This allows the optimization to rearrange loads and stores more
aggressively. This doesn't really affect performance, but it helps
codesize.
Differential Revision: https://reviews.llvm.org/D30839
llvm-svn: 298021
Users often call getArgumentList().size(), which is a linear way to get
the number of function arguments. arg_size(), on the other hand, is
constant time.
In general, the fact that arguments are stored in an iplist is an
implementation detail, so I've removed it from the Function interface
and moved all other users to the argument container APIs (arg_begin(),
arg_end(), args(), arg_size()).
Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D31052
llvm-svn: 298010
A recent change switch the in-memory wasm value types
to be signed integers, but I missing a few cases where
these were being writing to the binary.
Differential Revision: https://reviews.llvm.org/D31014
Patch by Sam Clegg
llvm-svn: 297991
In fact this default implementation should be the only implementation,
keep it virtual for now to accomodate targets that don't model flags
correctly.
Differential Revision: https://reviews.llvm.org/D30747
llvm-svn: 297980
Earlier stages of GlobalISel always use ConstantInt in G_CONSTANT so that's
what we should check for.
This fixes a crash introduced in r297782.
llvm-svn: 297968
We can mark functions to always inline early in the opt. Since we do not have
call support this early inlining creates opportunities for inter-procedural
optimizations which would not occur otherwise.
Differential Revision: https://reviews.llvm.org/D31016
llvm-svn: 297958
computeKnownBits didn't handle fp_to_fp16 to report
the high bits as 0. ARM maps the generic node to an instruction
that does not modify the high bits of the register, so introduce
a target node where the high bits are known 0.
llvm-svn: 297873
If we got unlucky with register allocation and actual constpool placement, we
could end up producing a tTBB_JT with an index that's already been clobbered.
Technically, we might be able to fix this situation up with a MOV, but I think
the constant islands pass is complex enough without having to deal with more
weird edge-cases.
llvm-svn: 297871
mfvrd and mffprd are both alias to mfvrsd.
This patch enables correct parsing of the aliases, but we still emit a mfvrsd.
Committing on behalf of brunoalr (Bruno Rosa).
Differential Revision: https://reviews.llvm.org/D29177
llvm-svn: 297849
This patch adds support for recognizing more patterns to match to DEXT and
CINS instructions.
It finds cases where multiple instructions could be replaced with a single
DEXT or CINS instruction.
For example, for the following:
define i64 @dext_and32(i64 zeroext %a) {
entry:
%and = and i64 %a, 4294967295
ret i64 %and
}
instead of generating:
0000000000000088 <dext_and32>:
88: 64010001 daddiu at,zero,1
8c: 0001083c dsll32 at,at,0x0
90: 6421ffff daddiu at,at,-1
94: 03e00008 jr ra
98: 00811024 and v0,a0,at
9c: 00000000 nop
the following gets generated:
0000000000000068 <dext_and32>:
68: 03e00008 jr ra
6c: 7c82f803 dext v0,a0,0x0,0x20
Cases that are covered:
DEXT:
1. and $src, mask where mask > 0xffff
2. zext $src zero extend from i32 to i64
CINS:
1. and (shl $src, pos), mask
2. shl (and $src, mask), pos
3. zext (shl $src, pos) zero extend from i32 to i64
Patch by Violeta Vukobrat.
Differential Revision: https://reviews.llvm.org/D30464
llvm-svn: 297832
Different MCInstrAnalysis classes for arm and thumb mode, each with
their own evaluateBranch implementation. I added a test case and
fixed the coff-relocations test to use '<label>:' rather than
'<label>' in the CHECK-LABEL entries, since the ones without the
colon would match branch targets. Might be worth noticing that
llvm-objdump does not lookup the relocation and thus assigns it a
target depending on the encoded immediate which #0, so it thinks it
branches to the next instruction.
Committed on behalf of Andre Vieira (avieira).
Differential Revision: https://reviews.llvm.org/D30943
llvm-svn: 297821
Enable the selection of the 64-bit signed multiply accumulate
instructions which operate on 16-bit operands. These are enabled for
ARMv5TE onwards for ARM and for V6T2 and other DSP enabled Thumb
architectures.
Differential Revision: https://reviews.llvm.org/D30044
llvm-svn: 297809
Summary:
Adds a new kind of MachineOperand: MO_Placeholder.
This operand must not appear in the MIR and only exists as a way of
creating an 'uninitialized' operand until a matcher function overwrites it.
Depends on D30046, D29712
Reviewers: t.p.northover, ab, rovka, aditya_nandakumar, javed.absar, qcolombet
Reviewed By: qcolombet
Subscribers: dberris, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D30089
llvm-svn: 297782
Reduced version of D26357 - based on the discussion on llvm-dev about canonicalization of UMIN/UMAX/SMIN/SMAX as well as ABS I've reduced that patch to just the ABS ISD node (with x86/sse support) to improve basic combines and lowering.
ARM/AArch64, Hexagon, PowerPC and NVPTX all have similar instructions allowing us to make this a generic opcode and move away from the hard coded tablegen patterns which makes it tricky to match more complex patterns.
At the moment this patch doesn't attempt legalization as we only create an ABS node if its legal/custom.
Differential Revision: https://reviews.llvm.org/D29639
llvm-svn: 297780
Previously we were using the encoded LEB hex values
for the value types. This change uses the decoded
negative value and the LEB encoder to write them out.
Differential Revision: https://reviews.llvm.org/D30847
Patch by Sam Clegg
llvm-svn: 297777
Make MCSectionELF::AssociatedSection be a link to a symbol, because
that's how it works in the assembly, and use it in the asm printer.
llvm-svn: 297769
This instruction was missing from the list of opcodes that we check, so we were
hitting an llvm_unreachable in ARMMCCodeEmitter.cpp for the ARM MOVT
instruction, rather than the diagnostic that is emitted for the other MOVW/MOVT
instructions.
Differential revision: https://reviews.llvm.org/D30936
llvm-svn: 297739
Create nodes for smulwb and smulwt and move their selection from
DAGToDAG to DAG combine. smlawb and smlawt can then be selected
using tablegen. Added some helper functions to detect shift patterns
as well as a wrapper around SimplifyDemandBits. Added a couple of
extra tests.
Differential Revision: https://reviews.llvm.org/D30708
llvm-svn: 297716
Each Calling convention (CC) defines a static list of registers that should be preserved by a callee function. All other registers should be saved by the caller.
Some CCs use additional condition: If the register is used for passing/returning arguments – the caller needs to save it - even if it is part of the Callee Saved Registers (CSR) list.
The current LLVM implementation doesn’t support it. It will save a register if it is part of the static CSR list and will not care if the register is passed/returned by the callee.
The solution is to dynamically allocate the CSR lists (Only for these CCs). The lists will be updated with actual registers that should be saved by the callee.
Since we need the allocated lists to live as long as the function exists, the list should reside inside the Machine Register Info (MRI) which is a property of the Machine Function and managed by it (and has the same life span).
The lists should be saved in the MRI and populated upon LowerCall and LowerFormalArguments.
The patch will also assist to implement future no_caller_saved_regsiters attribute intended for interrupt handler CC.
Differential Revision: https://reviews.llvm.org/D28566
llvm-svn: 297715
getIntrinsicInstrCost() used to only compute scalarization cost based on types.
This patch improves this so that the actual arguments are checked when they are
available, in order to handle only unique non-constant operands.
Tests updates:
Analysis/CostModel/X86/arith-fp.ll
Transforms/LoopVectorize/AArch64/interleaved_cost.ll
Transforms/LoopVectorize/ARM/interleaved_cost.ll
The improvement in getOperandsScalarizationOverhead() to differentiate on
constants made it necessary to update the interleaved_cost.ll tests even
though they do not relate to intrinsics.
Review: Hal Finkel
https://reviews.llvm.org/D29540
llvm-svn: 297705
Recommiting with compiler time improvements
Recommitting after fixup of 32-bit aliasing sign offset bug in DAGCombiner.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 297695
rL230225 made the assumption that only the lower 32-bits of an MMX register load is used as a shift value, when in fact the whole 64-bits are reloaded and treated as a i64 to determine the shift value.
This patch reverts rL230225 to ensure that the whole 64-bits of memory are folded and ensures that the upper 32-bit are zero'd for cases where the shift value has come from a scalar source.
Found during fuzz testing.
Differential Revision: https://reviews.llvm.org/D30833
llvm-svn: 297667
I am leaving the code in clang which filters mxcsr from the clobber list because that is still technically correct and will be useful again when the MXCSR register is reintroduced.
llvm-svn: 297664
This commit adds tail call support to the MachineOutliner pass. This allows
the outliner to insert jumps rather than calls in areas where tail calling is
possible. Outlined tail calls include the return or terminator of the basic
block being outlined from.
Tail call support allows the outliner to take returns and terminators into
consideration while finding candidates to outline. It also allows the outliner
to save more instructions. For example, in the X86-64 outliner, a tail called
outlined function saves one instruction since no return has to be inserted.
llvm-svn: 297653
For AVX-512 we force the input to zero if the input is undef or the mask is all ones to break an execution dependency. This patch brings the same behavior to AVX2.
llvm-svn: 297652
We were already forcing undef inputs to become a zero vector, this now catches an all ones mask too.
Ideally we'd use undef and let execution dep fix handle picking the best register/clearance for the undef, but I don't think it can handle the early clobber today.
llvm-svn: 297651
We used to hit an unreachable in getRegBankFromRegClass when dealing with the
stack pointer. This commit adds support for the GPRsp reg class.
llvm-svn: 297621
Loop over the ARM decode tables; this is a clean-up to reduce some code
duplication.
Differential Revision: https://reviews.llvm.org/D30814
llvm-svn: 297608
The immediate should be 1 or 2, not 0 or 1. This was found while adding bounds checking to clang. In fact the existing clang builtin test failed if we ran it all the way to assembly.
llvm-svn: 297591
I noticed unnecessary 'sbb' instructions in D30472 and while looking at 'ptest' codegen recently.
This happens because we were transforming any 'setb' - even when we only wanted a single-bit result.
This patch moves those transforms under visitAdd/visitSub, so we we're only creating sbb/adc when it
is a win. I don't know why we need a SETCC_CARRY node type, but I'm not proposing to change that
existing behavior in this patch.
Also, I'm skeptical that sbb/adc are a win for all micro-arches, so I added comments to the test files
where this transform still fires.
The test changes here are all cases where we no longer produce sbb/adc. Avoiding partial register
stalls (generating an xor to clear a register) is not handled in some cases, but that's a separate
issue.
Differential Revision: https://reviews.llvm.org/D30611
llvm-svn: 297586
Summary:
A53 scheduler causes an assertion failure on all CRC instructions:
include/llvm/CodeGen/MachineInstr.h:280: const llvm::MachineOperand
&llvm::MachineInstr::getOperand(unsigned int) const: Assertion `i <
getNumOperands() && "getOperand() out of range!"' failed.
The case statements corresponding to CRC instructions are incorrect and should
be removed.
Also adding a testcase while on this.
Reviewers: t.p.northover, javed.absar, apazos, rengolin
Reviewed By: rengolin
Subscribers: evandro, aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D30274
llvm-svn: 297582
I'm pretty sure there are more problems lurking here. But I think this fixes PR32241.
I've added the test case from that bug and added asserts that will fail if we ever try to copy between high registers and mask registers again.
llvm-svn: 297574
Without SSE41 (pextrb) we currently extract byte elements from a vector by spilling to stack and reloading the byte.
This patch is an initial attempt at using MOVD/PEXTRW to extract the relevant DWORD/WORD from the vector and then shift+truncate to collect the correct byte.
Extraction of multiple bytes this way would result in code bloat, but as explained in the patch we could probably afford to be more aggressive with the supported extractions before again falling back on spilling - possibly through counting the number of extracts and which DWORD/WORD they originate?
Differential Revision: https://reviews.llvm.org/D29841
llvm-svn: 297568
Since v_max_f32_e64/v_max_f16_e64 can be folded if the target
instruction supports the clamp bit, we also need to maintain
modifiers when converting v_mac to v_mad.
This fixes a rendering issue with Dirt Rally because a v_mac
instruction with the clamp bit set was converted to a v_mad
but that bit was lost during the conversion.
Fixes: e184e01dd79 ("AMDGPU: Fold FP clamp as modifier bit")
Patch by Samuel Pitoiset <samuel.pitoiset@gmail.com>
llvm-svn: 297556
This method inverts the Reason field of a scheduling candidate.
It does right comparison between RegCritical and RegExcess, but
everything else is broken. In fact it can prefer less strong reason
such as Weak over RegCritical because Weak > -RegCritical.
The CandReason enum is properly sorted, so just remove artificial
ranking.
Differential Revision: https://reviews.llvm.org/D30557
llvm-svn: 297536
This function will find the closest ref node aliased to Reg that is
in an instruction preceding Inst. This could be used to identify the
hypothetical reaching def of Reg, if Reg was a member of Inst.
llvm-svn: 297524
This only requires a 64-bit memory source, not the whole 128-bits. But the 128-bit case is still supported via X86InstrInfo::foldMemoryOperandImpl
llvm-svn: 297523
In order to make it easier to parse information about the performance of
MacroFusion, this patch adds the function and the instruction names to the
debug output of this pass.
llvm-svn: 297504
We currently have to insert bits via a temporary variable of the same size as the target with various shift/mask stages, resulting in further temporary variables, all of which require the allocation of memory for large APInts (MaskSizeInBits > 64).
This is another of the compile time issues identified in PR32037 (see also D30265).
This patch adds the APInt::insertBits() helper method which avoids the temporary memory allocation and masks/inserts the raw bits directly into the target.
Differential Revision: https://reviews.llvm.org/D30780
llvm-svn: 297458
This patches teaches the MIPS backend to accept more values for constant
splats. Previously, only 10 bit signed immediates or values that could be
loaded using an ldi.[bhwd] instruction would be acceptted. This patch relaxes
that constraint so that any constant value that be splatted is accepted.
As a result, the constant pool is used less for vector operations, and the
suite of bit manipulation instructions b(clr|set|neg)i can now be used with
the full range of their immediate operand.
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D30640
llvm-svn: 297457
ARMISD::ADD[CE] nodes, instead of the generic ISD::ADD[CE].
Summary:
This allows for some simplification because the combines
are no longer limited to just one go at the node before
it gets legalized into an ARM target-specific one.
Reviewers: jmolloy, rogfer01
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D30401
llvm-svn: 297453
same as already done for ARM and Thumb2.
Reviewers: jmolloy, rogfer01, efriedma
Subscribers: aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D30400
llvm-svn: 297443
- Fix the insertion point, which occasionally could have been incorrect.
- Avoid creating multiple bitsplits with the same operands, if an old one
could be reused.
llvm-svn: 297414
The fix introduces segfaults and clobbers the value to be stored when
the atomic sequence loops.
Revert "[Target/MIPS] Kill dead code, no functional change intended."
This reverts commit r296153.
Revert "Recommit "[mips] Fix atomic compare and swap at O0.""
This reverts commit r296134.
llvm-svn: 297380
Minor cleanup in ARMInstrVFP.td: removed some FIXMEs and added a MC test for
vcmp that was actually missing.
Differential Revision: https://reviews.llvm.org/D30745
llvm-svn: 297376
Fix a machine verifier issue where a instruction was using a invalid
register. The return pseudo is expanded and has the return address
register added to it. The return register may have been spuriously
mark as killed earlier.
This partially resolves PR/27458
Thanks to Quentin Colombet for reporting the issue!
llvm-svn: 297372
When extracting a bitfield from the high register in a register pair,
the final offset should be relative to the high register (for 32-bit
extracts).
llvm-svn: 297288
Summary: By using reg_nodbg_empty() to determine if a function can be
treated as a leaf function or not, we miss the case when the register
pair L0_L1 is used but not L0 by itself. This has the effect that
use_all_i32_regs(), a test in reserved-regs.ll which tries to use all
registers, gets treated as a leaf function.
Reviewers: jyknight, venkatra
Reviewed By: jyknight
Subscribers: davide, RKSimon, sepavloff, llvm-commits
Differential Revision: https://reviews.llvm.org/D27089
llvm-svn: 297285
After inspection, it's an UB in our code base. Someone cast a var-arg
function pointer to a non-var-arg one. :/
Re-commit r296771 to continue testing on the patch.
Sorry for the trouble!
llvm-svn: 297256
This is repetition of isImage() function in NVPTXUtilities.cpp.
Patch by Briana Grace!
Differential Revision: https://reviews.llvm.org/D30706
llvm-svn: 297252