The ARM ARM states:
LDM/LDMIA/LDMFD:
The SP can be in the list. However, ARM deprecates using these instructions
with SP in the list.
ARM deprecates using these instructions with both the LR and the PC in the
list.
LDMDA/LDMFA/LDMDB/LDMEA/LDMIB/LDMED:
The SP can be in the list. However, instructions that include the SP in the
list are deprecated.
Instructions that include both the LR and the PC in the list are deprecated.
POP:
The SP can only be in the list before ARMv7. ARM deprecates any use of ARM
instructions that include the SP, and the value of the SP after such an
instruction is UNKNOWN.
ARM deprecates the use of this instruction with both the LR and the PC in
the list.
Attempt to diagnose use of deprecated forms of these instructions. This mirrors
the previous changes to diagnose use of the deprecated forms of STM in ARM mode.
llvm-svn: 224682
Fix an off-by-one access introduced in 224502 for push.w and pop.w with single
register operands. Add test cases for both scenarios.
Thanks to Asiri Rathnayake for pointing out the failure!
llvm-svn: 224521
The ARM Architecture Reference Manual states the following:
LDM{,IA,DB}:
The SP cannot be in the list.
The PC can be in the list.
If the PC is in the list:
• the LR must not be in the list
• the instruction must be either outside any IT block, or the last
instruction in an IT block.
POP:
The PC can be in the list.
If the PC is in the list:
• the LR must not be in the list
• the instruction must be either outside any IT block, or the last
instruction in an IT block.
PUSH:
The SP and PC can be in the list in ARM instructions, but not in Thumb
instructions.
STM:{,IA,DB}:
The SP and PC can be in the list in ARM instructions, but not in Thumb
instructions.
llvm-svn: 224502
The use of SP and PC in the register list for stores is deprecated on ARM
(ARM ARM A.8.8.199):
ARM deprecates the use of ARM instructions that include the SP or the PC in
the list.
Provide a deprecation warning from the assembler in the case that the syntax is
ever seen.
llvm-svn: 224319
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
llvm-svn: 224257
Instructions of the form [ADD Rd, pc, #imm] are manually aliased
in processInstruction() to use ADR. To accomodate this, mod_imm handling
had to be tweaked a bit. Turns out it was the manual aliasing that must
be tweaked to accommodate mod_imms instead. More information about the
parsed instruction is available at the point where processInstruction()
is invoked, which makes it easier to detect a mod_imm at that point rather
than trying to detect a potential alias when a mod_imm is being prepped.
Added a test case and fixed some white spaces as well.
llvm-svn: 223772
No functional changes. Got myself bitten in r223113 when adding support for
modified immediate syntax (regressions reported by joerg@britannica.bec.de,
fixes in r223366 and r223381). Our assembler tests did not cover serveral
different syntax variants. This patch expands the test coverage to check for
the following cases:
1. Modified immediate operands may be expressed with expressions, as in #(4 * 2)
instead of #8.
2. Modified immediate operands may be _optionally_ prefixed by a '#' symbol or a
'$' symbol.
3. Certain instructions (e.g. ADD) support single input register variants;
[ADD r0, #mod_imm] is same as [ADD r0, r0, #mod_imm].
4. Certain instructions have aliases which convert plain immediates to modified
immediates. For an example, [ADD r0, -10] is not valid because -10 (in two's
complement) cannot be encoded as a modified immediate, but ARMInstrInfo.td
defines an alias which can transform this into a [SUB r0, 10].
llvm-svn: 223475
r223113 added support for ARM modified immediate assembly syntax. Which
assumes all immediate operands are prefixed with a '#'. This assumption
is wrong as per the ARMARM - which recommends that all '#' characters be
treated optional. The current patch fixes this regression and adds a test
case. A follow-up patch will expand the test coverage to other instructions.
llvm-svn: 223381
r223113 added support for ARM modified immediate assembly syntax. That patch
has broken support for immediate expressions, as in:
add r0, #(4 * 4)
It wasn't caught because we don't have any tests for this feature. This patch
fixes this regression and adds test cases.
llvm-svn: 223366
Previously .cpu directive in ARM assembler didnt switch to the new CPU and
therefore acted as a nop. This implemented real action for .cpu and eg.
allows to assembler FreeBSD kernel with -integrated-as.
llvm-svn: 223147
Certain ARM instructions accept 32-bit immediate operands encoded as a 8-bit
integer value (0-255) and a 4-bit rotation (0-30, even). Current ARM assembly
syntax support in LLVM allows the decoded (32-bit) immediate to be specified
as a single immediate operand for such instructions:
mov r0, #4278190080
The ARMARM defines an extended assembly syntax allowing the encoding to be made
more explicit, as in:
mov r0, #255, #8 ; (same 32-bit value as above)
The behaviour of the two instructions can be different w.r.t flags, which is
documented under "Modified immediate constants" in ARMARM. This patch enables
support for this extended syntax at the MC layer.
llvm-svn: 223113
The string data for string-valued build attributes were being unconditionally
uppercased. There is no mention in the ARM ABI addenda about case conventions,
so it's technically implementation defined as to whether the data are
capitialised in some way or not. However, there are good reasons not to
captialise the data.
* It's less work.
* Some vendors may legitimately have case-sensitive checks for these
attributes which would fail on LLVM generated object files.
* There could be locale issues with uppercasing.
The original reasons for uppercasing appear to have stemmed from an
old codesourcery toolchain behaviour, see
http://comments.gmane.org/gmane.comp.compilers.llvm.cvs/87133
This patch makes the object file emitted no longer captialise string
data, it encodes as seen in the assembly source.
Change-Id: Ibe20dd6e60d2773d57ff72a78470839033aa5538
llvm-svn: 222882
Some ARM FPUs only have 16 double-precision registers, rather than the
normal 32. LLVM represents this with the D16 target feature. This is
currently used by CodeGen to avoid using high registers when they are
not available, but the assembler and disassembler do not.
I fix this in the assmebler and disassembler rather than the
InstrInfo.td files, as the latter would require a large number of
changes everywhere one of the floating-point instructions is referenced
in the backend. This solution is similar to the one used for
co-processor numbers and MSR masks.
llvm-svn: 221341
test/MC/ARM/directive-eabi_attribute.s was missing several tests of object file
encodings relative to the existing tests for assembly file encodings. This
commit adds the missing tests.
Change-Id: Ie110ca02b65e8f4d4c77f437bd09d03607fa5c0d
llvm-svn: 221250
This CPU definition is redundant. The Cortex-A9 is defined as
supporting multiprocessing extensions. Remove its definition and
update appropriate tests.
LLVM defines both a cortex-a9 CPU and a cortex-a9-mp CPU. The only
difference between the two CPU definitions in ARM.td is that
cortex-a9-mp contains the feature FeatureMP for multiprocessing
extensions.
This is redundant since the Cortex-A9 is defined as having
multiprocessing extensions in the TRMs. armcc also defines the
Cortex-A9 as having multiprocessing extensions by default.
Change-Id: Ifcadaa6c322be0a33d9d2a39cfdd7da1d75981a7
llvm-svn: 221166
test/MC/ARM/directive-eabi_attribute.s had gotten out-of-sync with
test/MC/ARM/directive-eabi_attribute-2.s. The former tests the encoding of
build attributes in object files, and the latter the encoding in assembly
files. Since both these tests need to be updated at the same time, it makes
sense to combine them into a single test. The object file encodings are being
checked against the ouput of -arm-attributes rather than by direct byte
comparisons which makes for easier reading.
Change-Id: I0075de506ae5626fb2fa235383fe5ce6a65a15a9
llvm-svn: 221155
The 32-bit variants of the NEON scalar<->GPR move instructions are
also available in VFPv2. The 8- and 16-bit variants do require NEON.
Note that the checks in the test file are all -DAG because they are
checking a mixture of stdout and stderr, and the ordering is not
guaranteed.
llvm-svn: 220288
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 219010
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 218914
This patch makes the ARM backend transform 3 operand instructions such as
'adds/subs' to the 2 operand version of the same instruction if the first
two register operands are the same.
Example: 'adds r0, r0, #1' will is transformed to 'adds r0, #1'.
Currently for some instructions such as 'adds' if you try to assemble
'adds r0, r0, #8' for thumb v6m the assembler would throw an error message
because the immediate cannot be encoded using 3 bits.
The backend should be smart enough to transform the instruction to
'adds r0, #8', which allows for larger immediate constants.
Patch by Ranjeet Singh.
llvm-svn: 218521
On ARM NEON, VAND with immediate (16/32 bits) is an alias to VBIC ~imm with
the same type size. Adding that logic to the parser, and generating VBIC
instructions from VAND asm files.
This patch also fixes the validation routines for NEON splat immediates which
were wrong.
Fixes PR20702.
llvm-svn: 218450
The Thumb2 BXJ instruction (Branch and Exchange Jazelle) is not
defined for v7M or v8A. It is defined for all other Thumb2-supporting
architectures (v6T2, v7A and v7R).
llvm-svn: 218445
v7M only allows the 16-bit encoding of the 'cps' (Change Processor
State) instruction, and does not have the 32-bit encoding which is
valid from v6T2 onwards.
llvm-svn: 218382
We currently emit an error when trying to assemble a file with more
than one section using DWARF2 debug info. This should be a warning
instead, as the resulting file will still be usable, but with a
degraded debug illusion.
llvm-svn: 218241
Certain directives are unsupported on Windows (some of which could/should be
supported). We would not diagnose the use but rather crash during the emission
as we try to access the Target Streamer. Add an assertion to prevent creating a
NULL reference (which is not permitted under C++) as well as a test to ensure
that we can diagnose the disabled directives.
llvm-svn: 218014
Rather than relying on support for a specific directive to determine if we are
targeting MachO, explicitly check the output format.
As an additional bonus, cleanup the caret diagnostic for the non-MachO case and
avoid the spurious error caused by not discarding the statement.
llvm-svn: 218012
This adds support for reading the "bigobj" variant of COFF produced by
cl's /bigobj and mingw's -mbig-obj.
The most significant difference that bigobj brings is more than 2**16
sections to COFF.
bigobj brings a few interesting differences with it:
- It doesn't have a Characteristics field in the file header.
- It doesn't have a SizeOfOptionalHeader field in the file header (it's
only used in executable files).
- Auxiliary symbol records have the same width as a symbol table entry.
Since symbol table entries are bigger, so are auxiliary symbol
records.
Write support will come soon.
Differential Revision: http://reviews.llvm.org/D5259
llvm-svn: 217496
This patch implements a few changes related to the Thumb2 M-class MSR instruction:
* better handling of unpredictable encodings,
* recognition of the _g and _nzcvqg variants by the asm parser only if the DSP
extension is available, preferred output of MSR APSR moves with the _<bits>
suffix for v7-M.
Patch by Petr Pavlu.
llvm-svn: 216874
This was a thinko. The intent was to flip the explicit bits that need toggling
rather than all bits. This would result in incorrect behaviour (which now is
tested).
Thanks to Nico Weber for pointing this out!
llvm-svn: 215846
These are system-only instructions for CPUs with virtualization
extensions, allowing a hypervisor easy access to all of the various
different AArch32 registers.
rdar://problem/17861345
llvm-svn: 215700
The ARM ARM prohibits LDRB/LDRSB instructions with writeback into the destination register. With this commit this constraint is now enforced and we stop assembling LDRH/LDRSH instructions with unpredictable behavior.
llvm-svn: 214500
The ARM ARM prohibits LDRH/LDRSH instructions with writeback into the source register. With this commit this constraint is now enforced and we stop assembling LDRH/LDRSH instructions with unpredictable behavior.
llvm-svn: 214499
The ARM ARM prohibits LDR instructions with writeback into the destination register. With this commit this constraint is now enforced and we stop assembling LDR instructions with unpredictable behavior.
llvm-svn: 214498
The subtarget information is the ultimate source of truth for the feature set
that is enabled at this point. We would previously not propagate the feature
information to the subtarget. While this worked for the most part (features
would be enabled/disabled as requested), if another operation that changed the
feature bits was encountered (such as a mode switch via a .arm or .thumb
directive), we would end up resetting the behaviour of the architectural
extensions.
Handling this properly requires a slightly more complicated handling. We need
to check if the feature is now being toggled. If so, only then do we toggle the
features. In return, we no longer have to calculate the feature bits ourselves.
The test changes are mostly to the diagnosis, which is now more uniform (a nice
side effect!). Add an additional test to ensure that we handle this case
properly.
Thanks to Nico Weber for alerting me to this issue!
llvm-svn: 214057
The ARM ARM prohibits STRH instructions with writeback into the source register. With this commit this constraint is now enforced and we stop assembling STRH instructions with unpredictable behavior.
llvm-svn: 213850
The ARM ARM prohibits STRB instructions with writeback into the source register. With this commit this constraint is now enforced and we stop assembling STRB instructions with unpredictable behavior.
llvm-svn: 213750
The ARM ARM prohibits STR instructions with writeback into the source register. With this commit this constraint is now enforced and we stop assembling STR instructions with unpredictable behavior.
llvm-svn: 213745
On AArch64 the pseudo instruction ldr <reg>, =... supports both
32-bit and 64-bit constants. Add support for 64 bit constants for
the pools to support the pseudo instruction fully.
Changes the AArch64 ldr-pseudo tests to use 32-bit registers and
adds tests with 64-bit registers.
Patch by Janne Grunau!
Differential Revision: http://reviews.llvm.org/D4279
llvm-svn: 213387
The linker relies on relocation type info (e.g. is it a branch?) to perform the
correct actions, so we should keep that even when we end up using a scattered
relocation for whatever reason.
rdar://problem/17553104
llvm-svn: 212333
Additional compliant GAS names for coprocessor register name
are enabled for all instruction with parameter MCK_CoprocReg:
LDC,LDC2,STC,STC2,CDP,CDP2,MCR,MCR2,MCRR,MCRR2,MRC,MRC2,MRRC,MRRC2
Patch by Andrey Kuharev.
llvm-svn: 211776
Strictly, it's unpredictable. But we don't quite model that yet and an error is
better than ignoring the issue. This one somehow got left out before though.
rdar://problem/15997748
llvm-svn: 211490
Correct the section flags for code built for Windows on ARM with
`-ffunction-sections`. Windows on ARM uses solely Thumb-2 instructions, and
indicates that the function is thumb by placing it in a text section that has
IMAGE_SCN_MEM_16BIT flag set.
When we encounter a .section directive, a new section is constructed. This may
be a text segment. In order to identify that we need the additional flag,
expose the target triple through the ObjectFileInfo as this information is lost
otherwise.
Since any modern ARM targeting environment on Windows would be Thumb-2 (Windows
ARM NT or Windows Embedded Compact), introducing a new flag to indicate the
section attribute seems to be a bit overkill. Simply depend on the target
triple. Since there is one location that this information is currently needed,
creating a target specific assembly parser and delegating the parsing of section
switches also feels a bit heavy handed. If it turns out that this information
ends up changing additional behaviour, then it may be worth considering that
alternative.
llvm-svn: 211481
for assembly files we can't depend on the offset within the section
after a string since it could be different between producers etc.
Relax these tests accordingly.
llvm-svn: 211308
link.exe requires that the text section has the IMAGE_SCN_MEM_16BIT flag set.
Otherwise, it will treat the function as ARM. If this occurs, then jumps to the
function will fail, switching from thumb to ARM mode execution.
With this change, it is possible to link using the MSVC linker as well.
llvm-svn: 210415
In an effort to fix inlined debug info in situations where the out of
line definition of a function preceeds any inlined usage, the order in
which some attributes are added to subprogram DIEs may change. (in
essence, definition-necessary attributes like DW_AT_low_pc/high_pc will
be added immediately, but the names, types, and other features will be
delayed to module end where they may either be added to the subprogram
DIE or instead reference an abstract definition for those values)
These tests can be generalized to be resilient to this change. 5 or so
tests actually have to be incompatibly changed to cope with this
reordering and will go along with the change that affects the order.
llvm-svn: 209554
This corrects the emission of IMAGE_REL_ARM_MOV32T relocations. Previously, we
were avoiding the high portion of the relocation too early. If there was a
section-relative relocation with an offset greater than 16-bits (65535), you
would end up truncating the high order bits of the offset. Allow the current
relocation representation to flow through out the MC layer to the object writer.
Use the new ability to restrict recorded relocations to avoid emitting the
relocation into the final object.
llvm-svn: 209337
The UDF instruction is a reserved undefined instruction space. The assembler
mnemonic was introduced with ARM ARM rev C.a. The instruction is not predicated
and the immediate constant is ignored by the CPU. Add support for the three
encodings for this instruction.
The changes to the invalid instruction test is due to the fact that the invalid
instructions actually overlap with the undefined instruction. Introduction of
the new instruction results in a partial decode as an undefined sequence. Drop
the tests as they are invalid instruction patterns anyways.
llvm-svn: 208751
This adds FK_SecRel_2 relocation support to ARM. This enables the building of
object files for armv7-windows-msvc which enables CodeView line tables for
debugging as opposed to armv7-windows-itanium which currently uses DWARF.
llvm-svn: 208273
Add handling for FK_SecRel_4 (4-byte section relative relocations). These are
used by the generation of DWARF debug information (the abbrevations use section
relative relocations). This will also be used in generation of CodeView line
tables.
llvm-svn: 207941
.file records are supposed to have a section identifier of 65534
(IMAGE_SCN_DEBUG) rather than 0. This is spelt out clearly within the PE/COFF
specification. Fix this minor oversight with the implementation for support for
.file records.
llvm-svn: 207851
We currently force symbols to be globals in .thumb_set. The intent
seems to be that given
.thumb_set foo, bar
we emit an undefined symbol to bar if it is never defined. The side
effect is that we mark bar as global, even if it is defined, which gas
does not.
Producing an undefined reference to bar is a general difference from MC and gas.
For example, given
a = b
gas will produce an undefined reference to b, MC will not. I would be surprised
if any code depends on this, but it it does, we should fix the general
difference, not special case .thumb_set.
llvm-svn: 207757
Emit the COFF header when printing out the function. This is important as the
header contains two important pieces of information: the storage class for the
symbol and the symbol type information. This bit of information is required for
the linker to correctly identify the type of symbol that it is dealing with.
llvm-svn: 207613
This patch centralizes the handling of the thumb bit around
MCStreamer::isThumbFunc and makes isThumbFunc handle aliases.
This fixes a corner case, but the main advantage is having just one
way to check if a MCSymbol is thumb or not. This should still be
refactored to be ARM only, but at least now it is just one predicate
that has to be refactored instead of 3 (isThumbFunc,
ELF_Other_ThumbFunc, and SF_ThumbFunc).
llvm-svn: 207522
Added support for bytes replication feature, so it could be GAS compatible.
E.g. instructions below:
"vmov.i32 d0, 0xffffffff"
"vmvn.i32 d0, 0xabababab"
"vmov.i32 d0, 0xabababab"
"vmov.i16 d0, 0xabab"
are incorrect, but we could deal with such cases.
For first one we should emit:
"vmov.i8 d0, 0xff"
For second one ("vmvn"):
"vmov.i8 d0, 0x54"
For last two instructions it should emit:
"vmov.i8 d0, 0xab"
P.S.: In ARMAsmParser.cpp I have also fixed few nearby style issues in old code.
Just for keeping method bodies in harmony with themselves.
llvm-svn: 207080
expressions for mov instructions instead of silently truncating by default.
For the ARM assembler, we want to avoid misleadingly allowing something
like "mov r0, <symbol>" especially when we turn it into a movw and the
expression <symbol> does not have a :lower16: or :upper16" as part of the
expression. We don't want the behavior of silently truncating, which can be
unexpected and lead to bugs that are difficult to find since this is an easy
mistake to make.
This does change the previous behavior of llvm but actually matches an
older gnu assembler that would not allow this but print less useful errors
of like “invalid constant (0x927c0) after fixup” and “unsupported relocation on
symbol foo”. The error for llvm is "immediate expression for mov requires
:lower16: or :upper16" with correct location information on the operand
as shown in the added test cases.
rdar://12342160
llvm-svn: 206669
Currently, we bind those directives with the last symbol, so if none
has been defined, this would lead to a crash of the compiler.
<rdar://problem/15939159>
llvm-svn: 206236
alignments on vld/vst instructions. And report errors for
alignments that are not supported.
While this is a large diff and an big test case, the changes
are very straight forward. But pretty much had to touch
all vld/vst instructions changing the addrmode to one of the
new ones that where added will do the proper checking for
the specific instruction.
FYI, re-committing this with a tweak so MemoryOp's default
constructor is trivial and will work with MSVC 2012. Thanks
to Reid Kleckner and Jim Grosbach for help with the tweak.
rdar://11312406
llvm-svn: 205986
It doesn't build with MSVC 2012, because MSVC doesn't allow union
members that have non-trivial default constructors. This change added
'SMLoc AlignmentLoc' to MemoryOp, which made MemoryOp's default ctor
non-trivial.
This reverts commit r205930.
llvm-svn: 205944
alignments on vld/vst instructions. And report errors for
alignments that are not supported.
While this is a large diff and an big test case, the changes
are very straight forward. But pretty much had to touch
all vld/vst instructions changing the addrmode to one of the
new ones that where added will do the proper checking for
the specific instruction.
rdar://11312406
llvm-svn: 205930
Removed "GNU Assembler extension (compatibility)" definitions from ARMInstrInfo.td
Fixed ARMAsmParser::ParseInstruction GNU compatability branch, so it also works for thumb mode from now.
Added new tests.
llvm-svn: 205622
More updating of tests to be explicit about the target triple rather than
relying on the default target triple supporting ARM mode.
Indicate to lit that object emission is not yet available for Windows on ARM.
llvm-svn: 205545
This changes the tests that were targeting ARM EABI to explicitly specify the
environment rather than relying on the default. This breaks with the new
Windows on ARM support when running the tests on Windows where the default
environment is no longer EABI.
Take the opportunity to avoid a pointless redirect (helps when trying to debug
with providing a command line invocation which can be copy and pasted) and
removing a few greps in favour of FileCheck.
llvm-svn: 205541
The trouble as in ARMAsmParser, in ParseInstruction method. It assumes that ARM::R12 + 1 == ARM::SP.
It is wrong, since ARM::<Register> codes are generated by tablegen and actually could be any random numbers.
llvm-svn: 205524
Issue subject: Crash using integrated assembler with immediate arithmetic
Fix description:
Expressions like 'cmp r0, #(l1 - l2) >> 3' could not be evaluated on asm parsing stage,
since it is impossible to resolve labels on this stage. In the end of stage we still have
expression (MCExpr).
Then, when we want to encode it, we expect it to be an immediate, but it still an expression.
Patch introduces a Fixup (MCFixup instance), that is processed after main encoding stage.
llvm-svn: 205094
I started trying to fix a small issue, but this code has seen a small fix too
many.
The old code was fairly convoluted. Some of the issues it had:
* It failed to check if a symbol difference was in the some section when
converting a relocation to pcrel.
* It failed to check if the relocation was already pcrel.
* The pcrel value computation was wrong in some cases (relocation-pc.s)
* It was missing quiet a few cases where it should not convert symbol
relocations to section relocations, leaving the backends to patch it up.
* It would not propagate the fact that it had changed a relocation to pcrel,
requiring a quiet nasty work around in ARM.
* It was missing comments.
llvm-svn: 205076
Fix description:
Expressions like 'cmp r0, #(l1 - l2) >> 3' could not be evaluated on asm parsing stage,
since it is impossible to resolve labels on this stage. In the end of stage we still have
expression (MCExpr).
Then, when we want to encode it, we expect it to be an immediate, but it still an expression.
Patch introduces a Fixup (MCFixup instance), that is processed after main encoding stage.
llvm-svn: 204899
When a label is parsed, check if there is type information available for the
label. If so, check if the symbol is a function. If the symbol is a function
and we are in thumb mode and no explicit thumb_func has been emitted, adjust the
symbol data to indicate that the function definition is a thumb function.
The application of this inferencing is improved value handling in the object
file (the required thumb bit is set on symbols which are thumb functions). It
also helps improve compatibility with binutils.
The one complication that arises from this handling is the MCAsmStreamer. The
default implementation of getOrCreateSymbolData in MCStreamer does not support
tracking the symbol data. In order to support the semantics of thumb functions,
track symbol data in assembly streamer. Although O(n) in number of labels in
the TU, this is already done in various other streamers and as such the memory
overhead is not a practical concern in this scenario.
llvm-svn: 204544
The revision I'm reverting breaks handling of transitive aliases. This blocks us
and breaks sanitizer bootstrap:
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-bootstrap/builds/2651
(and checked locally by Alexey).
This revision is the result of:
svn merge -r204059:204058 -r204028:204027 -r203962:203961 .
+ the regression test added to test/MC/ELF/alias.s
Another way to reproduce the regression with clang:
$ cat q.c
void a1();
void a2() __attribute__((alias("a1")));
void a3() __attribute__((alias("a2")));
void a1() {}
$ ~/work/llvm-build/bin/clang-3.5-good -c q.c && mv q.o good.o && \
~/work/llvm-build/bin/clang-3.5-bad -c q.c && mv q.o bad.o && \
objdump -t good.o bad.o
good.o: file format elf64-x86-64
SYMBOL TABLE:
0000000000000000 l df *ABS* 0000000000000000 q.c
0000000000000000 l d .text 0000000000000000 .text
0000000000000000 l d .data 0000000000000000 .data
0000000000000000 l d .bss 0000000000000000 .bss
0000000000000000 l d .comment 0000000000000000 .comment
0000000000000000 l d .note.GNU-stack 0000000000000000 .note.GNU-stack
0000000000000000 l d .eh_frame 0000000000000000 .eh_frame
0000000000000000 g F .text 0000000000000006 a1
0000000000000000 g F .text 0000000000000006 a2
0000000000000000 g F .text 0000000000000006 a3
bad.o: file format elf64-x86-64
SYMBOL TABLE:
0000000000000000 l df *ABS* 0000000000000000 q.c
0000000000000000 l d .text 0000000000000000 .text
0000000000000000 l d .data 0000000000000000 .data
0000000000000000 l d .bss 0000000000000000 .bss
0000000000000000 l d .comment 0000000000000000 .comment
0000000000000000 l d .note.GNU-stack 0000000000000000 .note.GNU-stack
0000000000000000 l d .eh_frame 0000000000000000 .eh_frame
0000000000000000 g F .text 0000000000000006 a1
0000000000000000 g F .text 0000000000000006 a2
0000000000000000 g .text 0000000000000000 a3
llvm-svn: 204137
This performs the equivalent of a .set directive in that it creates a symbol
which is an alias for another symbol or value which may possibly be yet
undefined. This directive also has the added property in that it marks the
aliased symbol as being a thumb function entry point, in the same way that the
.thumb_func directive does.
The current implementation fails one test due to an unrelated issue. Functions
within .thumb sections are not marked as thumb_func. The result is that
the aliasee function is not valued correctly.
llvm-svn: 204059
Support to the IAS was added to actually parse and handle the complex SO
expressions. However, the object file lowering was not updated to compensate
for the fact that the shift operand may be an absolute expression.
When trying to assemble to an object file, the lowering would fail while
succeeding when emitting purely assembly. Add an appropriate test.
The test case is inspired by the test case provided by Jiangning Liu who also
brought the issue to light.
llvm-svn: 203762
.align is handled specially on certain targets. .align without any parameters
on ARM indicates a default alignment (4). Handle the special case in the target
parser, but fall back to the generic parser for the normal version.
llvm-svn: 201988
This adds support for the .short and its alias .hword for adding literal values
into the object file. This is similar to the .word directive, however, rather
than inserting a value of 4 bytes, adds a 2-byte value.
llvm-svn: 201968
ldrd r6, r7 [r2, #15]
simply gives an error and does not triggers an assertion.
As Jim points out, the diagnostic is really strange here,
but fixing that would be more complicated. The missing
comma results in the parser expecting a construct like r2[2],
which is the vector index thing the error message is talking
about. That's not what the user intended, though, and there's
nothing else in the instruction that looks at all like a vector.
Yet more fallout from not having a real parser here and trying
to do context-free generic matching for addressing modes.
rdar://15097243
llvm-svn: 201531
This adds a partial implementation of the .arch_extension directive to the
integrated ARM assembler. There are a number of limitations to this
implementation arising from the target backend support rather than the
implementation itself. Namely, iWMMXT (v1 and v2), Maverick, and XScale support
is not present in the ARM backend. Currently, there is no check for A-class
only (needed for virt), and no ARMv6k detection (needed for os and sec). The
remainder of the extensions are fully supported.
llvm-svn: 201471
This makes the tests more readable by using the -arm-attributes decoding support
in llvm-readobj since that is now available. Change the invocation commands to
be similar to other test and use a more precise triple (the tests only require
ARM EABI support).
llvm-svn: 201029
In Thumb1 mode, bl instruction might be selected for branches between
basic blocks in the function if the offset is greater than 2KB.
However, this might cause SEGV because the destination symbol
is not marked as thumb function and the execution mode will be reset
to ARM mode.
Since we are sure that these symbols are in the same data fragment, we
can simply resolve these local symbols, and don't emit any relocation
information for this bl instruction.
llvm-svn: 200842
The .object_arch directive indicates an alternative architecture to be specified
in the object file. The directive does *not* effect the enabled feature bits
for the object file generation. This is particularly useful when the code
performs runtime detection and would like to indicate a lower architecture as
the requirements than the actual instructions used.
llvm-svn: 200451
.movsp is an ARM unwinding directive that indicates to the unwinder that a
register contains an offset from the current stack pointer. If the offset is
unspecified, it defaults to zero.
llvm-svn: 200449
This enhances the ARMAsmParser to handle .tlsdescseq directives. This is a
slightly special relocation. We must be able to generate them, but not consume
them in assembly. The relocation is meant to assist the linker in generating a
TLS descriptor sequence. The ELF target streamer is enhanced to append
additional fixups into the current segment and that is used to emit the new
R_ARM_TLS_DESCSEQ relocations.
llvm-svn: 200448
Add support for tlsdesc relocations which are part of the ABI, marked as
experimental. These relocations permit the linker to perform TLS reference
optimizations.
llvm-svn: 200447
This adds support for TLS CALL relocations. TLS CALL relocations are used to
indicate to the linker to generate appropriate entries to resolve TLS references
via an appropriate function invocation (e.g. __tls_get_addr(PLT)).
In order to accomodate the linker relaxation of the TLS access model for the
references (GD/LD -> IE, IE -> LE), the relocation addend must be incomplete.
This requires that the partial inplace value is also incomplete (i.e. 0). We
simply avoid the offset value calculation at the time of the fixup adjustment in
the ARM assembler backend.
llvm-svn: 200446
After all hard work to implement the EHABI and with the test-suite
passing, it's time to turn it on by default and allow users to
disable it as a work-around while we fix the eventual bugs that show
up.
This commit also remove the -arm-enable-ehabi-descriptors, since we
want the tables to be printed every time the EHABI is turned on
for non-Darwin ARM targets.
Although MCJIT EHABI is not working yet (needs linking with the right
libraries), this commit also fixes some relocations on MCJIT regarding
the EH tables/lib calls, and update some tests to avoid using EH tables
when none are needed.
The EH tests in the test-suite that were previously disabled on ARM
now pass with these changes, so a follow-up commit on the test-suite
will re-enable them.
llvm-svn: 200388
This brings MC into line with GNU 'as' on ARM, and it brings the ARM
target into line with most other LLVM targets, which declare the
initial CFI state with addInitialFrameState().
Without this, functions generated with .cfi_startproc/endproc on ARM
will tend to cause GDB to abort with:
gdb/dwarf2-frame.c:1132: internal-error: Unknown CFA rule.
I've also tested this by comparing the output of "readelf -w" on the
object files produced by llvm-mc and gas when given the .s file added
here.
This change is part of addressing PR18636.
Differential Revision: http://llvm-reviews.chandlerc.com/D2597
llvm-svn: 200255
Placed the MC variant diagnostics in the wrong directory accidentally. Move
them into their respective architecture specific directories.
llvm-svn: 200161
If a complex expression was passed to the .word directive and the first part of
the directive failed to parse, a secondary diagnostic would be produced that
would clutter the error diagnostics. Improve the diagnostics by consuming the
remainder of the statement.
llvm-svn: 200160
Add support to llvm-readobj to decode the actual opcodes. The ARM EHABI opcodes
are a variable length instruction set that describe the operations required for
properly unwinding stack frames.
The primary motivation for this change is to ease the creation of tests for the
ARM EHABI object emission as well as the unwinding directive handling in the ARM
IAS.
Thanks to Logan Chien for an extra test case!
llvm-svn: 199708
This implements the unwind_raw directive for the ARM IAS. The unwind_raw
directive takes the form of a stack offset value followed by one or more bytes
representing the opcodes to be emitted. The opcode emitted will interpreted as
if it were assembled by the opcode assembler via the standard unwinding
directives.
Thanks to Logan Chien for an extra test!
llvm-svn: 199707
The .personalityindex directive is equivalent to the .personality directive with
the ARM EABI personality with the specific index (0, 1, 2). Both of these
directives indicate personality routines, so enhance the personality directive
handling to take into account personalityindex.
Bonus fix: flush the UnwindContext at the beginning of a new function.
Thanks to Logan Chien for additional tests!
llvm-svn: 199706