symbols. Now we find the correct method.
Unfortunately we don't get the superclass from the
runtime yet so the method doesn't import correctly
(and I added a check to make sure that doesn't hurt
us) but once we get that information right we will
report methods correctly to the parser as well.
Getting superclass information requires a common AST
context for all Objective-C runtime information,
meaning that the superclass and the subclass are in
the same AST context in all cases. That is the next
thing that needs to be done here.
llvm-svn: 146089
from symbols more accessible, I have added a second
map to the ClangASTImporter: the ObjCInterfaceMetaMap.
This map keeps track of all type definitions found for
a particular Objective-C interface, allowing the
ClangASTSource to refer to all possible sources when
looking for method definitions.
There is a bug in lookup that I still need to figure out,
but after that we should be able to report full method
information for Objective-C classes shown in symbols.
Also fixed some errors I ran into when enabling the maps
for the persistent type store. The persistent type store
previously did not use the ClangASTImporter to import
types, instead using ASTImporters that got allocated each
time a type needed copying. To support the requirements
of the persistent type store -- namely, that types must be
copied, completed, and then completely severed from their
origin in the parser's AST context (which will go away) --
I added a new function called DeportType which severs all
these connections.
llvm-svn: 145914
add them to a fast lookup map. lldb_private::Symtab now export the following
public typedefs:
namespace lldb_private {
class Symtab {
typedef std::vector<uint32_t> IndexCollection;
typedef UniqueCStringMap<uint32_t> NameToIndexMap;
};
}
Clients can then find symbols by name and or type and end up with a
Symtab::IndexCollection that is filled with indexes. These indexes can then
be put into a name to index lookup map and control if the mangled and
demangled names get added to the map:
bool add_demangled = true;
bool add_mangled = true;
Symtab::NameToIndexMap name_to_index;
symtab->AppendSymbolNamesToMap (indexes, add_demangled, add_mangled, name_to_index).
This can be repeated as many times as needed to get a lookup table that
you are happy with, and then this can be sorted:
name_to_index.Sort();
Now name lookups can be done using a subset of the symbols you extracted from
the symbol table. This is currently being used to extract objective C types
from object files when there is no debug info in SymbolFileSymtab.
Cleaned up how the objective C types were being vended to be more efficient
and fixed some errors in the regular expression that was being used.
llvm-svn: 145777
object file can correctly make these symbols which will abstract us from the
file format and ABI and we can then ask for the objective C class symbol for
a class and find out which object file it was defined in.
llvm-svn: 145744
in the face of failures to import types, since blithely
passing on NULL types can sometimes lead to trouble.
Also eliminated a use of getAs and replaced it with
dyn_cast, which is more robust.
llvm-svn: 145628
enhancements. With these enhancements, the return values
of Objective-C methods with unknown return types can be
implicitly cast to id for the purpose of making method
calls.
So what would have required this:
(int)[(id)[ClassWithNoDebugInfo methodReturningObject] methodReturningInt]
can now be written as:
(int)[[ClassWithNoDebugInfo methodReturningObject] methodReturningInt]
llvm-svn: 145567
robust:
- Now a client can specify what kind of symbols
are needed; notably, this allows looking up
Objective-C class symbols specifically.
- In the class of symbols being looked up, if
one is non-NULL and others are NULL, LLDB now
prefers the non-NULL one.
llvm-svn: 145554
ClangASTSource::~ClangASTSource() was calling
ClangASTContext *scratch_clang_ast_context = m_target->GetScratchClangASTContext();
which had the side effect of deleting this very ClangASTSource instance. Not good.
Change it to
// We are in the process of destruction, don't create clang ast context on demand
// by passing false to Target::GetScratchClangASTContext(create_on_demand).
ClangASTContext *scratch_clang_ast_context = m_target->GetScratchClangASTContext(false);
The Target::GetScratchClangASTContext(bool create_on_demand=true) has a new signature.
llvm-svn: 145537
to find Objective-C class types by looking in the
symbol tables for the individual object files.
I did this as follows:
- I added code to SymbolFileSymtab that vends
Clang types for symbols matching the pattern
"_OBJC_CLASS_$_NSMyClassName," making them
appear as Objective-C classes. This only occurs
in modules that do not have debug information,
since otherwise SymbolFileDWARF would be in
charge of looking up types.
- I made a new SymbolVendor subclass for the
Apple Objective-C runtime that is in charge of
making global lookups of Objective-C types. It
currently just sends out type lookup requests to
the appropriate SymbolFiles, but in the future we
will probably extend it to query the runtime more
completely.
I also modified a testcase whose behavior is changed
by the fact that we now actually return an Objective-C
type for __NSCFString.
llvm-svn: 145526
management of what allocations remain after an
expression finishes executing. This saves around
2.5KiB per expression for simple expressions.
llvm-svn: 145342
several patches. These patches fix a problem
where templated types were not being completed the
first time they were used, and fix a variety of
minor issues I discovered while fixing that problem.
One of the previous local patches was resolved in
the most recent Clang, so I removed it. The others
will be removed in due course.
llvm-svn: 144984
to allow variables in the persistent variable store to know
how to complete themselves from debug information. That
fixes a variety of bugs during dematerialization of
expression results and also makes persistent variable and
result variables ($foo, $4, ...) more useful.
I have also added logging improvements that make it much
easier to figure out how types are moving from place to
place, and made some checking a little more aggressive.
The commit includes patches to Clang which are currently being
integrated into Clang proper; once these fixes are in Clang
top-of-tree, these patches will be removed. The patches don't
fix API; rather, they fix some internal bugs in Clang's
ASTImporter that were exposed when LLDB was moving types from
place to place multiple times.
llvm-svn: 144969
rather than individually on behalf of each
ASTContext. This allows the ASTImporter to know
about all containers of types, which will let it
be smarter about forwarding information about
type origins. That means that the following
sequence of steps will be possible (after a few
more changes):
- Import a type from a Module's ASTContext into
an expression parser ASTContext, tracking its
origin information -- this works now.
- Because the result of the expression uses that
type, import it from the expression parser
ASTContext into the Target's scratch AST
context, forwarding the origin information --
this needs to be added.
- For a later expression that uses the result,
import the type from the Target's scratch AST
context, still forwarding origin information
-- this also needs to be added.
- Use the intact origin information to complete
the type as needed -- this works now if the
origin information is present.
To this end, I made the following changes:
- ASTImporter top-level copy functions now
require both a source and a destination AST
context parameter.
- The ASTImporter now knows how to purge
records related to an ASTContext that is
going away.
- The Target now owns and creates the ASTImporter
whenever the main executable changes or (in the
absence of a main executable) on demand.
llvm-svn: 144802
types. First, I added handling for the memset intrinsic
in the IR, which is used to zero out the returned struct.
Second, I fixed the object-checking instrumentation
to objc_msgSend_stret, and generally tightened up how
the object-checking functions get inserted.
llvm-svn: 144741
of problems with Objective-C object completion. To go
along with the LLVM/Clang-side fixes, we have a variety
of Objective-C improvements.
Fixes include:
- It is now possible to run expressions when stopped in
an Objective-C class method and have "self" act just
like "self" would act in the class method itself (i.e.,
[self classMethod] works without casting the return
type if debug info is present). To accomplish this,
the expression masquerades as a class method added by
a category.
- Objective-C objects can now provide methods and
properties and methods to Clang on demand (i.e., the
ASTImporter sets hasExternalVisibleDecls on Objective-C
interface objects).
- Objective-C built-in types, which had long been a bone
of contention (should we be using "id"? "id*"?), are
now fetched correctly using accessor functions on
ClangASTContext. We inhibit searches for them in the
debug information.
There are also a variety of logging fixes, and I made two
changes to the test suite:
- Enabled a test case for Objective-C properties in the
current translation unit.
- Added a test case for calling Objective-C class methods
when stopped in a class method.
llvm-svn: 144607
This is the actual fix for the above radar where global variables that weren't
initialized were not being shown correctly when leaving the DWARF in the .o
files. Global variables that aren't intialized have symbols in the .o files
that specify they are undefined and external to the .o file, yet document the
size of the variable. This allows the compiler to emit a single copy, but makes
it harder for our DWARF in .o files with the executable having a debug map
because the symbol for the global in the .o file doesn't exist in a section
that we can assign a fixed up linked address to, and also the DWARF contains
an invalid address in the "DW_OP_addr" location (always zero). This means that
the DWARF is incorrect and actually maps all such global varaibles to the
first file address in the .o file which is usually the first function. So we
can fix this in either of two ways: make a new fake section in the .o file
so that we have a file address in the .o file that we can relink, or fix the
the variable as it is created in the .o file DWARF parser and actually give it
the file address from the executable. Each variable contains a
SymbolContextScope, or a single pointer that helps us to recreate where the
variables came from (which module, file, function, etc). This context helps
us to resolve any file addresses that might be in the location description of
the variable by pointing us to which file the file address comes from, so we
can just replace the SymbolContextScope and also fix up the location, which we
would have had to do for the other case as well, and update the file address.
Now globals display correctly.
The above changes made it possible to determine if a variable is a global
or static variable when parsing DWARF. The DWARF emits a DW_TAG_variable tag
for each variable (local, global, or static), yet DWARF provides no way for
us to classify these variables into these categories. We can now detect when
a variable has a simple address expressions as its location and this will help
us classify these correctly.
While making the above changes I also noticed that we had two symbol types:
eSymbolTypeExtern and eSymbolTypeUndefined which mean essentially the same
thing: the symbol is not defined in the current object file. Symbol objects
also have a bit that specifies if a symbol is externally visible, so I got
rid of the eSymbolTypeExtern symbol type and moved all code locations that
used it to use the eSymbolTypeUndefined type.
llvm-svn: 144489
interfaces. This allows us to pull in Objective-C
method types on demand, which is also now implemented.
Also added a minor fix to prevent multiple-definition
errors for "Class" and "id".
llvm-svn: 144405
lookups for Objective-C methods by selector.
Right now all it does is print log information.
Also improved the logging for imported TagDecls
to indicate whether or not the definition for
the imported TagDecl is complete.
llvm-svn: 144203
which will in the future allow expressions to be
compiled as C, C++, and Objective-C instead of the
current default Objective-C++. This feature requires
some additional support from Clang -- specifically, it
requires reference types in the parser regardless of
language -- so it is not yet exposed to the user.
llvm-svn: 144042
C++ vtables, fixing a record layout problem in the
expression parser.
Also fixed various problems with the generation
and unpacking of llvm.zip given our new better
handling of multiple architectures in the LLVM
build.
(And added a log message that will hopefully catch
record layout problems in the future.)
llvm-svn: 143741
target is stopped in a C++ or Objective-C method
but the "self" pointer's valid range actually
doesn't cover the current location. Before, that
was confusing Clang to the point where it crashed;
now, we sanity-check and fall back to pretending
we're in a C function if "self" or "this" isn't
available.
llvm-svn: 143676
IRInterpreter to get the value, not the location,
of references. The location of a reference has
type T&&, which is meaningless to Clang.
llvm-svn: 143592
allows us to set __attribute__ ((used)) on expressions
that masquerade as methods. When we are stopped in
classes in anonymous namespaces, this fix (and enabling
__attribute__ ((used)) on the method) will allow
expressions to run.
llvm-svn: 143560
generated special member functions (constructors,
destructors, etc.) for classes that don't really have
them. We needed to mark these as artificial to reflect
the debug information; this bug does that for
constructors and destructors.
The "etc." case (certain assignment operators, mostly)
remains to be fixed.
llvm-svn: 143526
correctly, and added a testcase to check that it works.
The main problem here is that Objective-C class method
selectors are external references stored in a special
data structure in the LLVM IR module for an expression.
I just had to extract them and ensure that the real
class object locations were properly resolved.
llvm-svn: 143520
method as __attribute__ ((used)) when adding it to a
class. This functionality is useful when stopped in
anonymous namespaces: expressions attached to classes
in anonymous namespaces are typically elided by Clang's
CodeGen because they have no namespaces are intended
not to be externally visible. __attribute__ ((used))
forces CodeGen to emit the function.
Right now, __attribute__ ((used)) causes the JIT not to
emit the function, so we're not enabling it until we
fix that.
llvm-svn: 143469
"object borked"... Also made the error when the checker fails reflect this fact rather than
report a crash at 0x0.
Also a little cleanup:
- StopInfoMachException had a redundant copy of the description string.
- ThreadPlanCallFunction had a redundant copy of the thread, and had a
copy of the process that it didn't really need.
llvm-svn: 143419
detecting Objective-C method calls because the
"lldb.call.realName" metadata was no longer
being correctly installed. I fixed this problem.
llvm-svn: 143371
ClangExpressionDeclMap to ClangASTSource, and
moved all general type and namespace lookups
into ClangASTSource. Now ClangASTSource is ready
to complete types given nothing more than a target
and an AST context.
llvm-svn: 143292
AST importer on completing namespace mappings from
ClangExpressionDeclMap to ClangASTSource.
ClangASTSource now contains a TargetSP which it
uses to lookup namespaces in all of a target's
modules. I will use the TargetSP in the future to
look up globals.
llvm-svn: 143275
allow it to complete types on behalf of any AST context
(including the "scratch" AST context associated with
the target), I scrapped its role as intermediary between
the Clang parser and ClangExpressionDeclMap, and instead
made ClangExpressionDeclMap inherit from ClangASTSource.
After this, I will migrate the functions that complete
types and perform namespace lookups from
ClangExpressionDeclMap to ClangASTSource. Ultimately
ClangExpressionDeclMap's only responsiblity will be to
look up variables and ensure that they are materialized
and dematerialized correctly.
llvm-svn: 143253
of reference types. Previously, such variables were
materialized as references to those references, which
caused undesried behavior in Clang and was useless anyway
(the benefit of using references to variables is that it
allows expressions to modify variables in place, but for
references that's not required).
Now we just materialize the references directly, which
fixes a variety of expressions that use references.
llvm-svn: 143137
"_cmd", "this", and "self". These variables are handled
differently from all other external variables used by
the expression. Other variables are used indirectly
through the $__lldb_arg operand; only _cmd, this, and
self are passed directly through the ABI.
There are two modifications:
- I added a function to ClangExpressionDeclMap that
retrives the value of one of these variables by name;
and
- I made IRInterpreter fetch these values when needed,
and ensured that the proper level of indirection is
used.
llvm-svn: 143065
types of the same name. If a local variable with the
given name is found (and we are not searching a
specific namespace) we stop right then and there and
report it.
llvm-svn: 142962
parser. Now expression like the following work as
expected:
-
(lldb) expr struct { int a; int b; } $blah = { 10, 20 }
<no result>
(lldb) expr $blah
(<anonymous struct at Parse:6:5>) $blah = {
(int) a = 10
(int) b = 20
}
-
Now the IRForTarget subsystem knows how to handle
static initializers of various composite types.
Also removed an unnecessary parameter from
ClangExpressionDeclMap::GetFunctionInfo.
llvm-svn: 142936
for debug information that occasionally gets the
const-ness of member functions wrong. We used to
demangle the name, add "const," and remangle it; now
we handle the mangled name directly, which is more
robust.
llvm-svn: 142933
permits a namespace map to be created and populated
when the namespace is imported, not just when it is
requested via FindExternalVisibleDecls().
llvm-svn: 142690
of arbitrary pointers, allowing direct dereferences
of literal addresses. Also disabled special-cased
generation of certain expression results (especially
casts), substituting the IR interpreter.
llvm-svn: 142638
std::string and modified all places that used the std::string it returned
to use the "const char *".
Also modified the expression parser to not crash when a function type fails
to copy into the expression AST context.
llvm-svn: 142561
we never used) with a much simpler class that wraps
the relevant dump functions in Clang. This class also
knows to disable external lookups on DeclContexts
being dumped so it should be safe to print incomplete
Decls.
llvm-svn: 142359
FindExternalVisibleDecls and FindExternalLexicalDecls
are marked and given unique IDs, so that all logging
done as part of their execution can be traced back to
the proper call.
Also there was some logging that really wasn't helpful
in most cases so I disabled it unless verbose logging
(log enable -v lldb expr) is enabled.
llvm-svn: 141987
make it easier to track down which members belong
to which structs (and which call to
FindExternalLexicalDecls is doing the reporting).
llvm-svn: 141930
Specifically, the expression parser used to use
functions attached to SymbolContext to do lookups,
but nowadays it searches a ModuleList or Module
directly instead. These functions had no
remaining clients so I removed them to prevent
bit rot.
I also removed a stray callback function from
ClangExpressionDeclMap.
llvm-svn: 141899
which had previously been commented out while I tested
it. It's not fully working yet, but it doesn't break
our testsuite and it's an important piece of
functionality.
Also added some logging to SymbolFileDWARF to help
diagnose entities that are found in a symbol file,
but do not reside in the expected namespace.
llvm-svn: 141894
context object. Having it populated and registered
within a single FindExternalVisibleDecls call worked
fine when there was only one call (i.e., when we were
just looking in the global namespace).
However, now FindExternalVisibleDecls is called for
nested namespaces as well, which means that it is
called not once but many times (once per module in
which the parent namespace appears). This means that
the namespace mapping is built up across many calls
to the inferior FindExternalVisibleDecls, so I moved
it into a data structure (the search context) that is
shared by all calls.
I also added some logging to make it easier to see
what is happening during a namespace search, and
cleaned up some existing logging.
llvm-svn: 141888
down through Module and SymbolVendor into SymbolFile.
Added checks to SymbolFileDWARF that restrict symbol
searches when a namespace is passed in.
llvm-svn: 141847
we don't need to look them up again when materializing.
Switched over the materialization mechanism (for JIT
expressions) and the lookup mechanism (for interpreted
expressions) to use the VariableSP/Symbol that were
found during parsing.
llvm-svn: 141839
lifetime of ClangExpressionDeclMap. This allows
ClangExpressionVariables found during parsing to be
queried for their containing namespaces during
expression execution.
Other clients (like ClangFunction) explicitly delete
this state, so they should not result in any memory
leaks.
llvm-svn: 141821
calls to the FindExternalVisibleDecls function.
FindExternalVisibleDecls was recording whether
it had found generic function symbols in variables
that were local to the function. Now, however,
multiple calls occur in response to one request
from Clang, since we may be searching across
namespaces. To support that, I moved the local
variables into a bitfield in NameSearchContext.
llvm-svn: 141808
of namespaces (only in the modules where they've
been found) for entities inside those namespaces.
For each NamespaceDecl that has been imported into
the parser, we maintain a map containing
[ModuleSP, ClangNamespaceDecl] pairs in the ASTImporter.
This map has one entry for each module in which the
namespace has been found. When we later scan for an
entity inside a namespace, we search only the modules
in which that namespace was found.
Also made a small whitespace fix in
ClangExpressionParser.cpp.
llvm-svn: 141748
This involved minor changes to the way we report Objective-C
methods, as well as cosmetic changes and added parameters
for a variety of Clang APIs.
llvm-svn: 141437
expression into a separate class. This class
encapsulates wrapping the function as needed. I
am also moving from using booleans to indicate
what the expression's language should be to using
lldb::LanguageType instead.
llvm-svn: 140545
shared pointers.
Changed the ExecutionContext over to use shared pointers for
the target, process, thread and frame since these objects can
easily go away at any time and any object that was holding onto
an ExecutionContext was running the risk of using a bad object.
Now that the shared pointers for target, process, thread and
frame are just a single pointer (they all use the instrusive
shared pointers) the execution context is much safer and still
the same size.
Made the shared pointers in the the ExecutionContext class protected
and made accessors for all of the various ways to get at the pointers,
references, and shared pointers.
llvm-svn: 140298
it to generate result variables that were not bound
to their underlying data. This allowed the SBValue
class to use the interpreter (if possible).
Also made sure that any result variables that point
to stack allocations in the stack frame of the
interpreted expressions do not get live data.
llvm-svn: 140285
allocate memory in a process that did not support
expression execution. Also improved detection of
whether or not a process can execute expressions.
llvm-svn: 140202
stdarg formats to use __attribute__ format so the compiler can flag
incorrect uses. Fix all incorrect uses. Most of these are innocuous,
a few were resulting in crashes.
llvm-svn: 140185
__attribute__ format so the compiler knows that this method takes
printf style formatter arguments and checks that it's being used
correctly. Fix a couple dozen incorrect SetErrorStringWithFormat()
calls throughout the sources.
llvm-svn: 140115
We had some cases where getting the shared pointer for a module from
the global module list was causing a performance issue when debugging
with DWARF in .o files. Now that the module uses intrusive ref counts,
we can easily convert any pointer to a shared pointer.
llvm-svn: 139983
to execute expressions even in the absence of a process.
This allows expressions to run in situations where the
target cannot run -- e.g., to perform calculations based
on type information, or to inspect a binary's static
data.
This modification touches the following files:
lldb-private-enumerations.h
Introduce a new enum specifying the policy for
processing an expression. Some expressions should
always be JITted, for example if they are functions
that will be used over and over again. Some
expressions should always be interpreted, for
example if the target is unsafe to run. For most,
it is acceptable to JIT them, but interpretation
is preferable when possible.
Target.[h,cpp]
Have EvaluateExpression now accept the new enum.
ClangExpressionDeclMap.[cpp,h]
Add support for the IR interpreter and also make
the ClangExpressionDeclMap more robust in the
absence of a process.
ClangFunction.[cpp,h]
Add support for the new enum.
IRInterpreter.[cpp,h]
New implementation.
ClangUserExpression.[cpp,h]
Add support for the new enum, and for running
expressions in the absence of a process.
ClangExpression.h
Remove references to the old DWARF-based method
of evaluating expressions, because it has been
superseded for now.
ClangUtilityFunction.[cpp,h]
Add support for the new enum.
ClangExpressionParser.[cpp,h]
Add support for the new enum, remove references
to DWARF, and add support for checking whether
the expression could be evaluated statically.
IRForTarget.[h,cpp]
Add support for the new enum, and add utility
functions to support the interpreter.
IRToDWARF.cpp
Removed
CommandObjectExpression.cpp
Remove references to the obsolete -i option.
Process.cpp
Modify calls to ClangUserExpression::Evaluate
to pass the correct enum (for dlopen/dlclose)
SBValue.cpp
Add support for the new enum.
SBFrame.cpp
Add support for he new enum.
BreakpointOptions.cpp
Add support for the new enum.
llvm-svn: 139772
Address ranges are now split up into two different tables:
- one in DWARFDebugInfo that is compile unit specific
- one in each DWARFCompileUnit that has exact function DIE offsets
This helps keep the size of the aranges down since the main table will get
uniqued and sorted and have consecutive ranges merged. We then only parse the
compile unit one on demand once we have determined that a compile unit contains
the address in question. We also now use the .debug_aranges section if there
is one instead of always indexing the DWARF manually.
NameToDIE now uses a UniqueCStringMap<dw_offset> map instead of a std::map.
std::map is very bulky as each node has 3 pointers and the key and value types.
This gets our NameToDIE entry down to 12 bytes each instead of 48 which saves
us a lot of memory when we have very large DWARF.
DWARFDebugAranges now has a smaller footprint for each range it contains to
save on memory.
llvm-svn: 139557
register names when dumping variable locations and location lists. Also did
some cleanup where "int" types were being used for "lldb::RegisterKind"
values.
llvm-svn: 138988
expression parser. You can use a persistent
type like this:
(lldb) expr struct $foo { int a; int b; };
(lldb) struct $foo i; i.a = 2; i.b = 3; i
($foo) $0 = {
(int) a = 2
(int) b = 3
}
typedefs work similarly.
This patch affects the following files:
test/expression_command/persistent_types/*
A test case for persistent types,
in particular structs and typedefs.
ClangForward.h
Added TypeDecl, needed to declare some
functions in ASTResultSynthesizer.h
ClangPersistentVariables.[h,cpp]
Added a list of persistent types to the
persistent variable store.
ASTResultSynthesizer.[h,cpp]
Made the AST result synthesizer iterate
across TypeDecls in the expression, and
record any persistent types found. Also
made a minor documentation fix.
ClangUserExpression.[h,cpp]
Extended the user expression class to
keep the state needed to report the
persistent variable store for the target
to the AST result synthesizers.
Also introduced a new error code for
expressions that executed normally but
did not return a result.
CommandObjectExpression.cpp
Improved output for expressions (like
declarations of new persistent types) that
don't return a result. This is no longer
treated as an error.
llvm-svn: 138383
being searched for in too heavyweight a way. Now,
when asking for the address of a function, the
expression parser just asks for a corresponding
data symbol.
llvm-svn: 137731
cause extra shared pointer references to one or more modules to be leaked.
This would cause many object files to stay around the life of LLDB, so after
a recompile and rexecution, we would keep adding more and more memory. After
fixing the leak, we found many cases where leaked stack frames were still
being used and causing crashes in the test suite. These are now all resolved.
llvm-svn: 137516
of string literals ("hello"[2]). Also fixed a
problem in which empty string literals were not
being compiled correctly ((int)printf("") would
print garbage).
Added a testcase that covers both.
llvm-svn: 137247
ability to dump more information about modules in "target modules list". We
can now dump the shared pointer reference count for modules, the pointer to
the module itself (in case performance tools can help track down who has
references to said pointer), and the modification time.
Added "target delete [target-idx ...]" to be able to delete targets when they
are no longer needed. This will help track down memory usage issues and help
to resolve when module ref counts keep getting incremented. If the command gets
no arguments, the currently selected target will be deleted. If any arguments
are given, they must all be valid target indexes (use the "target list"
command to get the current target indexes).
Took care of a bunch of "no newline at end of file" warnings.
TimeValue objects can now dump their time to a lldb_private::Stream object.
Modified the "target modules list --global" command to not error out if there
are no targets since it doesn't require a target.
Fixed an issue in the MacOSX DYLD dynamic loader plug-in where if a shared
library was updated on disk, we would keep using the older one, even if it was
updated.
Don't allow the ModuleList::GetSharedModule(...) to return an empty module.
Previously we could specify a valid path on disc to a module, and specify an
architecture that wasn't contained in that module and get a shared pointer to
a module that wouldn't be able to return an object file or a symbol file. We
now make sure an object file can be extracted prior to adding the shared pointer
to the module to get added to the shared list.
llvm-svn: 137196
that detects what context the current expression is
meant to execute in. LLDB now properly consults
the method declaration in the debug information
rather than trying to hunt down the "this" or "self"
pointer by name, which can be misleading.
Other fixes include:
- LLDB now properly detects that it is inside
an inlined C++ member function.
- LLDB now allows access to non-const members when
in const code.
- The functions in SymbolFile that locate the
DeclContext containing a DIE have been renamed
to reflect what they actually do. I have added
new functions that find the DeclContext for the
DIE itself.
I have also introduced testcases for C++ and
Objective-C.
llvm-svn: 136999
expressions that used function pointers. The problem
was that IRForTarget previously only scanned the IR
for the expression for call instructions; if a function
was used in another context, it was ignored.
Now LLDB scans the Module for functions that are only
declared (not also defined -- so these are externals);
it then constructs function pointers for these
functions and substitutes them wherever the function
is used.
Also made some changes so that "expr main" works just
as well as "expr &main"; they end up being the same
code, but LLDB was generating the result variable in
different ways.
llvm-svn: 136928
current context. Previously, if there was a variable
called "self" available, the expression parser
assumed it was inside a method. But class methods
in Objective-C also take a "self" parameter, of DWARF
type "id". We now detect this properly, and only
assume we're in an instance method if "self" is a
pointer to an Objective-C object.
llvm-svn: 136784
caused functions that were cast as part of the
call to have that cast ignored once their
addresses were resolved.
Notably, in the case of objc_msgSend(), if
the function was cast from something returning
i8* to something returning i8, the expression
parser was discarding the cast as part of its
resolution. This caused crashes later on.
llvm-svn: 136648
treated as externals, causing problems when we
tried to look their locations up in the debug
info. For example:
expr char c[] = "foo"; c[0]
would terminate when trying to find c in the
debug information, despite the fact that c was
defined inside the expression.
llvm-svn: 136629
completes the support in the LLDB expression parser
for incomplete types. Clang now imports types
lazily, and we complete those types as necessary.
Changes include:
- ClangASTSource now supports three APIs which it
passes to ClangExpressionDeclMap. CompleteType
completes a TagDecl or an ObjCInterfaceDecl when
needed; FindExternalVisibleDecls finds named
entities that are visible in the expression's
scope; and FindExternalLexicalDecls performs a
(potentially restricted) search for entities
inside a lexical scope like a namespace. These
changes mean that entities in namespaces should
work normally.
- The SymbolFileDWARF code for searching a context
for a specific name is now more general, and can
search arbitrary contexts.
- We are continuing to adapt our calls into LLVM
from interfaces that take start and end iterators
when accepting multiple items to interfaces that
use ArrayRef.
- I have cleaned up some code, especially our use
of namespaces.
This change is neutral for our testsuite and greatly
improves correctness for large programs (like Clang)
with complicated type systems. It should also lay
the groundwork for improving the expression parser's
performance as we are lazier and lazier about
providing type information.
llvm-svn: 136555
Used hand merge to apply the diffs. I did not apply the diffs for FormatManager.h and
the diffs for memberwise initialization for ValueObject.cpp because they changed since.
I will ask my colleague to apply them later.
llvm-svn: 135508
Code cleanup:
- The Format Manager implementation is now split between two files: FormatClasses.{h|cpp} where the
actual formatter classes (ValueFormat, SummaryFormat, ...) are implemented and
FormatManager.{h|cpp} where the infrastructure classes (FormatNavigator, FormatManager, ...)
are contained. The wrapper code always remains in Debugger.{h|cpp}
- Several leftover fields, methods and comments from previous design choices have been removed
type category subcommands (enable, disable, delete) now can take a list of category names as input
- for type category enable, saying "enable A B C" is the same as saying
enable C
enable B
enable A
(the ordering is relevant in enabling categories, and it is expected that a user typing
enable A B C wants to look into category A, then into B, then into C and not the other
way round)
- for the other two commands, the order is not really relevant (however, the same inverted ordering
is used for consistency)
llvm-svn: 135494
with the "target modules lookup --address <addr>" command. The variable
ID's, names, types, location for the address, and declaration is
displayed.
This can really help with crash logs since we get, on MacOSX at least,
the registers for the thread that crashed so it is often possible to
figure out some of the variable contents.
llvm-svn: 134886
pointers. Some of the spots are obviously initialized
later, but it's better just to NULL the pointers out
at initialization to make the code more robust when
exposed to later changes.
llvm-svn: 134670
searching for variables and symbols in the target
more robust. These checks prevent variables from
being reported as existing if they cannot actually
be evaluated in the current context.
llvm-svn: 134656
variables prior to running your binary. Zero filled sections now get
section data correctly filled with zeroes when Target::ReadMemory
reads from the object file section data.
Added new option groups and option values for file lists. I still need
to hook up all of the options to "target variable" to allow more complete
introspection by file and shlib.
Added the ability for ValueObjectVariable objects to be created with
only the target as the execution context. This allows them to be read
from the object files through Target::ReadMemory(...).
Added a "virtual Module * GetModule()" function to the ValueObject
class. By default it will look to the parent variable object and
return its module. The module is needed when we have global variables
that have file addresses (virtual addresses that are specific to
module object files) and in turn allows global variables to be displayed
prior to running.
Removed all of the unused proxy object support that bit rotted in
lldb_private::Value.
Replaced a lot of places that used "FileSpec::Compare (lhs, rhs) == 0" code
with the more efficient "FileSpec::Equal (lhs, rhs)".
Improved logging in GDB remote plug-in.
llvm-svn: 134579
objective C or C++ methods when "self" or "this" were in scope, but had
invalid locations in a DWARF location list. The lack of a valid value caused
us to use an invalid type value and then we tried to import that invalid
value and we would crash.
llvm-svn: 134518
"struct ", "class ", and "union " from the start of any type names that are
extracted from clang QualType objects. I had to fix test suite cases that
were expecting the struct/union/class prefix to be there.
llvm-svn: 134132
inspection of namespaces in the expression parser.
ClangExpressionDeclMap hitherto reported that namespaces had
been completely imported, even though the namespaces are
returned empty. To deal with this situation, ClangASTSource
was recently extended with an API to complete incomplete type
definitions, and, for greater efficiency, to complete these
definitions partially, returning only those objects that have
a given name.
This commit supports these APIs on LLDB's side, and uses it
to provide information on types resident in namespaces.
Namespaces are now imported as they were -- that is to say,
empty -- but with minimal import mode on. This means that
Clang will come back and request their contents by name as
needed. We now respond with information on the contained
types; this will be followed soon by information on functions
and variables.
llvm-svn: 133852
virtual bool
ABI::StackUsesFrames () = 0;
Should return true if your ABI uses frames when doing stack backtraces. This
means a frame pointer is used that points to the previous stack frame in some
way or another.
virtual bool
ABI::CallFrameAddressIsValid (lldb::addr_t cfa) = 0;
Should take a look at a call frame address (CFA) which is just the stack
pointer value upon entry to a function. ABIs usually impose alignment
restrictions (4, 8 or 16 byte aligned), and zero is usually not allowed.
This function should return true if "cfa" is valid call frame address for
the ABI, and false otherwise. This is used by the generic stack frame unwinding
code to help determine when a stack ends.
virtual bool
ABI::CodeAddressIsValid (lldb::addr_t pc) = 0;
Validates a possible PC value and returns true if an opcode can be at "pc".
Some ABIs or architectures have fixed width instructions and must be aligned
to a 2 or 4 byte boundary. "pc" can be an opcode or a callable address which
means the load address might be decorated with extra bits (such as bit zero
to indicate a thumb function call for ARM targets), so take this into account
when returning true or false. The address should also be validated to ensure
it is a valid address for the address size of the inferior process. 32 bit
targets should make sure the address is less than UINT32_MAX.
Modified UnwindLLDB to use the new ABI functions to help it properly terminate
stacks.
Modified the mach-o function that extracts dependent files to not resolve the
path as the paths inside a binary might not match those on the current
host system.
llvm-svn: 132021
into the mainline LLDB codebase. MCJIT introduces
API improvements and better architectural support.
This commit adds a new subsystem, the
ProcessDataAllocator, which is responsible for
performing static data allocations on behalf of the
IR transformer. MCJIT currently does not support
the relocations required to store the constant pool
in the same allocation as the function body, so we
allocate a heap region separately and redirect
static data references from the expression to that
heap region in a new IR modification pass.
This patch also fixes bugs in the IR
transformations that were exposed by the transition
to the MCJIT. Finally, the patch also pulls in a
more recent revision of LLVM so that the MCJIT is
available for use.
llvm-svn: 131923
of duplicated code from appearing all over LLDB:
lldb::addr_t
Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error);
bool
Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error);
size_t
Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error);
size_t
Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error);
in lldb_private::Process the following functions were renamed:
From:
uint64_t
Process::ReadUnsignedInteger (lldb::addr_t load_addr,
size_t byte_size,
Error &error);
To:
uint64_t
Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr,
size_t byte_size,
uint64_t fail_value,
Error &error);
Cleaned up a lot of code that was manually doing what the above functions do
to use the functions listed above.
Added the ability to get a scalar value as a buffer that can be written down
to a process (byte swapping the Scalar value if needed):
uint32_t
Scalar::GetAsMemoryData (void *dst,
uint32_t dst_len,
lldb::ByteOrder dst_byte_order,
Error &error) const;
The "dst_len" can be smaller that the size of the scalar and the least
significant bytes will be written. "dst_len" can also be larger and the
most significant bytes will be padded with zeroes.
Centralized the code that adds or removes address bits for callable and opcode
addresses into lldb_private::Target:
lldb::addr_t
Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const;
lldb::addr_t
Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const;
All necessary lldb_private::Address functions now use the target versions so
changes should only need to happen in one place if anything needs updating.
Fixed up a lot of places that were calling :
addr_t
Address::GetLoadAddress(Target*);
to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress()
as needed. There were many places in the breakpoint code where things could
go wrong for ARM if these weren't used.
llvm-svn: 131878
addr_t
Address::GetCallableLoadAddress (Target *target) const;
This will resolve the load address in the Address object and optionally
decorate the address up to be able to be called. For all non ARM targets, this
just essentially returns the result of "Address::GetLoadAddress (target)". But
for ARM targets, it checks if the address is Thumb, and if so, it returns
an address with bit zero set to indicate a mode switch to Thumb. This is how
we need function pointers to be for return addresses and when resolving
function addresses for the JIT. It is also nice to centralize this in one spot
to avoid having multiple copies of this code.
llvm-svn: 131588
Modified ClangUserExpression and ClangUtilityFunction to display the actual
error (if one is available) that made the JIT fail instead of a canned
response.
Fixed the restoring of all register values when the 'G' packet doesn't work
to use the correct data.
llvm-svn: 131454
give the reason for the interrupt. Also make sure it we don't want to unwind from the evaluation
we print something if it is interrupted.
llvm-svn: 131448
thread plan. In order to get the return value, you can call:
void
ThreadPlanCallFunction::RequestReturnValue (lldb::ValueSP &return_value_sp);
This registers a shared pointer to a return value that will get filled in if
everything goes well. After the thread plan is run the return value will be
extracted for you.
Added an ifdef to be able to switch between the LLVM MCJIT and the standand JIT.
We currently have the standard JIT selected because we have some work to do to
get the MCJIT fuctioning properly.
Added the ability to call functions with 6 argument in the x86_64 ABI.
Added the ability for GDBRemoteCommunicationClient to detect if the allocate
and deallocate memory packets are supported and to not call allocate memory
("_M") or deallocate ("_m") if we find they aren't supported.
Modified the ProcessGDBRemote::DoAllocateMemory(...) and ProcessGDBRemote::DoDeallocateMemory(...)
to be able to deal with the allocate and deallocate memory packets not being
supported. If they are not supported, ProcessGDBRemote will switch to calling
"mmap" and "munmap" to allocate and deallocate memory instead using our
trivial function call support.
Modified the "void ProcessGDBRemote::DidLaunchOrAttach()" to correctly ignore
the qHostInfo triple information if any was specified in the target. Currently
if the target only specifies an architecture when creating the target:
(lldb) target create --arch i386 a.out
Then the vendor, os and environemnt will be adopted by the target.
If the target was created with any triple that specifies more than the arch:
(lldb) target create --arch i386-unknown-unknown a.out
Then the target will maintain its triple and not adopt any new values. This
can be used to help force bare board debugging where the dynamic loader for
static files will get used and users can then use "target modules load ..."
to set addressses for any files that are desired.
Added back some convenience functions to the lldb_private::RegisterContext class
for writing registers with unsigned values. Also made all RegisterContext
constructors explicit to make sure we know when an integer is being converted
to a RegisterValue.
llvm-svn: 131370
as non-const in the debug information, added a fallback
to GetFunctionAddress, adding the const qualifier after
the fact and searching again.
llvm-svn: 131299
representing variables whose type must be inferred
from the way they are used. Functions without debug
information now return UnknownAnyTy and must be cast.
Variables with no debug information are not yet using
UnknownAnyTy; instead they are assumed to be void*.
Support for variables of unknown type is coming (and,
in fact, some relevant support functions are included
in this commit) but will take a bit of extra effort.
The testsuite has also been updated to reflect the new
requirement that the result of printf be cast, i.e.
expr (int) printf("Hello world!")
llvm-svn: 131263
treated as being permanently resident in target
memory. In fact, since the expression's stack frame
is deleted and potentially re-used after the
expression completes, the variables need to be treated
as being freeze-dried.
llvm-svn: 131104
into some cleanup I have been wanting to do when reading/writing registers.
Previously all RegisterContext subclasses would need to implement:
virtual bool
ReadRegisterBytes (uint32_t reg, DataExtractor &data);
virtual bool
WriteRegisterBytes (uint32_t reg, DataExtractor &data, uint32_t data_offset = 0);
There is now a new class specifically designed to hold register values:
lldb_private::RegisterValue
The new register context calls that subclasses must implement are:
virtual bool
ReadRegister (const RegisterInfo *reg_info, RegisterValue ®_value) = 0;
virtual bool
WriteRegister (const RegisterInfo *reg_info, const RegisterValue ®_value) = 0;
The RegisterValue class must be big enough to handle any register value. The
class contains an enumeration for the value type, and then a union for the
data value. Any integer/float values are stored directly in an appropriate
host integer/float. Anything bigger is stored in a byte buffer that has a length
and byte order. The RegisterValue class also knows how to copy register value
bytes into in a buffer with a specified byte order which can be used to write
the register value down into memory, and this does the right thing when not
all bytes from the register values are needed (getting a uint8 from a uint32
register value..).
All RegiterContext and other sources have been switched over to using the new
regiter value class.
llvm-svn: 131096
variables be evaluated statically.
Also fixed a bug that caused the results of
statically-evaluated expressions to be materialized
improperly.
This bug also removes some duplicate code.
llvm-svn: 131042