Summary:
This patch teaches SymbolFileBreakpad to parse the line information in
breakpad files and present it to lldb.
The trickiest question here was what kind of "compile units" to present
to lldb, as there really isn't enough information in breakpad files to
correctly reconstruct those.
A couple of options were considered
- have the entire file be one compile unit
- have one compile unit for each FILE record
- have one compile unit for each FUNC record
The main drawback of the first approach is that all of the files would
be considered "headers" by lldb, and so they wouldn't be searched if
target.inline-breakpoint-strategy=never. The single compile unit would
also be huge, and there isn't a good way to name it.
The second approach will create mostly correct compile units for cpp
files, but it will still be wrong for headers. However, the biggest
drawback here seemed to be the fact that this can cause a compile unit
to change mid-function (for example when a function from another file is
inlined or another file is #included into a function). While I don't
know of any specific thing that would break in this case, it does sound
like a thing that we should avoid.
In the end, we chose the third option, as it didn't seem to have any
major disadvantages, though it was not ideal either. One disadvantage
here is that this generates a large number of compile units, and there
is still a question on how to name it. We chose to simply name it after
the first line record in that function. This should be correct 99.99% of
the time, though it can produce somewhat strange results if the very
first line record comes from an #included file.
Reviewers: clayborg, zturner, lemo, markmentovai
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D56595
llvm-svn: 353404
stored relative to VFRAME
Summary:
This patch makes LLDB able to retrieve proper values for function arguments and
local variables stored in PDB relative to VFRAME register.
Patch contains retrieval of corresponding FPO table entries from PDB and a
generic translator from FPO programs to DWARF expressions to get correct VFRAME
value.
Patch also improves variables-locations.test and makes this test passable on
x86.
Patch By: leonid.mashinsky
Reviewers: zturner, asmith, stella.stamenova, aleksandr.urakov
Reviewed By: zturner
Subscribers: arphaman, labath, mgorny, aprantl, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D55122
llvm-svn: 352845
Summary:
This patch adds the basic support of methods reconstruction by native PDB
plugin. It contains only most obvious changes (it processes LF_ONEMETHOD and
LF_METHOD records), some things still remain unsolved:
- mangled names retrieving;
- support of template methods.
Reviewers: zturner, labath, lemo, stella.stamenova
Reviewed by: zturner
Differential Revision: https://reviews.llvm.org/D56126
llvm-svn: 352464
This patch extends SymbolFileBreakpad::AddSymbols to include the symbols
from the FUNC records too. These symbols come from the debug info and
have a size associated with them, so they are given preference in case
there is a PUBLIC record for the same address.
To achieve this, I first pre-process the symbols into a temporary
DenseMap, and then insert the uniqued symbols into the module's symtab.
Reviewers: clayborg, lemo, zturner
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D56590
llvm-svn: 351781
This reapplies commit r351330, which was reverted due to a failing test on
macos. The failure was because the SymbolVendor used on MacOS was stricter than
the default (or ELF) symbol vendor, and rejected the symbol file because it's
UUID did not match the object file.
This version of the patch adds a uuid load command to the test macho file to
make sure the UUIDs match.
llvm-svn: 351447
This reapplies r350802, which was reverted because of issues with
parsing posix-style paths on windows hosts (and vice-versa). These have
since been fixed in r351328, and lldb should now recognise the path
style used in a dwarf compile unit correctly.
llvm-svn: 351435
This patch changes the behavior when printing C++ function references:
where we previously would get a <could not determine size>, there is
now a <no summary available>. It's not clear to me whether this is a
bug or an omission, but it's one step further than LLDB previously
got.
Differential Revision: https://reviews.llvm.org/D56798
llvm-svn: 351376
In this test we have deliberately removed all information which may hint
at the correct path style, so we cannot assert that lldb uses a
particular style. Instead, we should just check that it does something
vaguely reasonable.
llvm-svn: 351359
Summary:
Adding a breakpad symbol file to an existing MachO module with "target symbols
add" currently works only if one's host platform is a mac. This is
because SymbolVendorMacOSX (which is the one responsible for loading
symbols for MachO files) is conditionally compiled for the mac platform.
While we will sooner or later have a special symbol vendor for breakpad
files (to enable more advanced searching), and so this flow could be
made to work through that, it's not clear to me whether this should be a
requirement for the "target symbols add" flow to work. After all, since
the user has explicitly specified the symbol file to use, the symbol
vendor plugin's job is pretty much done.
This patch teaches the default symbol vendor to respect module's symbol
file spec, and load the symbol from that file if it is specified (and no
plugin requests any special handling).
Reviewers: clayborg, zturner, lemo
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D56589
llvm-svn: 351330
Summary:
If we opened a file which was produced on system with different path
syntax, we would parse the paths from the debug info incorrectly.
The reason for that is that we would parse the paths as they were
native. For example this meant that on linux we would treat the entire
windows path as a single file name with no directory component, and then
we would concatenate that with the single directory component from the
DW_AT_comp_dir attribute. When parsing posix paths on windows, we would
at least get the directory separators right, but we still would treat
the posix paths as relative, and concatenate them where we shouldn't.
This patch attempts to remedy this by guessing the path syntax used in
each compile unit. (Unfortunately, there is no info in DWARF which would
give the definitive path style used by the produces, so guessing is all
we can do.) Currently, this guessing is based on the DW_AT_comp_dir
attribute of the compile unit, but this can be refined later if needed
(for example, the DW_AT_name of the compile unit may also contain some
useful info). This style is then used when parsing the line table of
that compile unit.
This patch is sufficient to make the line tables come out right, and
enable breakpoint setting by file name work correctly. Setting a
breakpoint by full path still has some kinks (specifically, using a
windows-style full path will not work on linux because the path will be
parsed as a linux path), but this will require larger changes in how
breakpoint setting works.
Reviewers: clayborg, zturner, JDevlieghere
Subscribers: aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D56543
llvm-svn: 351328
Summary:
This commit adds the glue code necessary to integrate the
SymbolFileBreakpad into the plugin system. Most of the methods are
stubbed out. The only method implemented method is AddSymbols, which
parses the PUBLIC "section" of the breakpad "object file", and fills out
the Module's symtab.
To enable testing this, I've made two additional changes:
- dump Symtab from the SymbolVendor class. The symtab was already being
dumped as a part of the object file dump, but that happened before
symbol vendor kicked in, so it did not reflect any symbols added
there.
- add ability to explicitly specify the external symbol file in
lldb-test (so that the object file could be linked with the breakpad
symbol file). To make things simpler, I've changed lldb-test from
consuming multiple inputs (and dumping their symbols) to having it
just process a single file per invocation. This was not a problem
since everyone was using it that way already.
Reviewers: clayborg, zturner, lemo, markmentovai, amccarth
Subscribers: mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D56173
llvm-svn: 350924
Typedefs are represented as S_UDT records in the globals stream. This
creates a strange situation where "types" are actually represented as
"symbols", so they need special handling.
In order to test this, we don't just use lldb and print out some
variables causing the AST to get created, because variables whose type
is a typedef will have debug info referencing the original type, not the
typedef. So we use lldb-test instead which will parse all debug info in
the entire file. This exposed some problems with lldb-test and the
native reader, mainly that certain types of obscure symbols which we can
find when iterating every single record would trigger crashes. These
have been fixed as well so that lldb-test can be used to test this
functionality.
Differential Revision: https://reviews.llvm.org/D56461
llvm-svn: 350888
This reverts commit r350802 because the test fails on windows. This
happens because we treat the paths as windows paths even though they
have linux path separators in the asm file. That results in wrong paths
being computed (\tmp\tmp\a.c instead of /tmp/a.c).
Reverting until I can figure out what to do with this.
llvm-svn: 350810
Summary:
The motivation for this is being able to write tests for the upcoming
breakpad line table parser, but this could be useful for testing the
low-level workings of any line table format. Or simply for viewing the
line table information with more detail (the brief format doesn't
include any of the flags for end_of_prologue and similar).
I've also removed the load_addresses argument from the
DumpCompileUnitLineTable function, as it wasn't being used anywhere.
Reviewers: clayborg, zturner
Subscribers: JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D56315
llvm-svn: 350802
CHECK-DAG can't really be mixed with CHECK-NEXT statements because
each non DAG check sets a new search-origin for following CHECK-DAG
statements. This was passing by coincidence before, but a benign
change in the way we process symbols caused the order of the output
to be different, which triggered this test to fail.
This change makes the test resilient against ordering problems by
running a separate invocation of FileCheck for each function that
we want to test.
Note that with the Native PDB reader, we have full control over
the ordering that symbols are processed in, so we don't have
to worry about different machines returning things in different
orders due to different DIA SDK versions.
llvm-svn: 350773
ParseDeclsForContext was originally created to serve the very specific
case where the context is a function block. It was never intended to be
used for arbitrary DeclContexts, however due to the generic name, the
DWARF and PDB plugins implemented it in this way "just in case". Then,
lldb-test came along and decided to use it in that way.
Related to this, there are a set of functions in the SymbolFile class
interface whose requirements and expectations are not documented. For
example, if you call ParseCompileUnitFunctions, there's an inherent
requirement that you create entries in the underlying clang AST for
these functions as well as their signature types, because in order to
create an lldb_private::Function object, you have to pass it a
CompilerType for the parameter representing the signature.
On the other hand, there is no similar requirement (either inherent or
documented) if one were to call ParseDeclsForContext. Specifically, if
one calls ParseDeclsForContext, and some variable declarations, types,
and other things are added to the clang AST, is it necessary to create
lldb::Variable, lldb::Type, etc objects representing them? Nobody knows.
There is, however, an accidental requirement, because since all of the
plugins implemented this just in case, lldb-test came along and used
ParsedDeclsForContext, and then wrote check lines that depended on this.
When I went to try and implemented the NativePDB reader, I did not
adhere to this (in fact, from a layering perspective I went out of my
way to avoid it), and as a result the existing DIA PDB tests don't work
when the native PDB reader is enabled, because they expect that calling
ParseDeclsForContext will modify the *module's* view of symbols, and not
just the internal AST.
All of this confusion, however, can be avoided if we simply stick to
using ParseDeclsForContext for its original intended use case (blocks),
and use a different function (ParseAllDebugSymbols) for its intended use
case which is, unsuprisingly, to parse all the debug symbols (which is
all lldb-test really wanted to do anyway).
In the future, I would like to change ParseDeclsForContext to
ParseDeclsForFunctionBlock, then delete all of the dead code inside that
handles other types of DeclContexts (and probably even assert if the
DeclContext is anything other than a block).
A few PDB tests needed to be fixed up as a result of this, and this also
exposed a couple of bugs in the DIA PDB reader (doesn't matter much
since it should be going away soon, but worth mentioning) where the
appropriate AST entries weren't being created always.
Differential Revision: https://reviews.llvm.org/D56418
llvm-svn: 350764
This is a first step towards getting lldb-test symbols working
with the native plugin. There is a remaining issue, which is
that the plugin expects that ParseDeclsForContext will also
create lldb symbols rather than just the decls, but the native
pdb plugin doesn't currently do this. This will be addressed
in a followup patch.
llvm-svn: 350243
A Previous patch added support for creating VarDecls for global
variables. This patch updates this test to be more strict and
actually check these, not just the types.
llvm-svn: 350242
There were several problems preventing this from working. The
first is that when the PDB had an absolute path to the main
source file, we would construct an invalid path by prepending the
compilation directory to it anyway. So we needed to check if the
path is already absolute first.
Second, LLDB assumes that the zero'th item in the support file list
is the main compilation unit. We were respecting this requirement,
but LLDB *also* requires that file to appear somewhere in the list
starting from index 1 as well. So the main compilation file should
appear in the support file list twice. And when parsing a line
table, it expects the LineEntry records to be constructed using
the 1-based index. With these two fixes we can now set breakpoints
by file and line using the native PDB reader.
llvm-svn: 350240
Summary:
r346165 introduced a bug, where we would fail to parse the size of an
array if that size happened to match an existing die offset.
The logic was:
if (DWARFDIE count = die.GetReferencedDie(DW_AT_count))
num_elements = compute_vla_size(count);
else
num_elements = die.GetUsigned(DW_AT_count); // a fixed-size array
The problem with this logic was that GetReferencedDie did not take the
form class of the attribute into account, and would happily return a die
reference for any form, if its value happened to match some die.
As this behavior is inconsistent with how llvm's DWARFFormValue class
operates, I chose to fix the problem by making our version of this class
match the llvm behavior. For this to work, I had to add an explicit form
class check to the .apple_XXX tables parsing code, because they do
(incorrectly?) use data forms as die references.
Reviewers: aprantl, clayborg
Subscribers: JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D55991
llvm-svn: 350086
Previously we would create these for local variables but not for
global variables.
Also updated existing tests which created global variables to check
for them in the resulting AST.
llvm-svn: 349854
We had a use after free where we were assigning the result of a function
that returned a string to a StringRef. After fixing this use after
free, one of the DIA PDB tests now passes with the native PDB reader,
so we enable the test under native mode as well. The goal is to
eventually make all the tests pass under both, at which point we can
disable them all under DIA mode.
llvm-svn: 349673
We reconstruct the AST hierarchy by trying to hack up a mangled
name for the parent type using the child type's mangled name.
This was failing for enums because their tag type is represented
with two letters ("W4") instead of one letter ("T", "U", etc) as
it is with classes, structs, and unions. After accounting for
this we can now correctly determine when an enum is nested
inside of a namespace or a class.
llvm-svn: 349565
Previously the code that parsed debug info to create lldb's Symbol
objects such as Variable, Type, Function, etc was tightly coupled
to the AST reconstruction code. This made it difficult / impossible
to implement functions such as ParseDeclsForContext() that were only
supposed to be operating on clang AST's. By splitting these apart,
the logic becomes much cleaner and we have a clear separation of
responsibilities.
llvm-svn: 349383
Since we're actually running an executable on the host now, different
versions of Windows could load different system libraries, so we need
to regex out the number of loaded modules.
llvm-svn: 349175
This patch adds support for parsing and evaluating local variables.
using the native pdb plugin.
Differential Revision: https://reviews.llvm.org/D55575
llvm-svn: 349067
Previously we would create an lldb::Function object for each function
parsed, but we would not add these to the clang AST. This is a first
step towards getting local variable support working, as we first need an
AST decl so that when we create local variable entries, they have the
proper DeclContext.
Differential Revision: https://reviews.llvm.org/D55384
llvm-svn: 348631
Summary:
This patch contains several small fixes, which makes it possible to evaluate
expressions on Windows using information from PDB. The changes are:
- several sanitize checks;
- make IRExecutionUnit::MemoryManager::getSymbolAddress to not return a magic
value on a failure, because callers wait 0 in this case;
- entry point required to be a file address, not RVA, in the ObjectFilePECOFF;
- do not crash on a debuggee second chance exception - it may be an expression
evaluation crash. Also fix detection of "crushed" threads in tests;
- create parameter declarations for functions in AST to make it possible to call
debugee functions from expressions;
- relax name searching rules for variables, functions, namespaces and types. Now
it works just like in the DWARF plugin;
- fix endless recursion in SymbolFilePDB::ParseCompileUnitFunctionForPDBFunc.
Reviewers: zturner, asmith, stella.stamenova
Reviewed By: stella.stamenova, asmith
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D53759
llvm-svn: 348136
This adds a script called build.py as well as a lit substitution
called %build that we can use to invoke it. The idea is that
this allows a lit test to build test inferiors without having
to worry about architecture / platform specific differences,
command line syntax, finding / configurationg a proper toolchain,
and other issues. They can simply write something like:
%build --arch=32 -o %t.exe %p/Inputs/foo.cpp
and it will just work. This paves the way for being able to
run lit tests with multiple configurations, platforms, and
compilers with a single test.
Differential Revision: https://reviews.llvm.org/D54914
llvm-svn: 348058
This reverts commit dec87759523b2f22fcff3325bc2cd543e4cda0e7.
This commit caused the tests on Windows to run forever rather than complete.
Reverting until the commit can be fixed to not stall.
llvm-svn: 348009
Summary:
This patch contains several small fixes, which makes it possible to evaluate
expressions on Windows using information from PDB. The changes are:
- several sanitize checks;
- make IRExecutionUnit::MemoryManager::getSymbolAddress to not return a magic
value on a failure, because callers wait 0 in this case;
- entry point required to be a file address, not RVA, in the ObjectFilePECOFF;
- do not crash on a debuggee second chance exception - it may be an expression
evaluation crash;
- create parameter declarations for functions in AST to make it possible to call
debugee functions from expressions;
- relax name searching rules for variables, functions, namespaces and types. Now
it works just like in the DWARF plugin;
- fix endless recursion in SymbolFilePDB::ParseCompileUnitFunctionForPDBFunc.
Reviewers: zturner, asmith, stella.stamenova
Reviewed By: stella.stamenova, asmith
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D53759
llvm-svn: 347962
Recently I tried to port LLDB's lit configuration files over to use a
on the surface, but broke some cases that weren't broken before and also
exposed some additional problems with the old approach that we were just
getting lucky with.
When we set up a lit environment, the goal is to make it as hermetic as
possible. We should not be relying on PATH and enabling the use of
arbitrary shell commands. Instead, only whitelisted commands should be
allowed. These are, generally speaking, the lit builtins such as echo,
cd, etc, as well as anything for which substitutions have been
explicitly set up for. These substitutions should map to the build
output directory, but in some cases it's useful to be able to override
this (for example to point to an installed tools directory).
This is, of course, how it's supposed to work. What was actually
happening is that we were bringing in PATH and LD_LIBRARY_PATH and then
just running the given run line as a shell command. This led to problems
such as finding the wrong version of clang-cl on PATH since it wasn't
even a substitution, and flakiness / non-determinism since the
environment the tests were running in would change per-machine. On the
other hand, it also made other things possible. For example, we had some
tests that were explicitly running cl.exe and link.exe instead of
clang-cl and lld-link and the only reason it worked at all is because it
was finding them on PATH. Unfortunately we can't entirely get rid of
these tests, because they support a few things in debug info that
clang-cl and lld-link don't (notably, the LF_UDT_MOD_SRC_LINE record
which makes some of the tests fail.
The high level changes introduced in this patch are:
1. Removal of functionality - The lit test suite no longer respects
LLDB_TEST_C_COMPILER and LLDB_TEST_CXX_COMPILER. This means there is no
more support for gcc, but nobody was using this anyway (note: The
functionality is still there for the dotest suite, just not the lit test
suite). There is no longer a single substitution %cxx and %cc which maps
to <arbitrary-compiler>, you now explicitly specify the compiler with a
substitution like %clang or %clangxx or %clang_cl. We can revisit this
in the future when someone needs gcc.
2. Introduction of the LLDB_LIT_TOOLS_DIR directory. This does in spirit
what LLDB_TEST_C_COMPILER and LLDB_TEST_CXX_COMPILER used to do, but now
more friendly. If this is not specified, all tools are expected to be
the just-built tools. If it is specified, the tools which are not
themselves being tested but are being used to construct and run checks
(e.g. clang, FileCheck, llvm-mc, etc) will be searched for in this
directory first, then the build output directory.
3. Changes to core llvm lit files. The use_lld() and use_clang()
functions were introduced long ago in anticipation of using them in
lldb, but since they were never actually used anywhere but their
respective problems, there were some issues to be resolved regarding
generality and ability to use them outside their project.
4. Changes to .test files - These are all just replacing things like
clang-cl with %clang_cl and %cxx with %clangxx, etc.
5. Changes to lit.cfg.py - Previously we would load up some system
environment variables and then add some new things to them. Then do a
bunch of work building out our own substitutions. First, we delete the
system environment variable code, making the environment hermetic. Then,
we refactor the substitution logic into two separate helper functions,
one which sets up substitutions for the tools we want to test (which
must come from the build output directory), and another which sets up
substitutions for support tools (like compilers, etc).
6. New substitutions for MSVC -- Previously we relied on location of
MSVC by bringing in the entire parent's PATH and letting
subprocess.Popen just run the command line. Now we set up real
substitutions that should have the same effect. We use PATH to find
them, and then look for INCLUDE and LIB to construct a substitution
command line with appropriate /I and /LIBPATH: arguments. The nice thing
about this is that it opens the door to having separate %msvc-cl32 and
%msvc-cl64 substitutions, rather than only requiring the user to run
vcvars first. Because we can deduce the path to 32-bit libraries from
64-bit library directories, and vice versa. Without these substitutions
this would have been impossible.
Differential Revision: https://reviews.llvm.org/D54567
llvm-svn: 347216
Summary:
While parsing a childless compile unit DIE we could crash if the DIE was
followed by any extra data (such as a superfluous end-of-children
marker). This happened because the break-on-depth=0 check was performed
only when parsing the null DIE, which was not correct because with a
childless root DIE, we could reach the end of the unit without ever
encountering the null DIE.
If the compile unit contribution ended directly after the CU DIE,
everything would be fine as we would terminate parsing due to reaching
EOF. However, if the contribution contained extra data (perhaps a
superfluous end-of-children marker), we would crash because we would
treat that data as the begging of another compile unit.
This fixes the crash by moving the depth=0 check to a more generic
place, and also adds a regression test.
Reviewers: clayborg, jankratochvil, JDevlieghere
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D54417
llvm-svn: 346849
clang-cl does not emit these, but MSVC does, so we need to be able to
handle them.
Because clang-cl does not generate them, it was a bit hard to write a
test. So what I had to do was get an PDB file with some S_CONSTANT
records in using cl and link, dump it using llvm-pdbutil dump -globals
-sym-data to get the bytes of the records, generate the same object file
using clang-cl but with -S to emit an assembly file, and replace all the
S_LDATA32 records with the bytes of the S_CONSTANT records. This way, we
can compile the file using llvm-mc and link it with lld-link.
Differential Revision: https://reviews.llvm.org/D54452
llvm-svn: 346787
In a previous patch, we pre-processed the TPI stream in order to build
the reverse mapping from nested type -> parent type so that we could
accurately reconstruct a DeclContext hierarchy.
However, there were some issues. An LF_NESTTYPE record is really just a
typedef, so although it happens to be used to indicate the name of the
nested type and referring to the global record which defines the type,
it is also used for every other kind of nested typedef. When we rebuild
the DeclContext hierarchy, we want it to be as accurate as possible,
which means that if we have something like:
struct A {
struct B {};
using C = B;
};
We don't want to create two CXXRecordDecls in the AST each with the
exact same definition. We just want to create one for B and then
define C as an alias to B. Previously, however, it would not be able
to distinguish between the two cases and it would treat A::B and
A::C as being two classes each with separate definitions. We address
the first half of improving the pre-processing logic so that only
actual definitions are treated this way.
Later, in a followup patch, we can handle the case of nested
typedefs since we're already going to be enumerating the field list
anyway and this patch introduces the general framework for
distinguishing between the two cases.
Differential Revision: https://reviews.llvm.org/D54357
llvm-svn: 346786
This patch processes the case of retrieving a virtual base when the object is
already read from the debuggee memory.
To achieve that ValueObject::GetCPPVTableAddress was removed and was
reimplemented in ClangASTContext (because access to the process is needed to
retrieve the VTable pointer in general, and because this is the only place that
used old version of ValueObject::GetCPPVTableAddress).
This patch allows to use real object's VTable instead of searching virtual bases
by offsets restored by MicrosoftRecordLayoutBuilder. PDB has no enough info to
restore VBase offsets properly, so we have to read real VTable instead.
Differential revision: https://reviews.llvm.org/D53506
llvm-svn: 346669
This patch removes the comments grouping header includes. They were
added after running IWYU over the LLDB codebase. However they add little
value, are often outdates and burdensome to maintain.
llvm-svn: 346626
This was originally submitted in a patch which fixed two unrelated
bugs at the same time. This portion of the fix was reverted because
it broke several other things. However, the fix employed originally
was totally wrong, and attempted to change something in the ValueObject
printer when actually the bug was in the NativePDB plugin. We need
to mark forward enum decls as having external storage, otherwise
we won't be asked to complete them when the time comes. This patch
implements the proper fix, and updates tests accordingly.
llvm-svn: 346517
Bitfields are represented as LF_MEMBER records whose TypeIndex
points to an LF_BITFIELD record that describes the bit width,
bit offset, and underlying type of the bitfield. All we need to
do is resolve these when resolving record types.
llvm-svn: 346511
The original commit was actually 2 unrelated bug fixes, but it turns
out the second bug fix wasn't quite correct, so the entire patch was
reverted. Resubmitting this half of the patch by itself, then will
follow up with a new patch which fixes the rest of the issue in a
more appropriate way.
llvm-svn: 346505
A previous commit fixed an issue with our AST generation where
we were outputting enum decls incorrectly. But we forgot to
update the test output. This patch updates the test output
accordingly.
llvm-svn: 346459
There are two bugs here. The first is that MSVC and clang-cl
emit their bss section under the name '.data' instead of '.bss'
but with the size and file offset set to 0. ObjectFilePECOFF
didn't handle this, and would only recognize a section as bss
if it was actually called '.bss'. The effect of this is that
if we tried to print the value of a variable that lived in BSS
we would fail.
The second bug is that ValueObjectVariable was only returning
the forward type, which is insufficient to print the value of an
enum. So we bump this up to the layout type.
Differential Revision: https://reviews.llvm.org/D54241
llvm-svn: 346430
In order to accurately put a type into the correct location in the AST
we construct from debug info, we need to be able to determine what
DeclContext (namespace, global, nested class, etc) that it goes into.
PDB doesn't contain this mapping. It does, however, contain the reverse
mapping. That is, for a given class type T, you can determine all
classes Q1, Q2, ..., Qn that are nested inside of T. We need to know,
for a given class type Q, what type T is it nested inside of.
This patch builds this map as a pre-processing step when we first
load the PDB by scanning every type. Initial tests show that while
this can be slow in debug builds of LLDB, it is quite fast in release
builds (less than 2 seconds for a ~1GB PDB, and it only needs to happen
once).
Furthermore, having this pre-processing step in place allows us to
repurpose it for building up other kinds of indexing to it down the
line. For the time being, this gives us very accurate reconstruction
of the DeclContext hierarchy.
Differential Revision: https://reviews.llvm.org/D54216
llvm-svn: 346429
This patch introduces the simple MSVCUndecoratedNameParser. It is needed for
parsing names of PDB symbols corresponding to template instantiations. For
example, for the name `operator<<A>'::`2'::B::operator> we can't just split the
name with :: (as it is implemented for now) to retrieve its scopes. This parser
processes such names in a more correct way.
Differential Revision: https://reviews.llvm.org/D52461
llvm-svn: 346213
A year or so ago, I re-wrote most of the lit infrastructure in LLVM so
that it wasn't so boilerplate-y. I added lots of common helper type
stuff, simplifed usage patterns, and made the code more elegant and
maintainable.
We migrated to this in LLVM, clang, and lld's lit files, but not in
LLDBs. This started to bite me recently, as the 4 most recent times I
tried to run the lit test suite in LLDB on a fresh checkout the first
thing that would happen is that python would just start crashing with
unhelpful backtraces and I would have to spend time investigating.
You can reproduce this today by doing a fresh cmake generation, doing
ninja lldb and then python bin/llvm-lit.py -sv ~/lldb/lit/SymbolFile at
which point you'll get a segfault that tells you nothing about what your
problem is.
I started trying to fix the issues with bandaids, but it became clear
that the proper solution was to just bring in the work I did in the rest
of the projects. The side benefit of this is that the lit configuration
files become much cleaner and more understandable as a result.
Differential Revision: https://reviews.llvm.org/D54009
llvm-svn: 346008
Summary:
This patch fixes the NativePDB tests to make them work from x86 command line too
Reviewers: zturner, stella.stamenova
Subscribers: aleksandr.urakov, teemperor, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D54031
llvm-svn: 345974
This adds basic support for getting function signature types
into LLDB's type system, including into clang's AST. There are
a few edge cases which are not correctly handled, mostly dealing
with nested classes, but this isn't specific to functions and
apply equally to variable types. Note that no attempt has been
made yet to deal with member function types, which will happen
in subsequent patches.
Differential Revision: https://reviews.llvm.org/D53951
llvm-svn: 345848
Previous patches added support for dumping global variables of
primitive types, so we now do the same for class types.
For the most part, everything just worked, there was only one
minor bug needing fixed, which was that for variables of modified
types (e.g. const, volatile, etc) we can't resolve the forward
decl in CreateAndCacheType because the PdbSymUid must point to the
LF_MODIFIER which must point to the forward decl. So when it comes
time to call CompleteType, an assert was firing because we expected
to get a class, struct, union, or enum, but we were getting an
LF_MODIFIER instead.
The other issue is that one the newly added tests is for an array
member, which was not yet supported, so we add support for that
now in this patch.
There's probably room for other interesting layout test cases
here, but this at least should test the basics.
Differential Revision: https://reviews.llvm.org/D53822
llvm-svn: 345629
LLDB has the ability to display global variables, even without a running
process, via the target variable command. This is because global
variables are linker initialized, so their values are embedded directly
into the executables. This gives us great power for testing native PDB
functionality in a cross-platform manner, because we don't actually need
a running process. We can just create a target using an EXE file, and
display global variables. And global variables can have arbitrarily
complex types, so in theory we can fully exercise the type system,
record layout, and data formatters for native PDB files and PE/COFF
executables on any host platform, as long as our type does not require a
dynamic initializer.
This patch adds basic support for finding variables by name, and adds an
exhaustive test for fundamental data types and pointers / references to
fundamental data types.
Subsequent patches will extend this to typedefs, classes, pointers to
functions, and other cases.
Differential Revision: https://reviews.llvm.org/D53731
llvm-svn: 345373
This adds support to LLDB for named types (class, struct, union, and
enum). This is true cross platform support, and hits the PDB file
directly without a dependency on Windows. Tests are added which
compile a program with certain interesting types and then use
load the target in LLDB and use "type lookup -- <TypeName>" to
dump the layout of the type in LLDB without a running process.
Currently only fields are parsed -- we do not parse methods. Also
we don't deal with bitfields or virtual bases correctly. Those
will make good followups.
Differential Revision: https://reviews.llvm.org/D53511
llvm-svn: 345047
This adds -- before any filenames, so that /U doesn't get interpreted
as a command line.
It also adds better error checking, so that we don't get assertions
on the failure path when a file fails to parse as a PDB.
llvm-svn: 344429
This was originally reverted due to some test failures on
Linux. Those problems turned out to require several additional
patches to lld and clang in order to fix, which have since been
submitted. This patch is resubmitted unchanged. All tests now
pass on both Linux and Windows.
llvm-svn: 344409
This was originally causing some test failures on non-Windows
platforms, which required fixes in the compiler and linker. After
those fixes, however, other tests started failing. Reverting
temporarily until I can address everything.
llvm-svn: 344279
While it doesn't make a *ton* of sense for POSIX paths to be
in PDBs, it's possible to occur in real scenarios involving
cross compilation.
The tools need to be able to handle this, because certain types
of debugging scenarios are possible without a running process
and so don't necessarily require you to be on a Windows system.
These include post-mortem debugging and binary forensics (e.g.
using a debugger to disassemble functions and examine symbols
without running the process).
There's changes in clang, LLD, and lldb in this patch. After
this the cross-platform disassembly and source-list tests pass
on Linux.
Furthermore, the behavior of LLD can now be summarized by a much
simpler rule than before: Unless you specify /pdbsourcepath and
/pdbaltpath, the PDB ends up with paths that are valid within
the context of the machine that the link is performed on.
Differential Revision: https://reviews.llvm.org/D53149
llvm-svn: 344269
The existing SymbolFilePDB only works on Windows, as it is written
against a closed-source Microsoft SDK that ships with their debugging
tools.
There are several reasons we want to bypass this and go straight to the
bits of the PDB, but just to list a few:
More room for optimization. We can't see inside the implementation of
the Microsoft SDK, so we don't always know if we're doing things in the
most efficient way possible. For example, setting a breakpoint on main
of a big program currently takes several seconds. With the
implementation here, the time is unnoticeable.
We want to be able to symbolize Windows minidumps even if not on
Windows. Someone should be able to debug Windows minidumps as if they
were on Windows, given that no running process is necessary.
This patch is a very crude first attempt at filling out some of the
basic pieces.
I've implemented FindFunctions, ParseCompileUnitLineTable, and
ResolveSymbolContext for a limited subset of possible parameter values,
which is just enough to get it to display something nice for the
breakpoint location.
I've added several tests exercising this functionality which are limited
enough to work on all platforms but still exercise this functionality.
I'll try to add as many tests of this nature as I can, but at some
point we'll need a live process.
For now, this plugin is enabled always on non-Windows, and by setting
the environment variable LLDB_USE_NATIVE_PDB_READER=1 on Windows.
Eventually, once it's at parity with the Windows implementation, we'll
delete the Windows DIA-based implementation.
Differential Revision: https://reviews.llvm.org/D53002
llvm-svn: 344154
Summary:
This patch implements restoring of the calling convention from PDB.
It is necessary for expressions evaluation, if we want to call a function
of the debuggee process with a calling convention other than ccall.
Reviewers: clayborg, zturner, labath, asmith
Reviewed By: clayborg
Subscribers: teemperor, lldb-commits, stella.stamenova
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D52501
llvm-svn: 343084
Summary:
This patch adds an implementation of retrieving of declarations and declaration
contexts based on PDB symbols.
PDB has different type symbols for const-qualified types, and this
implementation ensures that only one declaration was created for both const
and non-const types, but creates different compiler types for them.
The implementation also processes the case when there are two symbols
corresponding to a variable. It's possible e.g. for class static variables,
they has one global symbol and one symbol belonging to a class.
PDB has no info about namespaces, so this implementation parses the full symbol
name and tries to figure out if the symbol belongs to namespace or not,
and then creates nested namespaces if necessary.
Reviewers: asmith, zturner, labath
Reviewed By: asmith
Subscribers: aleksandr.urakov, teemperor, lldb-commits, stella.stamenova
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D51162
llvm-svn: 341782
Summary:
`dwarf5-index-is-used.cpp` have been failing after rL340206, because `clang`
have stopped to emit pubnames by default after that change. Current patch adds
`-gpubnames` option to the `clang` command line in the test to emit pubnames.
Reviewers: labath, dblaikie
Reviewed By: labath
Subscribers: clayborg, probinson, teemperor, lldb-commits, aprantl, JDevlieghere, abidh, stella.stamenova
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D51208
llvm-svn: 341296
Summary:
This patch allows to resolve a symbol context block info even if a function
info was not requested. Also it adds the correct resolving of nested blocks
(the previous implementation used function blocks instead of them).
Reviewers: zturner, asmith, labath
Reviewed By: asmith
Subscribers: lldb-commits, stella.stamenova
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D51104
llvm-svn: 340901
Summary:
`variables.test` depends on mangled names, but the mangling depends
on the bitness. This patch specifies the bitness explicitly, so mangled names
doesn't differ when a 32-bit version of the compiler is used.
Reviewers: stella.stamenova, asmith
Reviewed By: stella.stamenova
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D51158
llvm-svn: 340597
Summary:
In this patch I've tried to combine the best ideas from D49368 and D49410,
so it implements following:
- Completion of UDTs from a PDB with a filling of a layout info;
- Pointers to members;
- Fixes the bug relating to a virtual base offset reading from `vbtable`.
The offset was treated as an unsigned, but it can be a negative sometimes.
- Support of MSInheritance attribute
Reviewers: asmith, zturner, rnk, labath, clayborg, lldb-commits
Reviewed By: zturner
Subscribers: aleksandr.urakov, stella.stamenova, JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D49980
llvm-svn: 339649
Summary: This one fixes variables.test after D49018. The test was broken because D49018 adds a location information to variables, but I hadn't noticed that, because I used 32-bit build to run tests, so the test looked to me already broken before that commit (the test relies on mangled names, but the mangling schemes are different for 32-bit and 64-bit).
Reviewers: stella.stamenova, lldb-commits
Reviewed By: stella.stamenova
Patch By: Aleksandr Urakov
Differential Revision: https://reviews.llvm.org/D49475
llvm-svn: 337397
Wrong FileCheck header meant that we were not matching what we should.
This allows us to get rid of the -allow-deprecated-dag-overlap flag in
the test.
llvm-svn: 337188
The current version of SymbolFilePDB::ParseVariableForPDBData function
always initializes variables with an empty location. This patch adds the
converter of a location information from PDB to a DWARF expression, so
it becomes possible to watch values of variables of primitive data
types. At the moment the converter supports only Static, TLS, RegRel,
Enregistered and Constant PDB location types, but it seems that it's
enough for most cases. There are still some problems with retrieving
values of variables (e.g. we can't watch variables of composite types),
but they look not relevant to the conversion to DWARF.
Patch by: Aleksandr Urakov
Differential revision: https://reviews.llvm.org/D49018
llvm-svn: 336988
Summary:
This patch fixes a problem with retrieving a function symbol by an address in a nested block. In the current implementation of ResolveSymbolContext function it retrieves a symbol with PDB_SymType::None and then checks if found symbol's tag equals to PDB_SymType::Function. So, if nested block's symbol was found, ResolveSymbolContext does not resolve a function.
It is very simple to reproduce this. For example, in the next program
```
int main() {
auto r = 0;
for (auto i = 1; i <= 10; i++) {
r += i & 1 + (i - 1) & 1 - 1;
}
return r;
}
```
if we will stop inside the cycle and will do a backtrace, the top element will be broken. But how we can test this? I thought to add an option to lldb-test to allow search a function by address, but the address may change when the compiler will be changed.
Patch by: Aleksandr Urakov
Reviewers: asmith, labath, zturner
Reviewed By: asmith, labath
Subscribers: stella.stamenova, llvm-commits
Differential Revision: https://reviews.llvm.org/D47939
llvm-svn: 336564
Summary:
This patch fixes a problem with retrieving a function symbol by an
address in a nested block. In the current implementation of
ResolveSymbolContext function it retrieves a symbol with
PDB_SymType::None and then checks if found symbol's tag equals to
PDB_SymType::Function. So, if nested block's symbol was found,
ResolveSymbolContext does not resolve a function.
Reviewers: asmith, labath, zturner
Reviewed By: asmith, labath
Differential Revision: https://reviews.llvm.org/D47939
Patch by Aleksandr Urakov <aleksandr.urakov@jetbrains.com>
llvm-svn: 335822
This fixes a silly bug where we were accidentally freeing the memory
used to store the decompressed .debug_names data. I had actually
considered this scenario when writing the class and put appropriate
precautions in place -- I just failed to wire it all up correctly.
This was only an issue for compressed sections because in case of
uncompressed ones we would access the data straight out of the mmapped
object file.
llvm-svn: 334717
The motivation for this is to be able to Dwarf index ability to look up
variables within a given compilation unit. It also fits in with the
patch in progress at D47939, which will add the ability to look up
funtions using file+line pairs.
The verification of which lldb-test options can be used together was
getting a bit unwieldy, so I moved the logic out into a separate
function.
llvm-svn: 334498
The getDIESectionOffset function is not correct for split dwarf files
(and will probably be removed in D48009).
This patch implements correct section offset computation for split and
non-split compile units -- we first need to check if the referenced unit
is a skeleton unit, and if it is, we add the die offset to the full unit
base offset (as the full unit is the one which contains the die).
llvm-svn: 334402
This also fixes a bug where SymbolFileDWARF was returning the same
function multiple times - this can happen if both mangled and demangled
names match the regex. Other lookup lookup functions had code to handle
this case, but it was forgotten here.
llvm-svn: 334277
Summary:
This patch implements the non-regex variant of GetFunctions. To share
more code with the Apple implementation, I've extracted the common
filtering code from that class into a utility function on the DWARFIndex
base class.
The new implementation also searching the accelerator table multiple
times -- previously it could happen that the apple table would return
the same die more than once if one specified multiple search flags in
name_type_mask. This way, I separate table iteration from filtering, and
so we can be sure each die is inserted at most once.
Reviewers: clayborg, JDevlieghere
Subscribers: aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D47881
llvm-svn: 334273
Summary:
The patch adds support of splitted functions (when MSVC is used with PGO) and function-level linking feature.
SymbolFilePDB::ParseCompileUnitLineTable function relies on fact that ranges of compiled source files in the binary are continuous and don't intersect each other. The function creates LineSequence for each file and inserts it into LineTable, and implementation of last one relies on continuity of the sequence. But it's not always true when function-level linking enabled, e.g. in added input test file test-pdb-function-level-linking.exe there is xstring's std__basic_string_char_std__char_traits_char__std__allocator_char_____max_size (.00454820) between test-pdb-function-level-linking.cpp's foo (.00454770) and main (.004548F0).
To fix the problem this patch renews the sequence on each address gap.
Reviewers: asmith, zturner
Reviewed By: asmith
Subscribers: aleksandr.urakov, labath, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D47708
llvm-svn: 334260
This implements just one of the GetTypes overloads. The other is not
testable from lldb-test so I'm leaving it unimplemented until I figure
out what to do with testing.
llvm-svn: 334190
Summary:
It possible that a single module has indexed and non-indexed compile
units. In this case, we can use the fast indexed lookup for the first
ones and fall back to the manual index for the others.
This patch implements this functionality by adding a units_to_avoid
argument to the ManualDWARFIndex constructor. Any units present in that
list will be ignored for the purposes of manual index. Individual
DebugNamesDWARFIndex then always consult both the manual fallback index
as well as the index in the .debug_names section.
Reviewers: JDevlieghere, clayborg
Subscribers: aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D47832
llvm-svn: 334185
Summary:
This patch adds the ability to lookup variables to the DWARF v5 index
class.
During review we discovered an inconsistency between how the existing
two indexes handle looking up qualified names of the variables:
- manual index would return a value if the input string exactly matched
the demangled name of some variable.
- apple index ignored the context and returned any variable with the
same base name.
So, this patch also rectifies that situation:
- it removes all context handling from the index classes. The
GetGlobalVariables functions now just take a base name. For manual
index, this meant we can stop putting demangled names into the
variable index (this matches the behavior for functions).
- context extraction is put into SymbolFileDWARF, so that it is common
to all indexes.
- additional filtering based on the context is also done in
SymbolFileDWARF. This is done via a simple substring search, which is
not ideal, but it matches what we are doing for functions (cf.
Module::LookupInfo::Prune).
Reviewers: clayborg, JDevlieghere
Subscribers: aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D47781
llvm-svn: 334181
Summary:
This patch adds the skeleton for implementing the DWARF v5 name index
class. All of the methods are stubbed out and will be implemented in
subsequent patches. The interesting part of the patch is the addition of
a "ignore-file-indexes" setting to the dwarf plugin which enables a
user to force using manual indexing path in lldb (for example as a
debugging aid). I have also added a test that verifies that file indexes
are used by default.
Reviewers: JDevlieghere, clayborg, jingham
Subscribers: mgorny, mehdi_amini, aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D47629
llvm-svn: 334088
Summary: This test was failing sporadically on windows because the order in which the symbols are generated was different between builds. To fix the test, we need to run FileCheck twice - once for each set of symbols we want to verify. The test only runs on Windows.
Reviewers: asmith, zturner, labath
Subscribers: stella.stamenova, llvm-commits
Differential Revision: https://reviews.llvm.org/D47746
llvm-svn: 334025
Summary:
When searching for methods only, we need to do extra work to make sure
the functions we get from the apple tables are indeed methods.
Previously we were resolving the DIE into a SymbolContext and then
checked whether the enclosing CompilerDeclContext is a
class (or struct, or union).
This patch changes that to operate on the debug info directly. This
should be:
- simpler
- faster
- more consistent with the ManualDWARFIndex (which does the same check,
only at indexing time).
What we lose this ways is for the language plugin to have a say in what
it considers to be a "class", but that's probably more flexibility than
we need (and if we really wanted to do that in the future, we could
implement a more direct way to consult the plugin about this).
This also fixes the find-method-local-struct test, which was failing
because we were not able to construct a CompilerDeclContext for a local
struct correctly.
As a drive-by, I rename the DWARFDIE's IsStructClassOrUnion method to
match the name on the CompilerDeclContext class.
Reviewers: clayborg, JDevlieghere
Subscribers: aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D47470
llvm-svn: 333878
Summary: One of the tests is failing to build because it needs GS-, the second test does not correctly match all the expected function names because newer DIA SDKs annotate the function names with their return type and inputs (e.g. "static long `anonymous namespace'::StaticFunction(int)")
Reviewers: asmith, zturner
Reviewed By: zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47653
llvm-svn: 333790