: 148184
I was forced to change test/SemaCXX/linkage.cpp because we aren't actually modeling extern "C" in the AST the way that testcase expects; we were not printing a warning only because we skipped the relevant check. Someone who actually understands the semantics here should fix that.
llvm-svn: 148158
The change to SemaTemplateVariadic.cpp improves the typo correction
results in certain situations, while the change to SemaTemplate.cpp
does not change existing behavior.
llvm-svn: 148155
improving the typo correction results in certain situations.
This is also the first typo correction callback conversion to affect
an existing unit test. :)
llvm-svn: 148140
- If the declarator is at the start of a line, and the previous line contained
another declarator and ended with a comma, then that comma was probably a
typo for a semicolon:
int n = 0, m = 1, l = 2, // k = 5;
myImportantFunctionCall(); // oops!
- If removing the parentheses would correctly initialize the object, then
produce a note suggesting that fix.
- Otherwise, if there is a simple initializer we can suggest which performs
value-initialization, then provide a note suggesting a correction to that
initializer.
Sema::Declarator now tracks the location of the comma prior to the declarator in
the declaration, if there is one, to facilitate providing the note. The code to
determine an appropriate initializer from the -Wuninitialized warning has been
factored out to allow use in both that and -Wvexing-parse.
llvm-svn: 148072
expression for an Objective-C object or pointer type, so that we don't
attempt to treat the member name as a template. Fixes
<rdar://problem/10672501>.
llvm-svn: 148028
was constructed, e.g. for a property access.
This allows the selector identifier locations machinery for ObjCMessageExpr
to function correctly, in that there are not real locations to handle/report for
such a message.
llvm-svn: 148013
are still added if the cached correction fails validation.
Also fix a copy-and-paste error in a comment from my previous commit.
Finally, add an example of the benefit the typo correction callback adds
to TryNamespaceTypoCorrection--which happens to also tickle the above
caching problem, as the only way a non-namespace Decl would be added to
the possible corrections is if it was cached as the correction for a
previous instance of the same typo where the typo was corrected to a
non-namespace via a different code path.
llvm-svn: 147968
Also includes two examples of the callback: a wrapper/replacement for
the CorrectTypoContext enum, and a conversion of the two calls to
CorrectTypo in SemaDeclCXX.cpp (one of which provides verifiable
improvement to the typo correction, as demonstrated in the added test).
llvm-svn: 147962
- reject definitions of enums within friend declarations
- require 'enum', not 'enum class', for non-declaring references to scoped
enumerations
llvm-svn: 147824
is important because it's fairly common for headers (especially system
headers) to want to provide only those typedefs needed for that
particular header, based on some guard macro, e.g.,
#ifndef _SIZE_T
#define _SIZE_T
typedef long size_t;
#endif
which is repeated in a number of headers. The guard macro protects
against duplicate definitions. However, this means that only the first
occurrence of this pattern actually defines size_t, so the submodule
corresponding to this header has the only visible definition. If a
user then imports a different submodule from the same module, size_t
will be known but not visible, and therefore cannot be used.
By allowing redefinition of typedefs, each header that wants to define
size_t can do so independently, so it will be available in the
corresponding submodules.
llvm-svn: 147775
to Redeclarable<NamespaceDecl>, so that we benefit from the improveed
redeclaration deserialization and merging logic provided by
Redeclarable<T>. Otherwise, no functionality change.
As a drive-by fix, collapse the "inline" bit into the low bit of the
original namespace/anonymous namespace, saving 8 bytes per
NamespaceDecl on x86_64.
llvm-svn: 147729
chain to determine whether any declaration of the given entity is
visible, eliminating the redundant (and less efficient)
getPreviousDeclaration() implementation.
This tweak uncovered an omission in the handling of
RedeclarableTemplateDecl, where we weren't making sure to search for
additional redeclarations of a template in other module files. Things
would be cleaner if RedeclarableTemplateDecl actually used Redeclarable.
llvm-svn: 147687
the Semantic Powers to only warn on class types (or dependent types), where the
constructor or destructor could do something interesting.
llvm-svn: 147642
to see hidden declarations because every tag lookup is effectively a
redeclaration lookup. For example, image that
struct foo;
is declared in a submodule that is known but hasn't been imported. If
someone later writes
struct foo *foo_p;
then "struct foo" is either a reference or a redeclaration. To keep
the redeclaration chains sound, we treat it like a redeclaration for
name-lookup purposes.
llvm-svn: 147588
in the module map. This provides a bit more predictability for the
user, as well as eliminating the need to sort the submodules when
serializing them.
llvm-svn: 147564
With that done, remove a bunch of buggy code from CGExprConstant for handling scalar expressions which is no longer necessary.
Fixes PR11705.
llvm-svn: 147561
modules, so long as the typedefs refer to the same underlying
type. This ensures that the typedefs end up in the same redeclaration
chain.
To test this, fix name lookup for C/Objective-C to properly deal with
multiple declarations with the same name in the same scope.
llvm-svn: 147533
the AST reader doesn't actually perform a merge, because name lookup
knows how to merge identical typedefs together.
As part of this, teach C/Objective-C name lookup to return multiple
results in all cases, rather than first digging through the attributes
to see if the value is overloadable. This way, we'll catch ambiguous
lookups in C/Objective-C.
llvm-svn: 147498
for Objective-C protocols, including:
- Using the first declaration as the canonical declaration
- Using the definition as the primary DeclContext
- Making sure that all declarations have a pointer to the definition
data, and that we know which declaration is the definition
- Serialization support for redeclaration chains and for adding
definitions to already-serialized declarations.
However, note that we're not taking advantage of much of this code
yet, because we're still re-using ObjCProtocolDecls.
llvm-svn: 147410
separately-allocated DefinitionData structure. Introduce various
functions that will help with the separation of declarations from
definitions (isThisDeclarationADefinition(), hasDefinition(),
getDefinition()).
llvm-svn: 147408
Explicit instantiations following specializations are no-ops and hence have
no PointOfInstantiation. That was done correctly in most cases, but for a
specialization -> instantiation decl -> instantiation definition chain, the
definition didn't realize that it was a no-op. Fix that.
Also, when printing diagnostics for these no-ops, get the diag location from
the decl name location.
Add many test cases, one of them not yet passing (but it failed the same way
before this change). Fixes http://llvm.org/pr11558 and more.
llvm-svn: 147225
members of class templates so that their values can be used in ICEs. This
required reverting r105465, to get such instantiated members to be included in
serialized ASTs.
llvm-svn: 147023
visibility restrictions. This ensures that all declarations of the
same entity end up in the same redeclaration chain, even if some of
those declarations aren't visible. While this may seem unfortunate to
some---why can't two C modules have different functions named
'f'?---it's an acknowedgment that a module does not introduce a new
"namespace" of names.
As part of this, stop merging the 'module-private' bit from previous
declarations to later declarations, because we want each declaration
in a module to stand on its own because this can effect, for example,
submodule visibility.
Note that this notion of names that are invisible to normal name
lookup but are available for redeclaration lookups is how we should
implement friend declarations and extern declarations within local
function scopes. I'm not tackling that problem now.
llvm-svn: 146980
Split out a new ExpressionEvaluationContext flag for this case, and don't treat
it as unevaluated in C++11. This fixes some crash-on-invalids where we would
allow references to class members in potentially-evaluated constant expressions
in static member functions, and also fixes half of PR10177.
The fix to PR10177 exposed a case where template instantiation failed to provide
a source location for a diagnostic, so TreeTransform has been tweaked to supply
source locations when transforming a type. The source location is still not very
good, but MarkDeclarationsReferencedInType would need to operate on a TypeLoc to
improve it further.
Also fix MarkDeclarationReferenced in C++98 mode to trigger instantiation for
static data members of class templates which are used in constant expressions.
This fixes a link-time problem, but we still incorrectly treat the member as
non-constant. The rest of the fix for that issue is blocked on PCH support for
early-instantiated static data members, which will be added in a subsequent
patch.
llvm-svn: 146955
variable is initialized by a non-constant expression, and pass in the variable
being declared so that earlier-initialized fields' values can be used.
Rearrange VarDecl init evaluation to make this possible, and in so doing fix a
long-standing issue in our C++ constant expression handling, where we would
mishandle cases like:
extern const int a;
const int n = a;
const int a = 5;
int arr[n];
Here, n is not initialized by a constant expression, so can't be used in an ICE,
even though the initialization expression would be an ICE if it appeared later
in the TU. This requires computing whether the initializer is an ICE eagerly,
and saving that information in PCH files.
llvm-svn: 146856
chains. The previous implementation relied heavily on the declaration
chain being stored as a (circular) linked list on disk, as it is in
memory. However, when deserializing from multiple modules, the
different chains could get mixed up, leading to broken declaration chains.
The new solution keeps track of the first and last declarations in the
chain for each module file. When we load a declaration, we search all
of the module files for redeclarations of that declaration, then
splice together all of the lists into a coherent whole (along with any
redeclarations that were actually parsed).
As a drive-by fix, (de-)serialize the redeclaration chains of
TypedefNameDecls, which had somehow gotten missed previously. Add a
test of this serialization.
This new scheme creates a redeclaration table that is fairly large in
the PCH file (on the order of 400k for Cocoa.h's 12MB PCH file). The
table is mmap'd in and searched via a binary search, but it's still
quite large. A future tweak will eliminate entries for declarations
that have no redeclarations anywhere, and should
drastically reduce the size of this table.
llvm-svn: 146841
fails within a call to a constexpr function. Add -fconstexpr-backtrace-limit
argument to driver and frontend, to control the maximum number of notes so
produced (default 10). Fix APValue printing to be able to pretty-print all
APValue types, and move the testing for this functionality from a unittest to
a -verify test now that it's visible in clang's output.
llvm-svn: 146749
instantiate a class from its template pattern
before it consults the ExternalASTSource. LLDB
in particular will sometimes provide patterns
that need to be completed first.
To make this possible, I have moved the
completion before the code that does the
instantiation, allowing the ExternalASTSource
to provide the required information.
llvm-svn: 146715
applies to an actual definition. Plus, clarify the purpose of this
field and give the accessor a different name, since getLocEnd() is
supposed to be the same as getSourceRange().getEnd().
llvm-svn: 146694
declarations and definitions) as ObjCInterfaceDecls within the same
redeclaration chain. This new representation matches what we do for
C/C++ variables/functions/classes/templates/etc., and makes it
possible to answer the query "where are all of the declarations of
this class?"
llvm-svn: 146679
don't refer to anything. Amusingly, we were relying on this in one
place. Thanks to Chandler for noticing the weirdness in
declaresSameEntity.
llvm-svn: 146659
separately-allocated DefinitionData structure, which we manage the
same way as CXXRecordDecl::DefinitionData. This prepares the way for
making ObjCInterfaceDecls redeclarable, to more accurately model
forward declarations of Objective-C classes and eliminate the mutation
of ObjCInterfaceDecl that causes us serious trouble in the AST reader.
Note that ObjCInterfaceDecl's accessors are fairly robust against
being applied to forward declarations, because Clang (and Sema in
particular) doesn't perform RequireCompleteType/hasDefinition() checks
everywhere it has to. Each of these overly-robust cases is marked with
a FIXME, which we can tackle over time.
llvm-svn: 146644
to declaresSameEntity(), as a baby step toward tracking forward
declarations of Objective-C classes precisely. Part of
<rdar://problem/10583531>.
llvm-svn: 146618
The motivation here is a "clever" implementation of strncmp(), which peels the first few comparisons via chained conditional expressions which ensure that the input arrays are known at compile time to be sufficiently large.
llvm-svn: 146430
template instantiation), and that expression might produce a
temporary, invoke MaybeBindToTemporary. Otherwise, we forget to
destroy objects, release objects, etc. Fixes <rdar://problem/10531073>.
llvm-svn: 146301
whether an expression is a (core) constant expression as a side-effect of
evaluation. This takes us from accepting far too few expressions as ICEs to
accepting slightly too many -- fixes for the remaining cases are coming next.
The diagnostics produced when an expression is found to be non-constant are
currently quite poor (with generic wording but reasonable source locations),
and will be improved in subsequent commits.
llvm-svn: 146289
they are treated as errors.
Doing typo correction when these are just warnings slows down the
compilation of source which deliberately uses implicit function
declarations.
llvm-svn: 146153
in addition to underlying type.
For example, the warning for printf("%zu", 42.0);
changes from "conversion specifies type 'unsigned long'" to "conversion
specifies type 'size_t' (aka 'unsigned long')"
(This is a second attempt after r145697, which got reverted.)
llvm-svn: 146032
bound to not have side effects(!). Add constant-folding support for expressions
of void type, to ensure that we can still fold ((void)0, 1) as an array bound.
llvm-svn: 146000
methods) to bool. E.g.
void foo() {}
if (f) { ... // <- Warns here.
}
Only applies to non-weak functions, and does not apply if the function address
is taken explicitly with the addr-of operator.
llvm-svn: 145849
Basically typo correction will try to offer a correction instead of looking into type dependent base classes.
I found this problem while parsing Microsoft ATL code with clang.
llvm-svn: 145772
For example, the warning for printf("%zu", 42.0);
changes from "conversion specifies type 'unsigned long'" to "conversion
specifies type 'size_t' (aka 'unsigned long')"
llvm-svn: 145697
within module maps, which will (eventually) be used to re-export a
module from another module. There are still some pieces missing,
however.
llvm-svn: 145665
(sub)module, all of the names may be hidden, just the macro names may
be exposed (for example, after the preprocessor has seen the import of
the module but the parser has not), or all of the names may be
exposed. Importing a module makes its names, and the names in any of
its non-explicit submodules, visible to name lookup (transitively).
This commit only introduces the notion of name visible and marks
modules and submodules as visible when they are imported. The actual
name-hiding logic in the AST reader will follow (along with test cases).
llvm-svn: 145586
force the unknown any type to "id" so that the message send can be
completed without requiring a case. Fixes <rdar://problem/10506646>.
llvm-svn: 145552
explicit template specializations (which represent actual functions somebody wrote).
Along the way, refactor some other code which similarly cares about whether or
not they are looking at a template instantiation.
llvm-svn: 145547
library, since modules cut across all of the libraries. Rename
serialization::Module to serialization::ModuleFile to side-step the
annoying naming conflict. Prune a bunch of ModuleMap.h includes that
are no longer needed (most files only needed the Module type).
llvm-svn: 145538
really bad way to go about this, but I'm not sure there's a better
choice without substantial changes to TreeTransform --- most
notably, preserving implicit semantic nodes instead of discarding
and rebuilding them.
llvm-svn: 145480
when computing the exception specification of a copy or move constructor,
ignore non-static data member initializers. Fixes PR11418 /
<rdar://problem/10478642>.
llvm-svn: 145269
consider the _<width> variants as well, which we'll see if we're
performing the type checking in a template instantiation where the
call expression itself was originally not type-dependent. Fixes
PR11411.
llvm-svn: 145248
This supports single-element initializer lists for references according to DR1288, as well as creating temporaries and binding to them for other initializer lists.
llvm-svn: 145186
Basically we have to look into the parent *lexical* DeclContext for friend functions at class scope. That's because calling GetParent() return the namespace or file DeclContext.
This fixes all remaining cases of "Unqualified lookup into dependent bases of class templates" when parsing MFC code with clang.
llvm-svn: 145127
pointer mismatch. Cases covered are: initialization, assignment, and function
arguments. Additional text will give the extra information about the nature
of the mismatch: different classes for member functions, wrong number of
parameters, different parameter type, different return type, and function
qualifier mismatch.
llvm-svn: 145114
inside an objc container that "contains" other file-level declarations.
When getting the array of file-level declarations that overlap with a file region,
we failed to report that the region overlaps with an objc container, if
the container had other file-level declarations declared lexically inside it.
Fix this by marking such declarations as "isTopLevelDeclInObjCContainer" in the AST
and handling them appropriately.
llvm-svn: 145109
This is a little bit tricky because during default argument instantiation the CurContext points to a CXXMethodDecl but we can't use the keyword this or have an implicit member call generated.
This fixes 2 errors when parsing MFC code with clang.
llvm-svn: 144881
The code for checking Neon builtin pointer argument types was assuming that
there would only be one pointer argument. But, for vld2-4 builtins, the first
argument is a special sret pointer where the result will be stored. So,
instead of scanning all the arguments to find a pointer, have TableGen figure
out the index of the pointer argument that needs checking. That's better than
scanning all the arguments regardless. <rdar://problem/10448804>
llvm-svn: 144834
Objective-C classes. This has two purposes: to consistently provide
"forward declaration here" notes when we hit an incomplete type, and
to give LLDB a chance to complete the type.
RequireCompleteType bits from Sean Callanan!
llvm-svn: 144573
or MemberExpr which refers to it. As a side-effect, MemberExprs which refer to
static member functions and static data members are now emitted as constant
expressions.
llvm-svn: 144468
it is going to be rewritten (and the chain will be serialized again), otherwise we may form a cycle in its
categories list when deserializing.
Also introduce ASTMutationListener::CompletedObjCForwardRef to notify that a forward reference
was completed; using Decl's isChangedSinceDeserialization/setChangedSinceDeserialization
is bug inducing and kinda gross, we should phase it out.
Fixes infinite loop in rdar://10418538.
llvm-svn: 144465
them when performing a const conversion on the implicit object argument for a
member operator call on an rvalue.
No change to the testsuite: the test for this change is that the added
assertion does not fire any more.
llvm-svn: 144333
which they do. This avoids all of the default argument promotions that
we (1) don't want, and (2) undo during that custom type checking, and
makes sure that we don't run into trouble during template
instantiation. Fixes PR11320.
llvm-svn: 144110
The Neon load/store intrinsics need to be implemented as macros to avoid
hiding alignment attributes on the pointer arguments, and the macros can
only evaluate those pointer arguments once (in case they have side effects),
so it has been hard to get the right type checking for those pointers.
I tried various alternatives in the arm_neon.h header, but it's much more
straightforward to just check directly in Sema.
llvm-svn: 144075
This patch just adds a simple NeonTypeFlags class to replace the various
hardcoded constants that had been used until now. Unfortunately I couldn't
figure out a good way to avoid duplicating that class between clang and
TableGen, but since it's small and rarely changes, that's not so bad.
llvm-svn: 144054
doesn't duplicate, but they all surface as implicit
properties. It's also a useful optimization to not
duplicate the implicit getter lookup. So, trust the
getter lookup that was already done in these cases.
llvm-svn: 144031
initializer; all other constexpr variables are merely required to be
initialized. In particular, a user-provided constexpr default constructor can be
used for such initialization.
llvm-svn: 144028
default", make a note of which is used when creating the
initial declaration. Previously, we would wait until later to handle
default/delete as a definition, but this is too late: when adding the
declaration, we already treated the declaration as "user-provided"
when in fact it was merely "user-declared".
Fixes PR10861 and PR10442, along with a bunch of FIXMEs.
llvm-svn: 144011
__weak is unsupported by the deployment target, since it is going to be
ignored anyway.
Makes it easier for incremental migration from GC.
llvm-svn: 143975
the injected-class-name of a class (or class template) to the
declaration that results from substituting the given template
arguments. Previously, we would actually perform a substitution into
the injected-class-name type and then retrieve the resulting
declaration. However, in certain, rare circumstances involving
deeply-nested member templates, we would get the wrong substitution
arguments.
This new approach just matches up the declaration with a declaration
that's part of the current context (or one of its parents), which will
either be an instantiation (during template instantiation) or the
declaration itself (during the definition of the template). This is
both more efficient (we're avoiding a substitution) and more correct
(we can't get the template arguments wrong in the member-template
case).
Fixes <rdar://problem/9676205>.
Reinstated, now that we have the fix in r143967.
llvm-svn: 143968
property references to use a new PseudoObjectExpr
expression which pairs a syntactic form of the expression
with a set of semantic expressions implementing it.
This should significantly reduce the complexity required
elsewhere in the compiler to deal with these kinds of
expressions (e.g. IR generation's special l-value kind,
the static analyzer's Message abstraction), at the lower
cost of specifically dealing with the odd AST structure
of these expressions. It should also greatly simplify
efforts to implement similar language features in the
future, most notably Managed C++'s properties and indexed
properties.
Most of the effort here is in dealing with the various
clients of the AST. I've gone ahead and simplified the
ObjC rewriter's use of properties; other clients, like
IR-gen and the static analyzer, have all the old
complexity *and* all the new complexity, at least
temporarily. Many thanks to Ted for writing and advising
on the necessary changes to the static analyzer.
I've xfailed a small diagnostics regression in the static
analyzer at Ted's request.
llvm-svn: 143867
create an attributed type with same type as the original type.
We effectively retain the source info that an ownership attribute was present but the attribute
is ignored by not modifying the type that it was applied to.
llvm-svn: 143736
definition, we may not have a scope corresponding to the namespace
where that friend function template actually lives. Work around this
issue by faking up a scope with the appropriate DeclContext.
This is a bit of a hack, but it fixes <rdar://problem/10204947>.
llvm-svn: 143614
to types. Enable this flag for code completion, where knowing whether
something is in an anonymous or inline namespace is actually not
useful, since you don't have to type it anyway. Fixes
<rdar://problem/10208818>.
llvm-svn: 143599
the injected-class-name of a class (or class template) to the
declaration that results from substituting the given template
arguments. Previously, we would actually perform a substitution into
the injected-class-name type and then retrieve the resulting
declaration. However, in certain, rare circumstances involving
deeply-nested member templates, we would get the wrong substitution
arguments.
This new approach just matches up the declaration with a declaration
that's part of the current context (or one of its parents), which will
either be an instantiation (during template instantiation) or the
declaration itself (during the definition of the template). This is
both more efficient (we're avoiding a substitution) and more correct
(we can't get the template arguments wrong in the member-template
case).
Fixes <rdar://problem/9676205>.
llvm-svn: 143551
wrong class, make sure to drop it immediately; we don't want that
constructor to be available within the DeclContext. Fixes
<rdar://problem/9677163>.
llvm-svn: 143506
does not match any declaration in the class (or class template), be
sure to mark it as invalid. Fixes PR10924 / <rdar://problem/10119422>.
llvm-svn: 143504
that it retains source location information for the type. Aside from
general goodness (being able to walk the types described in that
information), we now have a proper representation for dependent
delegating constructors. Fixes PR10457 (for real).
llvm-svn: 143410
implicitly perform an lvalue-to-rvalue conversion if used on an lvalue
expression. Also improve the documentation of Expr::Evaluate* to indicate which
of them will accept expressions with side-effects.
llvm-svn: 143263
string is part of the function call, then there is no difference. If the
format string is not, the warning will point to the call site and a note
will point to where the format string is.
Fix-it hints for strings are moved to the note if a note is emitted. This will
prevent changes to format strings that may be used in multiple places.
llvm-svn: 143168
rvalue. An assertion to catch this is in ImpCastExprToType will follow, but
vector operations currently trip over this (due to omitting the usual arithmetic
conversions). Also add an assert to catch missing lvalue-to-rvalue conversions
on the LHS of ->.
llvm-svn: 143155
AST file more lazy, so that we don't eagerly load that information for
all known identifiers each time a new AST file is loaded. The eager
reloading made some sense in the context of precompiled headers, since
very few identifiers were defined before PCH load time. With modules,
however, a huge amount of code can get parsed before we see an
@import, so laziness becomes important here.
The approach taken to make this information lazy is fairly simple:
when we load a new AST file, we mark all of the existing identifiers
as being out-of-date. Whenever we want to access information that may
come from an AST (e.g., whether the identifier has a macro definition,
or what top-level declarations have that name), we check the
out-of-date bit and, if it's set, ask the AST reader to update the
IdentifierInfo from the AST files. The update is a merge, and we now
take care to merge declarations before/after imports with declarations
from multiple imports.
The results of this optimization are fairly dramatic. On a small
application that brings in 14 non-trivial modules, this takes modules
from being > 3x slower than a "perfect" PCH file down to 30% slower
for a full rebuild. A partial rebuild (where the PCH file or modules
can be re-used) is down to 7% slower. Making the PCH file just a
little imperfect (e.g., adding two smallish modules used by a bunch of
.m files that aren't in the PCH file) tips the scales in favor of the
modules approach, with 24% faster partial rebuilds.
This is just a first step; the lazy scheme could possibly be improved
by adding versioning, so we don't search into modules we already
searched. Moreover, we'll need similar lazy schemes for all of the
other lookup data structures, such as DeclContexts.
llvm-svn: 143100
expressions: expressions which refer to a logical rather
than a physical l-value, where the logical object is
actually accessed via custom getter/setter code.
A subsequent patch will generalize the AST for these
so that arbitrary "implementing" sub-expressions can
be provided.
Right now the only client is ObjC properties, but
this should be generalizable to similar language
features, e.g. Managed C++'s __property methods.
llvm-svn: 142914
Microsoft __if_exists/__if_not_exists statement. Also note that we
weren't traversing DeclarationNameInfo *at all* within the
RecursiveASTVisitor, which would be rather fatal for variadic
templates.
llvm-svn: 142906
statements. As noted in the documentation for the AST node, the
semantics of __if_exists/__if_not_exists are somewhat different from
the way Visual C++ implements them, because our parsed-template
representation can't accommodate VC++ semantics without serious
contortions. Hopefully this implementation is "good enough".
llvm-svn: 142901
analysis to separate dependent names from non-dependent names. For
dependent names, we'll behave differently from Visual C++:
- For __if_exists/__if_not_exists at class scope, we'll just warn
and then ignore them.
- For __if_exists/__if_not_exists in statements, we'll treat the
inner statement as a compound statement, which we only instantiate
in templates where the dependent name (after instantiation)
exists. This behavior is different from VC++, but it's as close as
we can get without encroaching ridiculousness.
The latter part (dependent statements) is not yet implemented.
llvm-svn: 142864
unknown specialization, treat this the same way as if the name were
not found in the current instantiation. No actual functionality
change, since apparently nothing depends on this.
llvm-svn: 142862
class declaration which forces any such class and any
class that inherits from such a class to have their
typeinfo symbols be marked as weak.
// rdar://10246395
A test/CodeGenCXX/weak-extern-typeinfo.cpp
M lib/Sema/SemaDeclCXX.cpp
M lib/Sema/SemaDeclAttr.cpp
M lib/CodeGen/CGRTTI.cpp
llvm-svn: 142693
be sure to consider all of the possible lookup results. We were
assert()'ing (but behaving correctly) for unresolved values. Fixes
PR11134 / <rdar://problem/10290422>.
llvm-svn: 142652
but trivially constructible and destructible variables in C++11 mode. Also
incidentally improve the precision of the wording for jump diagnostics in C++98
mode.
llvm-svn: 142619
shadows a template parameter. Complain about the shadowing (or not,
under -fms-extensions), but don't invalidate the declaration. Merely
forget about the template parameter declaration.
llvm-svn: 142596
actually just has an extraneous 'template<>' header, strip off the
'template<>' header and treat it as a normal friend tag. Fixes PR10660
/ <rdar://problem/9958322>.
llvm-svn: 142587