Previously we just returned undef, but really we should be returning the pass thru input. We also need to make sure we preserve the chain output that the original intrinsic node had to maintain connectivity in the DAG. So we should just return the incoming chain as the output chain.
llvm-svn: 333804
Noticed while fixing PR37426, for splat rotations (rotation by an uniform value) its better to just expand back to shift ops than performing as a general non-uniform rotation.
llvm-svn: 333661
This improves splat rotations (rotation by an uniform value), to avoid having to use the generic non-uniform shift code (extension to PR37426).
llvm-svn: 333641
Created the IsSplatValue helper from the splat detection code in LowerScalarVariableShift as a first NFC step towards improving support for splat rotations, which is an extension of PR37426.
llvm-svn: 333580
Support for Clang lowering of fused intrinsics. This patch:
1. Removes bindings to clang fma intrinsics.
2. Introduces new LLVM unmasked intrinsics with rounding mode:
int_x86_avx512_vfmadd_pd_512
int_x86_avx512_vfmadd_ps_512
int_x86_avx512_vfmaddsub_pd_512
int_x86_avx512_vfmaddsub_ps_512
supported with a new intrinsic type (INTR_TYPE_3OP_RM).
3. Introduces new x86 fmaddsub/fmsubadd folding.
4. Introduces new tests for code emitted by sequentions introduced in Clang part.
Patch by tkrupa
Reviewers: craig.topper, sroland, spatel, RKSimon
Reviewed By: craig.topper, RKSimon
Differential Revision: https://reviews.llvm.org/D47443
llvm-svn: 333554
There seems to be no real reason to have these separate copies.
The existing implementations just copy each other for x86.
For Mips there is a subtle difference, which is just a bug
since it changes based on the context where which one was called.
Dropping this version, all tests pass. If I try to merge them
to match the removed version, a test fails.
llvm-svn: 333440
1. Introduction of mask scalar TableGen patterns.
2. Introduction of new scalar move TableGen patterns
and refactoring of existing ones.
3. Folding of pattern created by introducing scalar
masking in Clang header files.
Patch by tkrupa
Differential Revision: https://reviews.llvm.org/D47012
llvm-svn: 333419
Summary: We already get this right if the i64 didn't come from a load.
Reviewers: RKSimon
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47439
llvm-svn: 333393
We have unmasked intrinsics now and wrap them with a select. This is a net reduction of 36 intrinsics from before the unmasked intrinsics were added.
llvm-svn: 333388
These do the same thing with the first and second sources swapped. They previously came from separate intrinsics that specified different masking behavior. But we can cover that with isel patterns and a single node.
This is a step towards reducing the number of intrinsics needed.
A bunch of tests change because we are now biased to choosing VPERMT over VPERMI when there is nothing to signal that commuting is beneficial.
llvm-svn: 333383
This basically reverts r280696 in favor of using extra patterns as mentioned as an alternative in that commit message. For now I've only added the cases we have test cases for, but it should be easy to add more in the future.
This will help to convert VPERMI2PS/VPERMT2PS intrinsics to use a single ISD node opcode. And hopefully allow some intrinsics to be removed.
llvm-svn: 333365
Summary:
This **appears** to be the last missing piece for the masked merge pattern handling in the backend.
This is [[ https://bugs.llvm.org/show_bug.cgi?id=37104 | PR37104 ]].
[[ https://bugs.llvm.org/show_bug.cgi?id=6773 | PR6773 ]] will introduce an IR canonicalization that is likely bad for the end assembly.
Previously, `andps`+`andnps` / `bsl` would be generated. (see `@out`)
Now, they would no longer be generated (see `@in`), and we need to make sure that they are generated.
Differential Revision: https://reviews.llvm.org/D46528
llvm-svn: 332904
This removes 6 intrinsics since we no longer need separate mask and maskz intrinsics.
Differential Revision: https://reviews.llvm.org/D47124
llvm-svn: 332890
As suggested by Fabian on PR37426, we can use PMULUDQ to perform v4i32 vector rotations as the upper 32bits of the multiply will contain the 'wrapped' bits of the rotation.
v8i16/v16i8 rotations would be straightforward to add to lowerRotate in the future - ideally we'd mostly share code with the vector shifts lowering.
Differential Revision: https://reviews.llvm.org/D46954
llvm-svn: 332832
The intrinsic legalization for masked truncate uses ISD::TRUNCATE which can be constant folded by getNode. This prevents getVectorMaskingNode from seeing the ISD::TRUNCATE special case where it should emit X86ISD::SELECT instead of ISD::VSELECT. This causes a vselect with a v16i1 or v8i1 condition to be emitted during vector legalization. but vector legalization doesn't revisit nodes it creates. DAG combine will then promote this condition to match the result type. Then op legalization will try to legalize it, but the custom lowering hook returned SDValue(). But op legalization doesn't have an Expand for VSELECT because it expects vector legalization to have taken care of it. So the operation sticks around and fails in isel.
This patch adds a custom legalization hook to morph it to a vXi8 vselect instead.
This also simplifies the normal vXi16 vselect handling because vector legalization was normally expanding to AND/ANDN/OR and DAG combine was turning that into VBLENDVB. So we can skip a step by doing it directly.
Fixes PR37499
Differential Revision: https://reviews.llvm.org/D47025
llvm-svn: 332743
As suggested by Fabian on PR37441, use PSHUFLW to extend shift amount types for use with PSRAD/PSRLD to reduce register pressure.
Some of this ideally would be done by combineTargetShuffle but its tricky to do as most of the shuffles are sharing inputs.
Differential Revision: https://reviews.llvm.org/D46959
llvm-svn: 332524
As i64 types are not legal on 32-bit targets, insert these into a suitable zero vector and use the packed vXi64<->FP conversion instructions instead.
Fixes PR3163.
Differential Revision: https://reviews.llvm.org/D43441
llvm-svn: 332498
Summary:
New unsigned saturation downconvert patterns detection was implemented in
X86 Codegen:
(truncate (smin (smax (x, C1), C2)) to dest_type),
where C1 >= 0 and C2 is unsigned max of destination type.
(truncate (smax (smin (x, C2), C1)) to dest_type)
where C1 >= 0, C2 is unsigned max of destination type and C1 <= C2.
These two patterns are equivalent to:
(truncate (umin (smax(x, C1), unsigned_max_of_dest_type)) to dest_type)
Reviewers: RKSimon
Subscribers: llvm-commits, a.elovikov
Differential Revision: https://reviews.llvm.org/D45315
llvm-svn: 332336
With nnan, there's no need for the masked merge / blend
sequence (that probably costs much more than the min/max
instruction).
Somewhere between clang 5.0 and 6.0, we started producing
these intrinsics for fmax()/fmin() in C source instead of
libcalls or fcmp/select. The backend wasn't prepared for
that, so we regressed perf in those cases.
Note: it's possible that other targets have similar problems
as seen here.
Noticed while investigating PR37403 and related bugs:
https://bugs.llvm.org/show_bug.cgi?id=37403
The IR FMF propagation cases still don't work. There's
a proposal that might fix those cases in D46563.
llvm-svn: 331992
Because we create a new kind of debug instruction, DBG_LABEL, we need to
check all passes which use isDebugValue() to check MachineInstr is debug
instruction or not. When expelling debug instructions, we should expel
both DBG_VALUE and DBG_LABEL. So, I create a new function,
isDebugInstr(), in MachineInstr to check whether the MachineInstr is
debug instruction or not.
This patch has no new test case. I have run regression test and there is
no difference in regression test.
Differential Revision: https://reviews.llvm.org/D45342
Patch by Hsiangkai Wang.
llvm-svn: 331844
This is a fix for PR30290: by marking all byval stack slots as being aliased,
the instruction scheduler is more conservative about rescheduling memory
accesses to such stack slots as an LLVM Value* might alias it. This fixes
errors such as in the patched test case, where reads and writes to a data
structure are illegally mixed.
This could be fixed better in the future with better analysis for the
instruction scheduler to know what Values alias what stack slots.
Differential Revision: https://reviews.llvm.org/D45022
llvm-svn: 331749
This patch adds a shadow stack fix when compiling
setjmp/longjmp with the shadow stack enabled. This
allows setjmp/longjmp to work correctly with CET.
Patch by mike.dvoretsky
Differential Revision: https://reviews.llvm.org/D46181
llvm-svn: 331748
Summary:
Split off from D46031.
In masked merge case, this degrades IPC by decreasing instruction count.
{F6108777}
The next patch should be able to recover and improve this.
This also affects the transform @spatel have added in D27489 / rL289738,
and the test coverage for X86 was missing.
But after i have added it, and looked at the changes in MCA, i'm somewhat confused.
{F6093591} {F6093592} {F6093593}
I'd say this regression is an improvement, since `IPC` increased in that case?
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: andreadb, llvm-commits, spatel
Differential Revision: https://reviews.llvm.org/D46493
llvm-svn: 331684
Summary:
The legacy VRCPPS/VRSQRTPS instructions aren't available in 512-bit versions. The new increased precision versions are. So we can use those to implement v16f32 reciprocal estimates.
For KNL CPUs we can probably use VRCP28PS/VRSQRT28PS and avoid the NR step altogether, but I leave that for a future patch.
Reviewers: spatel
Reviewed By: spatel
Subscribers: RKSimon, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D46498
llvm-svn: 331606
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
Summary:
Previously the flag intrinsics always used the index instructions even if a mask instruction also exists.
To fix fix this I've created a single ISD node type that returns index, mask, and flags. The SelectionDAG CSE process will merge all flavors of intrinsics with the same inputs to a s ingle node. Then during isel we just have to look at which results are used to know what instruction to generate. If both mask and index are used we'll need to emit two instructions. But for all other cases we can emit a single instruction.
Since I had to do manual isel anyway, I've removed the pseudo instructions and custom inserter code that was working around tablegen limitations with multiple implicit defs.
I've also renamed the recently added sse42.ll test case to sttni.ll since it focuses on that subset of the sse4.2 instructions.
Reviewers: chandlerc, RKSimon, spatel
Reviewed By: chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D46202
llvm-svn: 331091
Previously we only formed MUL_IMM when we split a constant. This blocked load folding on those cases. We should also form MUL_IMM for 3/5/9 to favor LEA over load folding.
Differential Revision: https://reviews.llvm.org/D46040
llvm-svn: 330850
Summary:
If attribute "use-soft-float"="true" is set then X86ISelLowering.cpp sets
'Promote' action for ISD::SINT_TO_FP operation on type i32.
But 'Promote' action is not proper in this case since lib function
__floatsidf is available for casting from signed int to float type.
Thus Expand action is more suitable here.
The Expand action should be set for ISD::UINT_TO_FP for soft float as well.
If function attribute "use-soft-float"="true" is set then infinite looping
can happen in DAG combining, function visitSINT_TO_FP() replaces SINT_TO_FP
node with UINT_TO_FP node and function combineUIntToFP() replace vice versa in cycle.
The fix prevents it.
Patch by vrybalov
Differential Revision: https://reviews.llvm.org/D45572
llvm-svn: 330711
Three new instructions:
umonitor - Sets up a linear address range to be
monitored by hardware and activates the monitor.
The address range should be a writeback memory
caching type.
umwait - A hint that allows the processor to
stop instruction execution and enter an
implementation-dependent optimized state
until occurrence of a class of events.
tpause - Directs the processor to enter an
implementation-dependent optimized state
until the TSC reaches the value in EDX:EAX.
Also modifying the description of the mfence
instruction, as the rep prefix (0xF3) was allowed
before, which would conflict with umonitor during
disassembly.
Before:
$ echo 0xf3,0x0f,0xae,0xf0 | llvm-mc -disassemble
.text
mfence
After:
$ echo 0xf3,0x0f,0xae,0xf0 | llvm-mc -disassemble
.text
umonitor %rax
Reviewers: craig.topper, zvi
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D45253
llvm-svn: 330462
This is the patch that lowers x86 intrinsics to native IR
in order to enable optimizations. The patch also includes folding
of previously missing saturation patterns so that IR emits the same
machine instructions as the intrinsics.
Patch by tkrupa
Differential Revision: https://reviews.llvm.org/D44785
llvm-svn: 330322
Summary:
Add an LLVM intrinsic for type discriminated event logging with XRay.
Similar to the existing intrinsic for custom events, but also accepts
a type tag argument to allow plugins to be aware of different types
and semantically interpret logged events they know about without
choking on those they don't.
Relies on a symbol defined in compiler-rt patch D43668. I may wait
to submit before I can see demo everything working together including
a still to come clang patch.
Reviewers: dberris, pelikan, eizan, rSerge, timshen
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45633
llvm-svn: 330219
This completes the work started in r329604 and r329605 when we changed clang to no longer use the intrinsics.
We lost some InstCombine SimplifyDemandedBit optimizations through this change as we aren't able to fold 'and', bitcast, shuffle very well.
llvm-svn: 329990
This cleans up a number of operations that only claimed te use EFLAGS
due to using DF. But no instructions which we think of us setting EFLAGS
actually modify DF (other than things like popf) and so this needlessly
creates uses of EFLAGS that aren't really there.
In fact, DF is so restrictive it is pretty easy to model. Only STD, CLD,
and the whole-flags writes (WRFLAGS and POPF) need to model this.
I've also somewhat cleaned up some of the flag management instruction
definitions to be in the correct .td file.
Adding this extra register also uncovered a failure to use the correct
datatype to hold X86 registers, and I've corrected that as necessary
here.
Differential Revision: https://reviews.llvm.org/D45154
llvm-svn: 329673
The key idea is to lower COPY nodes populating EFLAGS by scanning the
uses of EFLAGS and introducing dedicated code to preserve the necessary
state in a GPR. In the vast majority of cases, these uses are cmovCC and
jCC instructions. For such cases, we can very easily save and restore
the necessary information by simply inserting a setCC into a GPR where
the original flags are live, and then testing that GPR directly to feed
the cmov or conditional branch.
However, things are a bit more tricky if arithmetic is using the flags.
This patch handles the vast majority of cases that seem to come up in
practice: adc, adcx, adox, rcl, and rcr; all without taking advantage of
partially preserved EFLAGS as LLVM doesn't currently model that at all.
There are a large number of operations that techinaclly observe EFLAGS
currently but shouldn't in this case -- they typically are using DF.
Currently, they will not be handled by this approach. However, I have
never seen this issue come up in practice. It is already pretty rare to
have these patterns come up in practical code with LLVM. I had to resort
to writing MIR tests to cover most of the logic in this pass already.
I suspect even with its current amount of coverage of arithmetic users
of EFLAGS it will be a significant improvement over the current use of
pushf/popf. It will also produce substantially faster code in most of
the common patterns.
This patch also removes all of the old lowering for EFLAGS copies, and
the hack that forced us to use a frame pointer when EFLAGS copies were
found anywhere in a function so that the dynamic stack adjustment wasn't
a problem. None of this is needed as we now lower all of these copies
directly in MI and without require stack adjustments.
Lots of thanks to Reid who came up with several aspects of this
approach, and Craig who helped me work out a couple of things tripping
me up while working on this.
Differential Revision: https://reviews.llvm.org/D45146
llvm-svn: 329657