This adds the 'resume' instruction class, IR parsing, and bitcode reading and
writing. The 'resume' instruction resumes propagation of an existing (in-flight)
exception whose unwinding was interrupted with a 'landingpad' instruction (to be
added later).
llvm-svn: 136589
working on x86 (at least for trivial testcases); other architectures will
need more work so that they actually emit the appropriate instructions for
orderings stricter than 'monotonic'. (As far as I can tell, the ARM, PPC,
Mips, and Alpha backends need such changes.)
llvm-svn: 136457
specified in the same file that the library itself is created. This is
more idiomatic for CMake builds, and also allows us to correctly specify
dependencies that are missed due to bugs in the GenLibDeps perl script,
or change from compiler to compiler. On Linux, this returns CMake to
a place where it can relably rebuild several targets of LLVM.
I have tried not to change the dependencies from the ones in the current
auto-generated file. The only places I've really diverged are in places
where I was seeing link failures, and added a dependency. The goal of
this patch is not to start changing the dependencies, merely to move
them into the correct location, and an explicit form that we can control
and change when necessary.
This also removes a serialization point in the build because we don't
have to scan all the libraries before we begin building various tools.
We no longer have a step of the build that regenerates a file inside the
source tree. A few other associated cleanups fall out of this.
This isn't really finished yet though. After talking to dgregor he urged
switching to a single CMake macro to construct libraries with both
sources and dependencies in the arguments. Migrating from the two macros
to that style will be a follow-up patch.
Also, llvm-config is still generated with GenLibDeps.pl, which means it
still has slightly buggy dependencies. The internal CMake
'llvm-config-like' macro uses the correct explicitly specified
dependencies however. A future patch will switch llvm-config generation
(when using CMake) to be based on these deps as well.
This may well break Windows. I'm getting a machine set up now to dig
into any failures there. If anyone can chime in with problems they see
or ideas of how to solve them for Windows, much appreciated.
llvm-svn: 136433
'atomicrmw' instructions, which allow representing all the current atomic
rmw intrinsics.
The allowed operands for these instructions are heavily restricted at the
moment; we can probably loosen it a bit, but supporting general
first-class types (where it makes sense) might get a bit complicated,
given how SelectionDAG works.
As an initial cut, these operations do not support specifying an alignment,
but it would be possible to add if we think it's useful. Specifying an
alignment lower than the natural alignment would be essentially
impossible to support on anything other than x86, but specifying a greater
alignment would be possible. I can't think of any useful optimizations which
would use that information, but maybe someone else has ideas.
Optimizer/codegen support coming soon.
llvm-svn: 136404
* InvokeInst: Get the landingpad instruction associated with this invoke.
* LandingPadInst: A method to reserve extra space for clauses.
llvm-svn: 136325
an assert on Darwin llvm-gcc builds.
Assertion failed: (castIsValid(op, S, Ty) && "Invalid cast!"), function Create, file /Users/buildslave/zorg/buildbot/smooshlab/slave-0.8/build.llvm-gcc-i386-darwin9-RA/llvm.src/lib/VMCore/Instructions.cpp, li\
ne 2067.
etc.
http://smooshlab.apple.com:8013/builders/llvm-gcc-i386-darwin9-RA/builds/2354
--- Reverse-merging r134893 into '.':
U include/llvm/Target/TargetData.h
U include/llvm/DerivedTypes.h
U tools/bugpoint/ExtractFunction.cpp
U unittests/Support/TypeBuilderTest.cpp
U lib/Target/ARM/ARMGlobalMerge.cpp
U lib/Target/TargetData.cpp
U lib/VMCore/Constants.cpp
U lib/VMCore/Type.cpp
U lib/VMCore/Core.cpp
U lib/Transforms/Utils/CodeExtractor.cpp
U lib/Transforms/Instrumentation/ProfilingUtils.cpp
U lib/Transforms/IPO/DeadArgumentElimination.cpp
U lib/CodeGen/SjLjEHPrepare.cpp
--- Reverse-merging r134888 into '.':
G include/llvm/DerivedTypes.h
U include/llvm/Support/TypeBuilder.h
U include/llvm/Intrinsics.h
U unittests/Analysis/ScalarEvolutionTest.cpp
U unittests/ExecutionEngine/JIT/JITTest.cpp
U unittests/ExecutionEngine/JIT/JITMemoryManagerTest.cpp
U unittests/VMCore/PassManagerTest.cpp
G unittests/Support/TypeBuilderTest.cpp
U lib/Target/MBlaze/MBlazeIntrinsicInfo.cpp
U lib/Target/Blackfin/BlackfinIntrinsicInfo.cpp
U lib/VMCore/IRBuilder.cpp
G lib/VMCore/Type.cpp
U lib/VMCore/Function.cpp
G lib/VMCore/Core.cpp
U lib/VMCore/Module.cpp
U lib/AsmParser/LLParser.cpp
U lib/Transforms/Utils/CloneFunction.cpp
G lib/Transforms/Utils/CodeExtractor.cpp
U lib/Transforms/Utils/InlineFunction.cpp
U lib/Transforms/Instrumentation/GCOVProfiling.cpp
U lib/Transforms/Scalar/ObjCARC.cpp
U lib/Transforms/Scalar/SimplifyLibCalls.cpp
U lib/Transforms/Scalar/MemCpyOptimizer.cpp
G lib/Transforms/IPO/DeadArgumentElimination.cpp
U lib/Transforms/IPO/ArgumentPromotion.cpp
U lib/Transforms/InstCombine/InstCombineCompares.cpp
U lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
U lib/Transforms/InstCombine/InstCombineCalls.cpp
U lib/CodeGen/DwarfEHPrepare.cpp
U lib/CodeGen/IntrinsicLowering.cpp
U lib/Bitcode/Reader/BitcodeReader.cpp
llvm-svn: 134949
patch brings numerous advantages to LLVM. One way to look at it
is through diffstat:
109 files changed, 3005 insertions(+), 5906 deletions(-)
Removing almost 3K lines of code is a good thing. Other advantages
include:
1. Value::getType() is a simple load that can be CSE'd, not a mutating
union-find operation.
2. Types a uniqued and never move once created, defining away PATypeHolder.
3. Structs can be "named" now, and their name is part of the identity that
uniques them. This means that the compiler doesn't merge them structurally
which makes the IR much less confusing.
4. Now that there is no way to get a cycle in a type graph without a named
struct type, "upreferences" go away.
5. Type refinement is completely gone, which should make LTO much MUCH faster
in some common cases with C++ code.
6. Types are now generally immutable, so we can use "Type *" instead
"const Type *" everywhere.
Downsides of this patch are that it removes some functions from the C API,
so people using those will have to upgrade to (not yet added) new API.
"LLVM 3.0" is the right time to do this.
There are still some cleanups pending after this, this patch is large enough
as-is.
llvm-svn: 134829
"Reinstate r133435 and r133449 (reverted in r133499) now that the clang
self-hosted build failure has been fixed (r133512)."
Due to some additional warnings.
llvm-svn: 133700
representing a constant reference to ValType. Normally this is just
"const ValType &", but when ValType is a std::vector we want to use
ArrayRef as the reference type.
llvm-svn: 133611
Change PHINodes to store simple pointers to their incoming basic blocks,
instead of full-blown Uses.
Note that this loses an optimization in SplitCriticalEdge(), because we
can no longer walk the use list of a BasicBlock to find phi nodes. See
the comment I removed starting "However, the foreach loop is slow for
blocks with lots of predecessors".
Extend replaceAllUsesWith() on a BasicBlock to also update any phi
nodes in the block's successors. This mimics what would have happened
when PHINodes were proper Users of their incoming blocks. (Note that
this only works if OldBB->replaceAllUsesWith(NewBB) is called when
OldBB still has a terminator instruction, so it still has some
successors.)
llvm-svn: 133435
Change various bits of code to make better use of the existing PHINode
API, to insulate them from forthcoming changes in how PHINodes store
their operands.
llvm-svn: 133434
I don't think the AugmentedUse struct buys us much, either in
correctness or in ease of use. Ditch it, and simplify Use::getUser() and
User::allocHungoffUses().
llvm-svn: 133433
all over the place in different styles and variants. Standardize on two
preferred entrypoints: one that takes a StructType and ArrayRef, and one that
takes StructType and varargs.
In cases where there isn't a struct type convenient, we now add a
ConstantStruct::getAnon method (whose name will make more sense after a few
more patches land).
It would be "really really nice" if the ConstantStruct::get and
ConstantVector::get methods didn't make temporary std::vectors.
llvm-svn: 133412
for pre-2.9 bitcode files. We keep x86 unaligned loads, movnt, crc32, and the
target indep prefetch change.
As usual, updating the testsuite is a PITA.
llvm-svn: 133337
optimizations when emitting calls to the function; instead those calls may
use faster relocations which require the function to be immediately resolved
upon loading the dynamic object featuring the call. This is useful when it
is known that the function will be called frequently and pervasively and
therefore there is no merit in delaying binding of the function.
Currently only implemented for x86-64, where it turns into a call through
the global offset table.
Patch by Dan Gohman, who assures me that he's going to add LangRef documentation
for this once it's committed.
llvm-svn: 133080
Unfortunately we can't follow what the rest of the language does (wrapping it
in double-quotes) because that would cause an ambiguity with metadata strings,
so instead we escape any unusual characters with \xx escaping.
llvm-svn: 133050
Added asserts whenever attempting to use a potentially
uninitialized pass. This helps people trying to develop a new pass and
people trying to understand the bug reports filed by the former people.
llvm-svn: 132520
than either the primitive size or the element primitive size (in the case
of vectors), simplify the vector logic. No functionality change. There
is some distracting churn in the patch because I lined up comments better
while there - sorry about that.
llvm-svn: 131533
happily accept things like "sext <2 x i32> to <999 x i64>". It would
also accept "sext <2 x i32> to i64", though the verifier would catch
that later. Fixed by having castIsValid check that vector lengths match
except when doing a bitcast. (2) When creating a cast instruction, check
that the cast is valid (this was already done when creating constexpr
casts). While there, replace getScalarSizeInBits (used to allow more
vector casts) with getPrimitiveSizeInBits in getCastOpcode and isCastable
since vector to vector casts are now handled explicitly by passing to the
element types; i.e. this bit should result in no functional change.
llvm-svn: 131532
can be used to turn a <4 x i64> into a <4 x i32> but getCastOpcode would assert
if you passed these types to it. Note that this strictly extends the previous
functionality: if getCastOpcode previously accepted two vector types (i.e. didn't
assert) then it still will and returns the same opcode (BitCast). That's because
before it would only accept vectors with the same bitwidth, and the new code only
touches vectors with the same length. However if two vectors have both the same
bitwidth and the same length then their element types have the same bitwidth, so
the new logic will return BitCast as before.
llvm-svn: 131530
Still to do:
- Allow replacing / removing passes (infrastructure there, just needs an infrastructure exposed)
- Defining sets of passes to be added or removed as a group
- Extending the support to allow user-defined groups of optimisations
- Allow plugins to be specified for loading automatically (e.g. from plugins.conf or some similar mechanism)
Reviewed by Nick Lewycky.
llvm-svn: 131155
Now that we have a first-class way to represent unaligned loads, the unaligned
load intrinsics are superfluous.
First part of <rdar://problem/8460511>.
llvm-svn: 129401
--- Reverse-merging r129235 into '.':
D test/Feature/bb_attrs.ll
U include/llvm/BasicBlock.h
U include/llvm/Bitcode/LLVMBitCodes.h
U lib/VMCore/AsmWriter.cpp
U lib/VMCore/BasicBlock.cpp
U lib/AsmParser/LLParser.cpp
U lib/AsmParser/LLLexer.cpp
U lib/AsmParser/LLToken.h
U lib/Bitcode/Reader/BitcodeReader.cpp
U lib/Bitcode/Writer/BitcodeWriter.cpp
llvm-svn: 129259
* Add a "landing pad" attribute to the BasicBlock.
* Modify the bitcode reader and writer to handle said attribute.
Later: The verifier will ensure that the landing pad attribute is used in the
appropriate manner. I.e., not applied to the entry block, and applied only to
basic blocks that are branched to via a `dispatch' instruction.
(This is a work-in-progress.)
llvm-svn: 129235
had gotten out of sync: isCastable didn't think it was possible to
cast the x86_mmx type to anything, while it did think it possible
to cast an i64 to x86_mmx.
llvm-svn: 128705
was lowering them to sext / uxt + mul instructions. Unfortunately the
optimization passes may hoist the extensions out of the loop and separate them.
When that happens, the long multiplication instructions can be broken into
several scalar instructions, causing significant performance issue.
Note the vmla and vmls intrinsics are not added back. Frontend will codegen them
as intrinsics vmull* + add / sub. Also note the isel optimizations for catching
mul + sext / zext are not changed either.
First part of rdar://8832507, rdar://9203134
llvm-svn: 128502
It generates output that lools like
8 times line number info lost by Scalar Replacement of Aggregates (SSAUp)
1 times line number info lost by Simplify well-known library calls
12 times variable info lost by Jump Threading
llvm-svn: 127381
the value splatted into every element. Extend this to getTrue and getFalse which
by providing new overloads that take Types that are either i1 or <N x i1>. Use
it in InstCombine to add vector support to some code, fixing PR8469!
llvm-svn: 127116
uses.
The result produced by the streamer is used to give the linker more accurate
information and to add to llvm.compiler.used. The second improvement removes
the need for the user to add __attribute__((used)) to functions only used in
inline asm. The first one lets us build firefox with LTO on Darwin :-)
llvm-svn: 126830
It caused a crash in MultiSource/Benchmarks/Bullet.
Opt hit an assertion with "opt -std-compile-opts" because
Constant::getAllOnesValue doesn't know how to handle floats.
This patch added a test to reproduce the problem and a check that the
destination vector is of integer type.
Thank you Benjamin!
llvm-svn: 125459
While here, I'd like to complain about how vector is not an aggregate type
according to llvm::Type::isAggregateType(), but they're listed under aggregate
types in the LangRef and zero vectors are stored as ConstantAggregateZero.
llvm-svn: 123956
While there, I noticed that the transform "undef >>a X -> undef" was wrong.
For example if X is 2 then the top two bits must be equal, so the result can
not be anything. I fixed this in the constant folder as well. Also, I made
the transform for "X << undef" stronger: it now folds to undef always, even
though X might be zero. This is in accordance with the LangRef, but I must
admit that it is fairly aggressive. Also, I added "i32 X << 32 -> undef"
following the LangRef and the constant folder, likewise fairly aggressive.
llvm-svn: 123417
"this" pointer for any subclass of User, you could static_cast it to
User* and then reinterpret_cast that to Use* to get the end of the
operand list. This isn't a safe assumption in general, because the
static_cast might adjust the "this" pointer. Fixed by having these
OperandTraits classes take an extra template parameter, which is the
subclass of User. This is groundwork for PR889.
llvm-svn: 123235
Add a unnamed_addr bit to global variables and functions. This will be used
to indicate that the address is not significant and therefore the constant
or function can be merged with others.
If an optimization pass can show that an address is not used, it can set this.
Examples of things that can have this set by the FE are globals created to
hold string literals and C++ constructors.
Adding unnamed_addr to a non-const global should have no effect unless
an optimization can transform that global into a constant.
Aliases are not allowed to have unnamed_addr since I couldn't figure
out any use for it.
llvm-svn: 123063
uses of the function's blocks with undef. This code isn't needed,
because BasicBlock's destructor handles such uses. Also, undef isn't
correct, since blockaddresses may still be used for comparisons
with null.
llvm-svn: 121170
zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.
llvm-svn: 121120
Also add asserts that the indices are valid in InsertValueInst::init(). ExtractValueInst already asserts when constructed with invalid indices.
llvm-svn: 120956
cookie argument to the SourceMgr diagnostic stuff. This cleanly separates
LLVMContext's inlineasm handler from the sourcemgr error handling
definition, increasing type safety and cleaning things up.
llvm-svn: 119486
class, uses DominatorTree which is an analysis. This change moves all of
the tricky hasConstantValue logic to SimplifyInstruction, and replaces it
with a very simple literal implementation. I already taught users of
hasConstantValue that need tricky stuff to use SimplifyInstruction instead.
I didn't update InlineFunction because the IR looks like it might be in a
funky state at the point it calls hasConstantValue, which makes calling
SimplifyInstruction dangerous since it can in theory do a lot of tricky
reasoning. This may be a pessimization, for example in the case where
all phi node operands are either undef or a fixed constant.
llvm-svn: 119459
testing for dereferenceable pointers into a helper function,
isDereferenceablePointer. Teach it how to reason about GEPs
with simple non-zero indices.
Also eliminate ArgumentPromtion's IsAlwaysValidPointer,
which didn't check for weak externals or out of range gep
indices.
llvm-svn: 118840
PR 8522 / 8616046. Test reduction, analysis and patch by Tim Deegan!
(However, review by someone who understands the classes here better
is welcome. John Krum will return!)
llvm-svn: 118030
A RegionPass is executed like a LoopPass but on the regions detected by the
RegionInfo pass instead of the loops detected by the LoopInfo pass.
llvm-svn: 116905
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize
the pass's dependencies.
Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.
I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems
with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass
registration/creation, please send the testcase to me directly.
llvm-svn: 116820
perform initialization without static constructors AND without explicit initialization
by the client. For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve. I hope to be able to relax
the latter requirement in the future.
llvm-svn: 116334
expand to an initializeMyPass() function (in additional to the extant static ctors). Eventually, these will be called
from a big InitializeAllPasses() function, and the PassInfo's they create (which would be leaked if this code were used
at the moment) will be handed off to a PassRegistry for ownership.
llvm-svn: 115703
it in with the SSSE3 instructions.
Steward! Could you place this chair by the aft sun deck? I'm trying to get away
from the Astors. They are such boors!
llvm-svn: 115552
The x86_mmx type is used for MMX intrinsics, parameters and
return values where these use MMX registers, and is also
supported in load, store, and bitcast.
Only the above operations generate MMX instructions, and optimizations
do not operate on or produce MMX intrinsics.
MMX-sized vectors <2 x i32> etc. are lowered to XMM or split into
smaller pieces. Optimizations may occur on these forms and the
result casted back to x86_mmx, provided the result feeds into a
previous existing x86_mmx operation.
The point of all this is prevent optimizations from introducing
MMX operations, which is unsafe due to the EMMS problem.
llvm-svn: 115243
delete the MDNode that changed, rather than the other MDNode.
This is less work, because it doesn't require the changed node
to be re-inserted into the uniquing map and it doesn't require
the is-function-local flag to be recomputed. Also, it avoids
trouble when the existing node is part of a complicated
data structure.
llvm-svn: 114996
be possible to implement this very carefully to allow a lock-free implementation while still
avoiding illegal interleavings, but I haven't been able to figure one out.
llvm-svn: 114046
that all the setup of this class currently happens at static initialization time, this misses the fact
that some later events can cause mutation of the PassRegistrationListeners list, and thus cause race issues.
llvm-svn: 114036
isn't a good level of abstraction for memdep. Instead, generalize
AliasAnalysis::alias and related interfaces with a new Location
class for describing a memory location. For now, this is the same
Pointer and Size as before, plus an additional field for a TBAA tag.
Also, introduce a fixed MD_tbaa metadata tag kind.
llvm-svn: 113858
non-function-local value, it may result in the metadata no longer needing to be
function-local. Check for this condition, and clear the isFunctionLocal flag, if
it's still in the uniquing map, since any node in the uniquing map needs to have
an accurate function-local flag.
Also, add an assert to help catch problematic cases.
llvm-svn: 113828
switch to using a ManagedStatic for the global PassRegistry instead of a
ManagedCleanup, and fix a destruction ordering bug this exposed.
llvm-svn: 113283
vabd intrinsic and add and/or zext operations. In the case of vaba, this
also avoids the need for a DAG combine pattern to combine vabd with add.
Update tests. Auto-upgrade the old intrinsics.
llvm-svn: 112941
Remove #uses comments from functions: they we're padded out to column 50
and were potentially confusing for externally visible functions.
going further, remove the "<i8**> [#uses=3]" comments entirely. They
add a lot of noise, confuse people about what the IR is, and don't add
any particular value. When the types are long it makes it really really
hard to read IR.
If someone is interested in this sort of thing, the right way to do this
is to implement an AsmAnnotationWriter that produces the same output, and
add a flag to llvm-dis (only) to produce this output.
llvm-svn: 112899
and were potentially confusing for externally visible functions.
going further, remove the "<i8**> [#uses=3]" comments entirely. They
add a lot of noise, confuse people about what the IR is, and don't add
any particular value. When the types are long it makes it really really
hard to read IR.
If someone is interested in this sort of thing, the right way to do this
is to implement an AsmAnnotationWriter that produces the same output, and
add a flag to llvm-dis (only) to produce this output.
llvm-svn: 112894
add, and subtract operations with zero-extended or sign-extended vectors.
Update tests. Add auto-upgrade support for the old intrinsics.
llvm-svn: 112773
for MDNodes, since this information is effectively implied by
the operands. This allow allows the code to avoid doing a
recursive is-it-really-function-local check in some cases.
llvm-svn: 111995
It's similar to "linker_private_weak", but it's known that the address of the
object is not taken. For instance, functions that had an inline definition, but
the compiler decided not to inline it. Note, unlike linker_private and
linker_private_weak, linker_private_weak_def_auto may have only default
visibility. The symbols are removed by the linker from the final linked image
(executable or dynamic library).
llvm-svn: 111684
not part of the IR, are not uniqued, and may be safely RAUW'd.
This replaces a variety of alternate mechanisms for achieving
the same effect.
llvm-svn: 111681
a Pass abstraction, since that's the level it's actually used at.
Rename Pass' dumpPassStructure to dumpPass.
This eliminates an awkward use of getAsPass() to convert a PMDataManager*
into a Pass* just to permit a dumpPassStructure call.
llvm-svn: 111199
alloca instructions (constrained by their internal encoding),
and add error checking for it. Fix an instcombine bug which
generated huge alignment values (null is infinitely aligned).
This fixes undefined behavior noticed by John Regehr.
llvm-svn: 109643
are still on the list. This might happen if a CallbackVH created some new value
handles for the old value when doing RAUW. Barf if it occurs, since it is almost
certainly a mistake.
llvm-svn: 109495
don't visit all blocks in the function, and don't iterate over the split blocks'
predecessor lists for each block visited.
Also, remove the special-case test for the entry block. Splitting the entry
block isn't common enough to make this worthwhile.
This fixes a major compile-time bottleneck which is exposed now that
LoopSimplify isn't being redundantly run both before and after
DominanceFrontier.
llvm-svn: 109408
Make MDNode::destroy private.
Fix the one thing that used MDNode::destroy, outside of MDNode itself.
One should never delete or destroy an MDNode explicitly. MDNodes
implicitly go away when there are no references to them (implementation
details aside).
llvm-svn: 109028
bitcode file, so that two bitcode files where the same metadata kind
name happens to have been assigned a different ID can still be
linked together.
Eliminate the restriction that metadata kind IDs can't be 0.
Change MD_dbg from 1 to 0, because we can now, and because it's
less mysterious that way.
llvm-svn: 108939
linked list. This is a little slower and involves more malloc'ing, but these lists are
typically short, and it allows PassInfo to be entirely constant initializable.
llvm-svn: 108755
constant replacement which was botching its handling of
types. Use of getType() instead of getRawType() was causing
the type map in constant folding to be updated wrong.
llvm-svn: 108610