because it does not support CMOV of vectors. To implement this efficientlyi, we broadcast the condition bit and use a sequence of NAND-OR
to select between the two operands. This is the same sequence we use for targets that don't have vector BLENDs (like SSE2).
rdar://12201387
llvm-svn: 162926
- Add 'UseSSEx' to force SSE legacy insn not being selected when AVX is
enabled.
As the penalty of inter-mixing SSE and AVX instructions, we need
prevent SSE legacy insn from being generated except explicitly
specified through some intrinsics. For patterns supported by both
SSE and AVX, so far, we force AVX insn will be tried first relying on
AddedComplexity or position in td file. It's error-prone and
introduces bugs accidentally.
'UseSSEx' is disabled when AVX is turned on. For SSE insns inherited
by AVX, we need this predicate to force VEX encoding or SSE legacy
encoding only.
For insns not inherited by AVX, we still use the previous predicates,
i.e. 'HasSSEx'. So far, these insns fall into the following
categories:
* SSE insns with MMX operands
* SSE insns with GPR/MEM operands only (xFENCE, PREFETCH, CLFLUSH,
CRC, and etc.)
* SSE4A insns.
* MMX insns.
* x87 insns added by SSE.
2 test cases are modified:
- test/CodeGen/X86/fast-isel-x86-64.ll
AVX code generation is different from SSE one. 'vcvtsi2sdq' cannot be
selected by fast-isel due to complicated pattern and fast-isel
fallback to materialize it from constant pool.
- test/CodeGen/X86/widen_load-1.ll
AVX code generation is different from SSE one after fixing SSE/AVX
inter-mixing. Exec-domain fixing prefers 'vmovapd' instead of
'vmovaps'.
llvm-svn: 162919
- The root cause is that target constant materialization in X86 fast-isel
creates a PC-rel addressing which may overflow 32-bit range in non-Small code
model if .rodata section is allocated too far away from code segment in
MCJIT, which uses Large code model so far.
- Follow the similar logic to fix non-Small code model in fast-isel by skipping
non-Small code model.
llvm-svn: 162881
We need to reserve space for the mandatory traceback fields,
though leaving them as zero is appropriate for now.
Although the ABI calls for these fields to be filled in fully, no
compiler on Linux currently does this, and GDB does not read these
fields. GDB uses the first word of zeroes during exception handling to
find the end of the function and the size field, allowing it to compute
the beginning of the function. DWARF information is used for everything
else. We need the extra 8 bytes of pad so the size field is found in
the right place.
As a comparison, GCC fills in a few of the fields -- language, number
of saved registers -- but ignores the rest. IBM's proprietary OSes do
make use of the full traceback table facility.
Patch by Bill Schmidt.
llvm-svn: 162854
traceback table on PowerPC64. This helps gdb handle exceptions. The other
mandatory fields are ignored by gdb and harder to implement so just add
there a FIXME.
Patch by Bill Schmidt. PR13641.
llvm-svn: 162778
- Add a target-specific DAG optimization to recognize a pattern PTEST-able.
Such a pattern is a OR'd tree with X86ISD::OR as the root node. When
X86ISD::OR node has only its flag result being used as a boolean value and
all its leaves are extracted from the same vector, it could be folded into an
X86ISD::PTEST node.
llvm-svn: 162735
These extra flags are not required to properly order the atomic
load/store instructions. SelectionDAGBuilder chains atomics as if they
were volatile, and SelectionDAG::getAtomic() sets the isVolatile bit on
the memory operands of all atomic operations.
The volatile bit is enough to order atomic loads and stores during and
after SelectionDAG.
This means we set mayLoad on atomic_load, mayStore on atomic_store, and
mayLoad+mayStore on the remaining atomic read-modify-write operations.
llvm-svn: 162733
Instructions emitted to compute branch offsets now use immediate operands
instead of symbolic labels. This change was needed because there were problems
when R_MIPS_HI16/LO16 relocations were used to make shared objects.
llvm-svn: 162731
In SelectionDAGLegalize::ExpandLegalINT_TO_FP, expand INT_TO_FP nodes without
using any f64 operations if f64 is not a legal type.
Patch by Stefan Kristiansson.
llvm-svn: 162728
Allow load-immediates to be rematerialised in the register coalescer for
PPC. This makes test/CodeGen/PowerPC/big-endian-formal-args.ll fail,
because it relies on a register move getting emitted. The immediate load is
equivalent, so change this test case.
Patch by Tobias von Koch.
llvm-svn: 162727
The 32-bit ABI requires CR bit 6 to be set if the call has fp arguments and
unset if it doesn't. The solution up to now was to insert a MachineNode to
set/unset the CR bit, which produces a CR vreg. This vreg was then copied
into CR bit 6. When the register allocator saw a bunch of these in the same
function, it allocated the set/unset CR bit in some random CR register (1
extra instruction) and then emitted CR moves before every vararg function
call, rather than just setting and unsetting CR bit 6 directly before every
vararg function call. This patch instead inserts a PPCcrset/PPCcrunset
instruction which are then matched by a dedicated instruction pattern.
Patch by Tobias von Koch.
llvm-svn: 162725
The zeroextend IR instruction is lowered to an 'and' node with an immediate
mask operand, which in turn gets legalised to a sequence of ori's & ands.
This can be done more efficiently using the rldicl instruction.
Patch by Tobias von Koch.
llvm-svn: 162724
Previously, instructions without a primary patterns wouldn't get their
properties inferred. Now, we use all single-instruction patterns for
inference, including 'def : Pat<>' instances.
This causes a lot of instruction flags to change.
- Many instructions no longer have the UnmodeledSideEffects flag because
their flags are now inferred from a pattern.
- Instructions with intrinsics will get a mayStore flag if they already
have UnmodeledSideEffects and a mayLoad flag if they already have
mayStore. This is because intrinsics properties are linear.
- Instructions with atomic_load patterns get a mayStore flag because
atomic loads can't be reordered. The correct workaround is to create
pseudo-instructions instead of using normal loads. PR13693.
llvm-svn: 162614
the case of multiple edges from one block to another.
A simple example is a switch statement with multiple values to the same
destination. The definition of an edge is modified from a pair of blocks to
a pair of PredBlock and an index into the successors.
Also set the weight correctly when building SelectionDAG from LLVM IR,
especially when converting a Switch.
IntegersSubsetMapping is updated to calculate the weight for each cluster.
llvm-svn: 162572
IR that hasn't been through SimplifyCFG can look like this:
br i1 %b, label %r, label %r
Make sure we don't create duplicate Machine CFG edges in this case.
Fix the machine code verifier to accept conditional branches with a
single CFG edge.
llvm-svn: 162230
this allows for better code generation.
Added a new DAGCombine transformation to convert FMAX and FMIN to FMANC and
FMINC, which are commutative.
For example:
movaps %xmm0, %xmm1
movsd LC(%rip), %xmm0
minsd %xmm1, %xmm0
becomes:
minsd LC(%rip), %xmm0
llvm-svn: 162187
Add these transformations to the existing add/sub ones:
(and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
(or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
(xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
The selects can then be transformed to a single predicated instruction
by peephole.
This transformation will make it possible to eliminate the ISD::CAND,
COR, and CXOR custom DAG nodes.
llvm-svn: 162176
arithmetic instructions. However, when small data types are used, a truncate
node appears between the SETCC node and the arithmetic operation. This patch
adds support for this pattern.
Before:
xorl %esi, %edi
testb %dil, %dil
setne %al
ret
After:
xorb %dil, %sil
setne %al
ret
rdar://12081007
llvm-svn: 162160
PEI can't handle the pseudo-instructions. This can be removed when the
pseudo-instructions are replaced by normal predicated instructions.
Fixes PR13628.
llvm-svn: 162130
I really need to find a way to automate this, but I can't come up with a regex
that has no false positives while handling tricky cases like custom check
prefixes.
llvm-svn: 162097
It is not my plan to duplicate the entire ARM instruction set with
predicated versions. We need a way of representing predicated
instructions in SSA form without requiring a separate opcode.
Then the pseudo-instructions can go away.
llvm-svn: 162061
Without fastcc support, the caller just falls through to CallingConv::C
for fastcc, but callee still uses fastcc, this inconsistency of calling
convention is a problem, and fastcc support can fix it.
llvm-svn: 162013
The ARM select instructions are just predicated moves. If the select is
the only use of an operand, the instruction defining the operand can be
predicated instead, saving one instruction and decreasing register
pressure.
This implementation can turn AND/ORR/EOR instructions into their
corresponding ANDCC/ORRCC/EORCC variants. Ideally, we should be able to
predicate any instruction, but we don't yet support predicated
instructions in SSA form.
llvm-svn: 161994
around. That's not how we do things. Besides, the commit message tells us that
it is covered by the GCC test suite.
------------------------------------------------------------------------
r127497 | zwarich | 2011-03-11 13:51:56 -0800 (Fri, 11 Mar 2011) | 3 lines
Fix the GCC test suite issue exposed by r127477, which was caused by stack
protector insertion not working correctly with unreachable code. Since that
revision was rolled out, this test doesn't actual fail before this fix.
------------------------------------------------------------------------
llvm-svn: 161985
reversed. This leads to wrong codegen for float-to-half conversion
intrinsics which are used to support storage-only fp16 type.
NEON variants of same instructions are fine.
llvm-svn: 161907
- FP_EXTEND only support extending from vectors with matching elements.
This results in the scalarization of extending to v2f64 from v2f32,
which will be legalized to v4f32 not matching with v2f64.
- add X86-specific VFPEXT supproting extending from v4f32 to v2f64.
- add BUILD_VECTOR lowering helper to recover back the original
extending from v4f32 to v2f64.
- test case is enhanced to include different vector width.
llvm-svn: 161894
and allow some optimizations to turn conditional branches into unconditional.
This commit adds a simple control-flow optimization which merges two consecutive
basic blocks which are connected by a single edge. This allows the codegen to
operate on larger basic blocks.
rdar://11973998
llvm-svn: 161852
It is still possible to if-convert if the tail block has extra
predecessors, but the tail phis must be rewritten instead of being
removed.
llvm-svn: 161781
- FCMOV only supports a subset of X86 conditions. Skip boolean
simplification if X86 condition is not valid for FCMOV.
- add a minimal test case for PR13577.
llvm-svn: 161732
FeatureFastUAMem for Nehalem, Westmere and Sandy Bridge.
FeatureFastUAMem is already on if we pass in nehalem or westmere as a command
argument.
rdar: 7252306
llvm-svn: 161717
- if a boolean test (X86ISD::CMP or X86ISD:SUB) checks a boolean value
generated from X86ISD::SETCC, try to simplify the boolean value
generation and checking by reusing the original EFLAGS with proper
condition code
- add hooks to X86 specific SETCC/BRCOND/CMOV, the major 3 places
consuming EFLAGS
part of patches fixing PR12312
llvm-svn: 161687
When replacing Old with New, it can happen that New is already a
successor. Add the old and new edge weights instead of creating a
duplicate edge.
llvm-svn: 161653
This makes it possible to speed up def_iterator by stopping at the first
use. This makes def_empty() and getUniqueVRegDef() much faster when
there are many uses.
In a +Asserts build, LiveVariables is 100x faster in one case because
getVRegDef() has an assertion that would scan to the end of a
def_iterator chain.
Spill weight calculation is significantly faster (300x in one case)
because isTriviallyReMaterializable() calls MRI->isConstantPhysReg(%RIP)
which calls def_empty(%RIP).
llvm-svn: 161634
Use a more conventional doubly linked list where the Prev pointers form
a cycle. This means it is no longer necessary to adjust the Prev
pointers when reallocating the VRegInfo array.
The test changes are required because the register allocation hint is
using the use-list order to break ties.
llvm-svn: 161633
This patch corrects the definition of umlal/smlal instructions and adds support
for matching them to the ARM dag combiner.
Bug 12213
Patch by Yin Ma!
llvm-svn: 161581
We perform the following:
1> Use SUB instead of CMP for i8,i16,i32 and i64 in ISel lowering.
2> Modify MachineCSE to correctly handle implicit defs.
3> Convert SUB back to CMP if possible at peephole.
Removed pattern matching of (a>b) ? (a-b):0 and like, since they are handled
by peephole now.
rdar://11873276
llvm-svn: 161462
Previously, MBP essentially aligned every branch target it could. This
bloats code quite a bit, especially non-looping code which has no real
reason to prefer aligned branch targets so heavily.
As Andy said in review, it's still a bit odd to do this without a real
cost model, but this at least has much more plausible heuristics.
Fixes PR13265.
llvm-svn: 161409
If the result of a common subexpression is used at all uses of the candidate
expression, CSE should not increase the live range of the common subexpression.
rdar://11393714 and rdar://11819721
llvm-svn: 161396
The MFTB instruction itself is being phased out, and its functionality
is provided by MFSPR. According to the ISA docs, using MFSPR works on all known
chips except for the 601 (which did not have a timebase register anyway)
and the POWER3.
Thanks to Adhemerval Zanella for pointing this out!
llvm-svn: 161346
On PPC64, this can be done with a simple TableGen pattern.
To enable this, I've added the (otherwise missing) readcyclecounter
SDNode definition to TargetSelectionDAG.td.
llvm-svn: 161302
This patch is mostly just refactoring a bunch of copy-and-pasted code, but
it also adds a check that the call instructions are readnone or readonly.
That check was already present for sin, cos, sqrt, log2, and exp2 calls, but
it was missing for the rest of the builtins being handled in this code.
llvm-svn: 161282
I noticed that SelectionDAGBuilder::visitCall was missing a check for memcmp
in TargetLibraryInfo, so that it would use custom code for memcmp calls even
with -fno-builtin. I also had to add a new -disable-simplify-libcalls option
to llc so that I could write a test for this.
llvm-svn: 161262
Fast isel doesn't currently have support for translating builtin function
calls to target instructions. For embedded environments where the library
functions are not available, this is a matter of correctness and not
just optimization. Most of this patch is just arranging to make the
TargetLibraryInfo available in fast isel. <rdar://problem/12008746>
llvm-svn: 161232