This change adds detection of C++ headers and libraries paths when
building with the standalone toolchain from Android NDK. They are in a
slightly unusual place.
llvm-svn: 163109
Most of the code guarded with ANDROIDEABI are not
ARM-specific, and having no relation with arm-eabi.
Thus, it will be more natural to call this
environment "Android" instead of "ANDROIDEABI".
Note: We are not using ANDROID because several projects
are using "-DANDROID" as the conditional compilation
flag.
llvm-svn: 163088
This can blow the stack with extremely deep hierarchies. Switch it to data-recursive.
This is implemented by introducing a post-children visitation callback that the
CursorVisitor is calling after child nodes of a cursor have been visited.
This is used by the annotate-tokens visitor to do extra work at that point.
rdar://11979525.
llvm-svn: 163071
This allows us to correctly symbolicate the fields of structs returned by
value, as well as get the proper 'this' value for when methods are called
on structs returned by value.
This does require a moderately ugly hack in the StoreManager: if we assign
a "struct value" to a struct region, that now appears as a Loc value being
bound to a region of struct type. We handle this by simply "dereferencing"
the struct value region, which should create a LazyCompoundVal.
This should fix recent crashes analyzing LLVM and on our internal buildbot.
<rdar://problem/12137950>
llvm-svn: 163066
Previously, we preferred to get a result type by looking at the callee's
declared result type. This allowed us to handlereferences, which are
represented in the AST as lvalues of their pointee type. (That is, a call
to a function returning 'int &' has type 'int' and value kind 'lvalue'.)
However, this results in us preferring the original type of a function
over a casted type. This is a problem when a function pointer is casted
to another type, because the conjured result value will have the wrong
type. AdjustedReturnValueChecker is supposed to handle this, but still
doesn't handle the case where there is no "original function" at all,
i.e. where the callee is unknown.
Now, we instead look at the call expression's value kind (lvalue, xvalue,
or prvalue), and adjust the expr's type accordingly. This will have no
effect when the function is inlined, and will conjure the value that will
actually be used when it is not.
This makes AdjustedReturnValueChecker /nearly/ unnecessary; unfortunately,
the cases where it would still be useful are where we need to cast the
result of an inlined function or a checker-evaluated function, and in these
cases we don't know what we're casting /from/ by the time we can do post-
call checks. In light of that, remove AdjustedReturnValueChecker, which
was already not checking quite a few calls.
llvm-svn: 163065
Fixes a hard-to-reach crash when calling a non-member overloaded operator
with arguments that may be callbacks.
Future-proofing: don't make the same assumption in MallocSizeofChecker.
Aside from possibly respecting attributes in the future, it might be
possible to call 'malloc' through a function pointer.
I audited all other uses of FunctionDecl::getIdentifier() in the analyzer;
they all now correctly test to see if the identifier is present before
using it.
llvm-svn: 163012
More generally, this adds a new configuration option 'c++-inlining', which
controls which C++ member functions can be considered for inlining. This
uses the new -analyzer-config table, so the cc1 arguments will look like this:
... -analyzer-config c++-inlining=[none|methods|constructors|destructors]
Note that each mode implies that all the previous member function kinds
will be inlined as well; it doesn't make sense to inline destructors
without inlining constructors, for example.
The default mode is 'methods'.
llvm-svn: 163004
PathDiagnostics are actually profiled and uniqued independently of the
path on which the bug occurred. This is used to merge diagnostics that
refer to the same issue along different paths, as well as by the plist
diagnostics to reference files created by the HTML diagnostics.
However, there are two problems with the current implementation:
1) The bug description is included in the profile, but some
PathDiagnosticConsumers prefer abbreviated descriptions and some
prefer verbose descriptions. Fixed by including both descriptions in
the PathDiagnostic objects and always using the verbose one in the profile.
2) The "minimal" path generation scheme provides extra information about
which events came from macros that the "extensive" scheme does not.
This resulted not only in different locations for the plist and HTML
diagnostics, but also in diagnostics being uniqued in the plist output
but not in the HTML output. Fixed by storing the "end path" location
explicitly in the PathDiagnostic object, rather than trying to find the
last piece of the path when the diagnostic is requested.
This should hopefully finish unsticking our internal buildbot.
llvm-svn: 162965
(__builtin_* etc.) so that it isn't possible to take their address.
Specifically, introduce a new type to represent a reference to a builtin
function, and a new cast kind to convert it to a function pointer in the
operand of a call. Fixes PR13195.
llvm-svn: 162962
initiated enum constant has the same value as another enum constant.
For instance:
enum test { A, B, C = -1, D, E = 1 };
Clang will warn that:
A and D both have value 0
B and E both have value 1
A few exceptions are made to keep the noise down. Enum constants which are
initialized to another enum constant, or an enum constant plus or minus 1 will
not trigger this warning. Also, anonymous enums are not checked.
llvm-svn: 162938
(__is_pod, __is_signed, etc.) to normal identifiers if they are
encountered in certain places in the grammar where we know that prior
versions of libstdc++ or libc++ use them, to still allow the use of
these keywords as type traits. Fixes <rdar://problem/9836262> and PR10184.
llvm-svn: 162937
within its own argument list. The original definition is used for the immediate
expansion, but the new definition is used for any subsequent occurences within
the argument list or after the expansion.
llvm-svn: 162906
inlined function.
This resolves retain count checker false positives that are caused by
inlining ObjC and other methods. Essentially, if we are passing an
object to a method with "delegate" in the selector or a function pointer
as another argument, we should stop tracking the other parameters/return
value as far as the retain count checker is concerned.
llvm-svn: 162876
This heuristic addresses the case when a pointer (or ref) is passed
to a function, which initializes the variable (or sets it to something
other than '0'). On the branch where the inlined function does not
set the value, we report use of undefined value (or NULL pointer
dereference). The access happens in the caller and the path
through the callee would get pruned away with regular path pruning. To
solve this issue, we previously disabled diagnostic pruning completely
on undefined and null pointer dereference checks, which entailed very
verbose diagnostics in most cases. Furthermore, not all of the
undef value checks had the diagnostic pruning disabled.
This patch implements the following heuristic: if we pass a pointer (or
ref) to the region (on which the error is reported) into a function and
it's value is either undef or 'NULL' (and is a pointer), do not prune
the function.
llvm-svn: 162863
CheckLValueConstantExpression.
Richard pointed out that using the address of a TLS variable is ok in a
core C++11 constant expression, as long as it isn't part of the eventual
result of constant expression evaluation. Having the check in
CheckLValueConstantExpression accomplishes this.
llvm-svn: 162850
Summary:
The problem was with the following sequence:
#pragma push_macro("long")
#undef long
#pragma pop_macro("long")
in case when "long" didn't represent a macro.
Fixed crash and removed code duplication for #undef/pop_macro case. Added regression tests.
Reviewers: doug.gregor, klimek
Reviewed By: doug.gregor
CC: cfe-commits, chapuni
Differential Revision: http://llvm-reviews.chandlerc.com/D31
llvm-svn: 162845
This makes Clang produce an error for code such as:
__thread int x;
int *p = &x;
The lvalue of a thread-local variable cannot be evaluated at compile
time.
llvm-svn: 162835
In C++, objects being returned on the stack are actually copy-constructed into
the return value. That means that when a temporary is returned, it still has
to be destroyed, i.e. the returned expression will be wrapped in an
ExprWithCleanups node. Our "returning stack memory" checker needs to look
through this node to see if we really are returning an object by value.
PR13722
llvm-svn: 162817
and when used in property type declaration, is handled as type
attribute. Do not issue the warning when declaraing the property.
// rdar://12173491
llvm-svn: 162801
Specifically, CallEventManager::getCaller was looking at the call site for
an inlined call and trying to see what kind of call it was, but it only
checked for CXXConstructExprClass. (It's not using an isa<> here to avoid
doing three more checks on the the statement class.)
This caused an unreachable when we actually did inline the constructor of a
temporary object.
PR13717
llvm-svn: 162792
When exiting a function, the analyzer looks for the last statement in the
function to see if it's a return statement (and thus bind the return value).
However, the search for "the last statement" was accepting statements that
were in implicitly-generated inlined functions (i.e. destructors). So we'd
go and get the statement from the destructor, and then say "oh look, this
function had no explicit return...guess there's no return value". And /that/
led to the value being returned being declared dead, and all our leak
checkers complaining.
llvm-svn: 162791
variables without a storage class within a function, to implement
CUDA B.2.5: "__shared__ and __constant__ variables have implied static
storage [duration]."
llvm-svn: 162788
This warns in two specific situations:
1) For potentially swapped function arguments, e.g.
void foo(bool, float);
foo(1.7, false);
2) Misplaced brackets around function call arguments, e.g.
bool InRange = fabs(a - b < delta);
Where the last argument in a function call is implicitly converted
from bool to float, and the function returns a float which gets
implicitly converted to bool.
Patch by Andreas Eckleder!
llvm-svn: 162763
Previously, if we were tracking stores to a variable 'x', and came across this:
x = foo();
...we would simply emit a note here and stop. Now, we'll step into 'foo' and
continue tracking the returned value from there.
<rdar://problem/12114689>
llvm-svn: 162718
if we have something like:
@synthesize prop = _prop;
and '_prop' is not declared, we will encounter a '_prop' ivar before
encountering the 'prop' synthesize declaration and we will think that
we passed the region-of-interest, missing the cursor for 'prop'.
rdar://12172700
llvm-svn: 162715
Because the CXXNewExpr appears after the CXXConstructExpr in the CFG, we don't
actually have the correct region to construct into at the time we decide
whether or not to inline. The long-term fix (discussed in PR12014) might be to
introduce a new CFG node (CFGAllocator) that appears before the constructor.
Tracking the short-term fix in <rdar://problem/12180598>.
llvm-svn: 162689
This allows us to better reason about status objects, like Clang's own
llvm::Optional (when its contents are trivially destructible), which are
often intended to be passed around by value.
We still don't inline constructors for temporaries in the general case.
<rdar://problem/11986434>
llvm-svn: 162681
This allows checkers (like the MallocChecker) to process the effects of the
bind. Previously, using a memory-allocating function (like strdup()) in an
initializer would result in a leak warning.
This does bend the expectations of checkBind a bit; since there is no
assignment expression, the statement being used is the initializer value.
In most cases this shouldn't matter because we'll use a PostInitializer
program point (rather than PostStmt) for any checker-generated nodes, though
we /will/ generate a PostStore node referencing the internal statement.
(In theory this could have funny effects if someone actually does an
assignment within an initializer; in practice, that seems like it would be
very rare.)
<rdar://problem/12171711>
llvm-svn: 162637
by this mode, and also check for signed left shift overflow. The rules for the
latter are a little subtle:
* neither C89 nor C++98 specify the behavior of a signed left shift at all
* in C99 and C11, shifting a 1 bit into the sign bit has undefined behavior
* in C++11, with core issue 1457, shifting a 1 bit *out* of the sign bit has
undefined behavior
As of this change, we use the C99 rules for all C language variants, and the
C++11 rules for all C++ language variants. Once we have individual
-fcatch-undefined-behavior= flags, this should be revisited.
llvm-svn: 162634
make sure we walk up the DC chain for the current context,
rather than allowing ourselves to get switched over to the
canonical DC chain. Fixes PR13642.
llvm-svn: 162616
CodeGen option to a LangOpt option. In turn, hoist the guard into the parser
so that we avoid the new (and fairly unstable) Sema/AST/CodeGen logic. This
should restore the behavior of clang to that prior to r158325.
<rdar://problem/12163681>
llvm-svn: 162602
More generally, any time we try to track where a null value came from, we
should show if it came from a function. This usually isn't necessary if
the value is symbolic, but if the value is just a constant we previously
just ignored its origin entirely. Now, we'll step into the function and
recursively add a visitor to the returned expression.
<rdar://problem/12114609>
llvm-svn: 162563
* when checking that a pointer or reference refers to appropriate storage for a type, also check the alignment and perform a null check
* check that references are bound to appropriate storage
* check that 'this' has appropriate storage in member accesses and member function calls
llvm-svn: 162523
With inlining, retain count checker starts tracking 'self' through the
init methods. The analyser results were too noisy if the developer
did not follow 'self = [super init]' pattern (which is common
especially in older code bases) - we reported self init anti-pattern AND
possible use-after-free. This patch teaches the retain count
checker to assume that [super init] does not fail when it's not consumed
by another expression. This silences the retain count warning that warns
about possibility of use-after-free when init fails, while preserving
all the other checking on 'self'.
llvm-svn: 162508
Until we have full support for pointers-to-members, we can at least
approximate some of their use by tracking null and non-null values.
We thus treat &A::m_ptr as a non-null void * symbol, and MemberPointer(0)
as a pointer-sized null constant.
This enables support for what is sometimes called the "safe bool" idiom,
demonstrated in the test case.
llvm-svn: 162495
This is trivial; the UserDefinedConversion always wraps a CXXMemberCallExpr
for the appropriate conversion function, so it's just a matter of
propagating that value to the CastExpr itself.
llvm-svn: 162494
statement starts with an identifier for which name lookup will fail either way,
look at later tokens to disambiguate in order to improve error recovery.
llvm-svn: 162464
A CXXDefaultArgExpr wraps an Expr owned by a ParmVarDecl belonging to the
called function. In general, ExprEngine and Environment ought to treat this
like a ParenExpr or other transparent wrapper expression, with the inside
expression evaluated first.
However, if we call the same function twice, we'd produce a CFG that contains
the same wrapped expression twice, and we're not set up to handle that. I've
added a FIXME to the CFG builder to come back to that, but meanwhile we can
at least handle expressions that don't need to be explicitly evaluated:
literals. This probably handles many common uses of default parameters:
true/false, null, etc.
Part of PR13385 / <rdar://problem/12156507>
llvm-svn: 162453
name. This should reduce the amount of warning false positives about bad HTML
in comments when the comment author intended to put a reference to a template.
This change will also enable us parse the comment as intended in these cases.
Fixes part 1 of PR13374.
llvm-svn: 162407
The checker adds assumptions that the return values from the known APIs
are non-nil. Teach the checker about NSArray/NSMutableArray/NSOrderedSet
objectAtIndex, objectAtIndexedSubscript.
llvm-svn: 162398
As part of this change, I discovered that a few of our tests were not testing
the RangeConstraintManager. Luckily all of those passed when I moved them
over to use that constraint manager.
llvm-svn: 162384
The conditions described by POSIX can never happen with IEEE-754 floats.
When the function is const we can emit a single sse4.1 instruction for
it, without losing anything :)
llvm-svn: 162379
There were missed optimizations when the system headers didn't have attributes
in place, specifically:
- Add copysign, exp2, log2, nearbyint, rint and trunc to the list.
These are functions that get inlined by LLVM's optimizer, but only when they
have the right attributes.
- Mark copysign, fabs, fmax, fmin and trunc const unconditionally.
Previously these were only const with -fno-math-errno, but they never set
errno per POSIX.
For ceil/floor/nearbyint/round I'm not aware of any implementation that sets
errno, but POSIX says it may signal overflow so I left them alone for now.
llvm-svn: 162375
class extensions a little. clang now allows readonly property
with no ownership rule (assign, unsafe_unretained, weak, retain,
strong, or copy) with a readwrite property with an ownership rule.
// rdar://12103400
llvm-svn: 162319
The actual change here is a little more complicated than the summary above.
What we want to do is have our generic inlining tests run under whatever
mode is the default. However, there are some tests that depend on the
presence of C++ inlining, which still has some rough edges. These tests have
been explicitly marked as -analyzer-ipa=inlining in preparation for a new
mode that limits inlining to C functions and blocks. This will be the
default until the false positives for C++ have been brought down to
manageable levels.
llvm-svn: 162317
This reduces duplication across the Basic and Range constraint managers, and
keeps their internals free of dealing with the semantics of C++. It's still
a little unfortunate that the constraint manager is dealing with this at all,
but this is pretty much the only place to put it so that it will apply to all
symbolic values, even when embedded in larger expressions.
llvm-svn: 162313
to overwrite objects that might have been allocated into the type's
tail padding. This patch is missing some potential optimizations where
the destination is provably a complete object, but it's necessary for
correctness.
Patch by Jonathan Sauer.
llvm-svn: 162254
diagnostics for bad deployment targets and adding a few
more predicates. Includes a patch by Jonathan Schleifer
to enable ARC for ObjFW.
llvm-svn: 162252
The old error message stating that 'begin' was an undeclared identifier
is replaced with a new message explaining that the error is in the range
expression, along with which of the begin() and end() functions was
problematic if relevant.
Additionally, if the range was a pointer type or defines operator*,
attempt to dereference the range, and offer a FixIt if the modified range
works.
llvm-svn: 162248
By doing this in the constraint managers, we can ensure that ANY reference
whose value we don't know gets the effect, even if it's not a top-level
parameter.
llvm-svn: 162246
First, when synthesizing an explicitly strong/retain/copy property
of Class type, don't pretend during compatibility checking that the
property is actually assign. Instead, resolve incompatibilities
by secretly changing the type of *implicitly* __unsafe_unretained
Class ivars to be strong. This is moderately evil but better than
what we were doing.
Second, when synthesizing the setter for a strong property of
non-retainable type, be sure to use objc_setProperty. This is
possible when the property is decorated with the NSObject
attribute. This is an ugly, ugly corner of the language, and
we probably ought to deprecate it.
The first is rdar://problem/12039404; the second was noticed by
inspection while fixing the first.
llvm-svn: 162244
Under GC, a release message is ignored, so "release and stop tracking" just
becomes "stop tracking". But CFRelease is still honored. This is the main
difference between ns_consumed and cf_consumed.
llvm-svn: 162234
This is used to handle functions and methods that consume an argument
(annotated with the ns_consumed or cf_consumed attribute), but then the
argument's retain count may be further modified in a callback. We want
to warn about over-releasing, but we can't really track the object afterwards.
llvm-svn: 162221
Also, suggest 'readonly' even if the property has been given an ownership
attribute ('strong', 'weak', etc). This is used when properties are declared
readonly in the public interface but readwrite in a class extension.
<rdar://problem/11500004&11932285>
llvm-svn: 162220
Forgetting to at least cast the result was giving us Loc/NonLoc problems
in SValBuilder (hitting an assertion). But the standard (both C and C++)
does actually guarantee that && and || will result in the actual values
1 and 0, typed as 'int' in C and 'bool' in C++, and we can easily model that.
PR13461
llvm-svn: 162209
nested names as id-expressions, using the annot_primary_expr annotation, where
possible. This removes some redundant lookups, and also allows us to
typo-correct within tentative parsing, and to carry on disambiguating past an
identifier which we can determine will fail lookup as both a type and as a
non-type, allowing us to disambiguate more declarations (and thus offer
improved error recovery for such cases).
This also introduces to the parser the notion of a tentatively-declared name,
which is an identifier which we *might* have seen a declaration for in a
tentative parse (but only if we end up disambiguating the tokens as a
declaration). This is necessary to correctly disambiguate cases where a
variable is used within its own initializer.
llvm-svn: 162159
Our current handling of 'throw' is all CFG-based: it jumps to a 'catch' block
if there is one and the function exit block if not. But this doesn't really
get the right behavior when a function is inlined: execution will continue on
the caller's side, which is always the wrong thing to do.
Even within a single function, 'throw' completely skips any destructors that
are to be run. This is essentially the same problem as @finally -- a CFGBlock
that can have multiple entry points, whose exit points depend on whether it
was entered normally or exceptionally.
Representing 'throw' as a sink matches our current (non-)handling of @throw.
It's not a perfect solution, but it's better than continuing analysis in an
inconsistent or even impossible state.
<rdar://problem/12113713>
llvm-svn: 162157
The CFG approximates @throw as a return statement, but that's not good
enough in inlined functions. Moreover, since Objective-C exceptions are
usually considered fatal, we should be suppressing leak warnings like we
do for calls to noreturn functions (like abort()).
The comments indicate that we were probably intending to do this all along;
it may have been inadvertantly changed during a refactor at one point.
llvm-svn: 162156
specifier is unsed in a declaration; as it may not make the symbol
local to linkage unit as intended. Suggest using "hidden" visibility
attribute instead. // rdar://7703982
llvm-svn: 162138
declaration context, check whether the primary context---not the
current context---has any external visible declarations. Fixes
PR13616.
llvm-svn: 162083
both a waste of time, and prone to crash due to the use of the
error-recovery path in parser. Fixes <rdar://problem/12103608>, which
has been driving me nuts.
llvm-svn: 162081