Implement the C++ type lookup support in terms of this general scavenger
The idea is that we may want other languages to do debug info based search (exclusively, or as an add-on to runtime/module based searching) and it makes sense to avoid duplicating this functionality
llvm-svn: 285727
This reverts commit r284795, as it breaks watchpoint handling on arm (and
presumable all architectures that report watchpoint hits without executing the
tripping instruction).
There seems to be something fundamentally wrong with this patch: it uses
process_sp->AddPreResumeAction to re-enable the watchpoint, but the whole point
of the step-over-watchpoint logic (which AFAIK is the only user of this class) is
to disable the watchpoint *after* we resume to do the single step.
I have no idea how to fix this except by reverting the offending patch.
llvm-svn: 284817
Also, watchpoint commands, like breakpoint commands, need to run in async mode.
This was causing intermittent failures in TestWatchpointCommandPython.py, which is now solid.
llvm-svn: 284795
Summary:
"Initialization of function-local statics is guaranteed to occur only once even when called from
multiple threads, and may be more efficient than the equivalent code using std::call_once."
<http://en.cppreference.com/w/cpp/thread/call_once>
I'd add that it's also more readable.
Reviewers: clayborg, zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D17710
llvm-svn: 284601
which specifies a file path and UUID but not an architecture, open
the file at that path and try every one of the architectures in the
file to see if there is a UUID match. Currently we'll pick the
first slice of a multi-architecture file and return that as the
match, and when the UUID doesn't match because it's the wrong
architecture, we'll end up ignoring the file.
<rdar://problem/28487804>
llvm-svn: 283295
This allows debugging of the JIT and other analyses of the internals of the
expression parser. I've also added a testcase that verifies that the setting
works correctly when off and on.
llvm-svn: 282434
This change is very mechanical. All it does is change the
signature of `Options::GetDefinitions()` and `OptionGroup::
GetDefinitions()` to return an `ArrayRef<OptionDefinition>`
instead of a `const OptionDefinition *`. In the case of the
former, it deletes the sentinel entry from every table, and
in the case of the latter, it removes the `GetNumDefinitions()`
method from the interface. These are no longer necessary as
`ArrayRef` carries its own length.
In the former case, iteration was done by using a sentinel
entry, so there was no knowledge of length. Because of this
the individual option tables were allowed to be defined below
the corresponding class (after all, only a pointer was needed).
Now, however, the length must be known at compile time to
construct the `ArrayRef`, and as a result it is necessary to
move every option table before its corresponding class. This
results in this CL looking very big, but in terms of substance
there is not much here.
Differential revision: https://reviews.llvm.org/D24834
llvm-svn: 282188
The switch coveres all possible values. If a new one is added in the
future the compiler will start warning, providing a notification that
the switch needs updating.
llvm-svn: 282111
This change introduces optional marking of the column within a source
line where a thread is stopped. This marking will show up when the
source code for a thread stop is displayed, when the debug info
knows the column information, and if the optional column marking is
enabled.
There are two separate methods for handling the marking of the stop
column:
* via ANSI terminal codes, which are added inline to the source line
display. The default ANSI mark-up is to underline the column.
* via a pure text-based caret that is added in the appropriate column
in a newly-inserted blank line underneath the source line in
question.
There are some new options that control how this all works.
* settings set stop-show-column
This takes one of 4 values:
* ansi-or-caret: use the ANSI terminal code mechanism if LLDB
is running with color enabled; if not, use the caret-based,
pure text method (see the "caret" mode below).
* ansi: only use the ANSI terminal code mechanism to highlight
the stop line. If LLDB is running with color disabled, no
stop column marking will occur.
* caret: only use the pure text caret method, which introduces
a newly-inserted line underneath the current line, where
the only character in the new line is a caret that highlights
the stop column in question.
* none: no stop column marking will be attempted.
* settings set stop-show-column-ansi-prefix
This is a text format that indicates the ANSI formatting
code to insert into the stream immediately preceding the
column where the stop column character will be marked up.
It defaults to ${ansi.underline}; however, it can contain
any valid LLDB format codes, e.g.
${ansi.fg.red}${ansi.bold}${ansi.underline}
* settings set stop-show-column-ansi-suffix
This is the text format that specifies the ANSI terminal
codes to end the markup that was started with the prefix
described above. It defaults to: ${ansi.normal}. This
should be sufficient for the common cases.
Significant leg-work was done by Adrian Prantl. (Thanks, Adrian!)
differential review: https://reviews.llvm.org/D20835
reviewers: clayborg, jingham
llvm-svn: 282105
This updates getters and setters to use StringRef instead of
const char *. I tested the build on Linux, Windows, and OSX
and saw no build or test failures. I cannot test any BSD
or Android variants, however I expect the required changes
to be minimal or non-existant.
llvm-svn: 282079
This patch also marks the const char* versions as =delete to prevent
their use. This has the potential to cause build breakages on some
platforms which I can't compile. I have tested on Windows, Linux,
and OSX. Best practices for fixing broken callsites are outlined in
Args.h in a comment above the deleted function declarations.
Eventually we can remove these =delete declarations, but for now they
are important to make sure that all implicit conversions from
const char * are manually audited to make sure that they do not invoke a
conversion from nullptr.
llvm-svn: 281919
Where possible, remove the const char* version. To keep the
risk and impact here minimal, I've only done the simplest
functions.
In the process, I found a few opportunities for adding some
unit tests, so I added those as well.
Tested on Windows, Linux, and OSX.
llvm-svn: 281799
Thanks to Zachary Turner for the suggestion. It's distasteful that the actual
type of the lambda can't be spelled out, but it should be evident from the
definition of the lambda body.
llvm-svn: 281536
Moved the guts of the code from CommandObjectBreakpoint to Target (should
have done it that way in the first place.) Added an SBBreakpointList class
so there's a way to specify which breakpoints to serialize and to report the
deserialized breakpoints.
<rdar://problem/12611863>
llvm-svn: 281520
Still to come:
1) SB API's
2) Testcases
3) Loose ends:
a) serialize Thread options
b) serialize Exception resolvers
4) "break list --file" should list breakpoints contained in a file and
"break read -f 1 3 5" should then read in only those breakpoints.
<rdar://problem/12611863>
llvm-svn: 281273
Summary:
It fixes the following compile warnings:
1. '0' flag ignored with precision and ‘%d’ gnu_printf format
2. enumeral and non-enumeral type in conditional expression
3. format ‘%d’ expects argument of type ‘int’, but argument 4 has type ...
4. enumeration value ‘...’ not handled in switch
5. cast from type ‘const uint64_t* {aka ...}’ to type ‘int64_t* {aka ...}’ casts away qualifiers
6. extra ‘;’
7. comparison between signed and unsigned integer expressions
8. variable ‘register_operand’ set but not used
9. control reaches end of non-void function
Reviewers: jingham, emaste, zturner, clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D24331
llvm-svn: 281191
mode in lldb works. I've been discussing this with Jim Ingham,
Greg Clayton, and Kate Stone for the past week or two.
Previously lldb would print three source lines (centered on the
line table entry line for the current line) followed by the assembly.
It would print the context information (module`function + offset)
before those three lines of source.
Now lldb will print up to two lines before/after the line table
entry. It prints two '*' characters for the line table line to
make it clear what line is showing assembly. There is one line of
whitespace before/after the source lines so the separation between
source & assembly is clearer. I don't print the context line
(module`function + offset). I stop printing context lines if it's
a different line table entry, or if it's a source line I've already
printed as context to another source line. If I have two line table
entries one after another for the same source line (I get these often
with clang - with different column information in them), I only print
the source line once.
I'm also using the target.process.thread.step-avoid-regexp setting
(which keeps you from stepping into STL functions that have been inlined
into your own code) and avoid printing any source lines from functions
that match that regexp.
When lldb disassembles into a new function, it will try to find the
declaration line # for the function and print all of the source lines
between the decl and the first line table entry (usually a { curly brace)
so we have a good chance of including the arguments, at least with the
debug info emitted by clang.
Finally, the # of source lines of context to show has been separated
from whether we're doing mixed source & assembly or not. Previously
specifying 0 lines of context would turn off mixed source & assembly.
I think there's room for improvement, and maybe some bugs I haven't
found yet, but it's in good enough shape to upstream and iterate at
this point.
I'm not sure how best to indicate which source line is the actual line
table # versus context lines. I'm using '**' right now. Both Kate
and Greg had the initial idea to reuse '->' (normally used to indicate
"currently executing source line") - I tried it but I wasn't thrilled,
I'm too used to the established meaning of ->.
Greg had the interesting idea of avoiding context source lines only
in two line table entries in the same source file. So we'd print
two lines before & after a source line, and then the next line table
entry (if it was on the next source line after those two context lines)
we'd display only the following two lines -- the previous two had just
been printed. If an inline source line was printed between these two,
though, we'd print the context lines for both of them. It's an
interesting idea, and I want to see how it works with both -O0 and -O3
codegen where we have different amounts of inlining.
<rdar://problem/27961419>
llvm-svn: 280906
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
The commit introduced an array of const objects, which libstdc++ does not like. Make the object
non-const.
Also fix a compiler warning while I'm in there.
llvm-svn: 280697
When a process stops due to a crash, we get the crashing instruction and the
crashing memory location (if there is one). From the user's perspective it is
often unclear what the reason for the crash is in a symbolic sense.
To address this, I have added new fuctionality to StackFrame to parse the
disassembly and reconstruct the sequence of dereferneces and offsets that were
applied to a known variable (or fuction retrn value) to obtain the invalid
pointer.
This makes use of enhancements in the disassembler, as well as new information
provided by the DWARF expression infrastructure, and is exposed through a
"frame diagnose" command. It is also used to provide symbolic information, when
available, in the event of a crash.
The algorithm is very rudimentary, and it needs a bunch of work, including
- better parsing for assembly, preferably with help from LLVM
- support for non-Apple platforms
- cleanup of the algorithm core, preferably to make it all work in terms of
Operands instead of register/offset pairs
- improvement of the GetExpressioPath() logic to make prettier expression
paths, and
- better handling of vtables.
I welcome all suggestios, improvements, and testcases.
llvm-svn: 280692
This code represents the Week of Code work I did on bringing up
lldb-server LLGS support for Darwin. It does not include the
Xcode project changes needed, as we don't want to throw that switch
until more support is implemented (i.e. this change is inert, no
build systems use it yet. I've verified on Ubuntu 16.04, macOS
Xcode and macOS cmake builds).
This change does some minimal refactoring of code that is shared
with the Linux LLGS portion, moving it from NativeProcessLinux into
NativeProcessProtocol. That code is also used by NativeProcessDarwin.
Current state on Darwin:
* Process launching is implemented. (Attach is not).
Launching on devices has not yet been tested (FBS/BKS might
need a bit of work).
* Inferior waitpid monitoring and communication of exit status
via MainLoop callback is implemented.
* Memory read/write, breakpoints, thread register context, etc.
are not yet implemented. This impacts process stop/resume, as
the initial launch suspended immediately starts the process
up and running because it doesn't know it is supposed to remain
stopped.
* I implemented the equivalent of MachThreadList as
NativeThreadListDarwin, in anticipation that we might want to
factor out common parts into NativeThreadList{Protocol} and share
some code here. After writing it, though, the fallout from merging
Mach Task/Process into a single concept plus some other minor
changes makes the whole NativeThreadListDarwin concept nothing more
than dead weight. I am likely going to get rid of this class and
just manage it directly in NativeProcessDarwin, much like I did
for NativeProcessLinux.
* There is a stub-out call for starting a STDIO thread. That will
go away and adopt the MainLoop pselect-based IOObject reading.
I am developing the fully-integrated changes in the following repo,
which contains the necessary Xcode bits and the glue that enables
lldb-debugserver on a macOS system:
https://github.com/tfiala/lldb/tree/llgs-darwin
This change also breaks out a few of the lldb-server tests into
their own directory, and adds some $qHostInfo tests (not sure why
I didn't write those tests back when I initially implemented that
on the Linux side).
llvm-svn: 280604
When, for instance, "step-in" steps into a function that it doesn't want
to stop in (e.g. has no debug info) it will push a step-out plan to implement
the step out so it can then continue stepping. These step out's don't use
the result of the function stepped out of, so they shouldn't spend the time
to compute it.
llvm-svn: 279540
Take 2, with missing cmake line fixed. Build tested on
Ubuntu 14.04 with clang-3.6.
See docs/structured_data/StructuredDataPlugins.md for details.
differential review: https://reviews.llvm.org/D22976
reviewers: clayborg, jingham
llvm-svn: 279202
Options used to store a reference to the CommandInterpreter instance
in the base Options class. This made it impossible to parse options
independent of a CommandInterpreter.
This change removes the reference from the base class. Instead, it
modifies the options-parsing-related methods to take an
ExecutionContext pointer, which the options may inspect if they need
to do so.
Closes https://reviews.llvm.org/D23416
Reviewers: clayborg, jingham
llvm-svn: 278440
Factor out some common logic used to find the runtime library in a list
of modules.
Differential Revision: https://reviews.llvm.org/D23150
llvm-svn: 278368
Adapters for instrumentation runtimes have to do two basic things:
1) Load a runtime library.
2) Install breakpoints in that library.
This logic is duplicated in the adapters for asan and tsan. Factor it
out and document bits of it to make it easier to add new adapters.
I tested this with check-lldb, and double-checked
testcases/functionalities/{a,t}san.
Differential Revision: https://reviews.llvm.org/D23043
llvm-svn: 278367
It's always hard to remember when to include this file, and
when you do include it it's hard to remember what preprocessor
check it needs to be behind, and then you further have to remember
whether it's windows.h or win32.h which you need to include.
This patch changes the name to PosixApi.h, which is more appropriately
named, and makes it independent of any preprocessor setting.
There's still the issue of people not knowing when to include this,
because there's not a well-defined set of things it exposes other
than "whatever is missing on Windows", but at least this should
make it less painful to fix when problems arise.
This patch depends on LLVM revision r278170.
llvm-svn: 278177
frame to another was triggering an early stop when stepping back out to a
real frame. Check that we're doing this only for inlined frames.
<rdar://problem/26482931>
llvm-svn: 277185
The commit accidentally switched a timed wait on a condition variable into an infinite timeout.
Change that back. Android tests were timeing out without this.
llvm-svn: 277133
This finally removes the use of the Mutex and Condition classes. This is an
intricate patch as the Mutex and Condition classes were tied together.
Furthermore, many places had slightly differing uses of time values. Convert
timeout values to relative everywhere to permit the use of
std::chrono::duration, which is required for the use of
std::condition_variable's timeout. Adjust all Condition and related Mutex
classes over to std::{,recursive_}mutex and std::condition_variable.
This change primarily comes at the cost of breaking the TracingMutex which was
based around the Mutex class. It would be possible to write a wrapper to
provide similar functionality, but that is beyond the scope of this change.
llvm-svn: 277011
We were just checking the public state, but that meant if you were hung in a long
running hand-called function, we wouldn't know to interrupt the process, and we would
not succeed in killing it.
<rdar://problem/24805082>
llvm-svn: 276795
review it for consistency, accuracy, and clarity. These changes attempt to
address all of the above while keeping the text relatively terse.
<rdar://problem/24868841>
llvm-svn: 275485
Summary:
Process::SetExitStatus was popping the process io handler and resetting m_process_input_reader
shared pointer, which is not a safe thing to do as the function is called asynchronously and
other threads may be accessing the member variable. (E.g. if the process terminates really
quickly, the private state thread might only be in the process of pushing the handler on the
stack. Sometimes, this leads to deadlock, as the shared pointer's state gets corrupted by the
concurrent access.
Since the IOHandler will be popped anyway in Process:HandleProcessStateChangedEvent when the
exited event gets processed, doing the same in SetExitStatus seems to be unnecessary.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D22209
llvm-svn: 275165
is passed a ModuleSpec with a UUID, it won't accept a file it finds
with a matching FileSpec & ArchSpec, but with a different UUID.
<rdar://problem/27258864>
llvm-svn: 275151
This feature was added to solve a lookup problem in expressions when local variables
shadow ivars. That solution requires fully realizing all local variables to evaluate
any expression, and can cause significant performance problems when evaluating
expressions in frames that have many complex locals.
Until we get a better solution, this setting mitigates the problem when you don't
have local variables that shadow ivars.
<rdar://problem/27226122>
llvm-svn: 274783
Summary:
This patch fills in the implementation of GetMemoryRegions() on the Linux and Mac OS core file implementations of lldb_private::Process (ProcessElfCore::GetMemoryRegions and ProcessMachCore::GetMemoryRegions.) The GetMemoryRegions API was added under: http://reviews.llvm.org/D20565
The patch re-uses the m_core_range_infos list that was recently added to implement GetMemoryRegionInfo in both ProcessElfCore and ProcessMachCore to ensure the returned regions match the regions returned by Process::GetMemoryRegionInfo(addr_t load_addr, MemoryRegionInfo ®ion_info).
Reviewers: clayborg
Subscribers: labath, lldb-commits
Differential Revision: http://reviews.llvm.org/D21751
llvm-svn: 274741
We had support that assumed that thread local data for a variable could be determined solely from the module in which the variable exists. While this work for linux, it doesn't work for Apple OSs. The DWARF for thread local variables consists of location opcodes that do something like:
DW_OP_const8u (x)
DW_OP_form_tls_address
or
DW_OP_const8u (x)
DW_OP_GNU_push_tls_address
The "x" is allowed to be anything that is needed to determine the location of the variable. For Linux "x" is the offset within the TLS data for a given executable (ModuleSP in LLDB). For Apple OS variants, it is the file address of the data structure that contains a pthread key that can be used with pthread_getspecific() and the offset needed.
This fix passes the "x" along to the thread:
virtual lldb::addr_t
lldb_private::Thread::GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr);
Then this is passed along to the DynamicLoader::GetThreadLocalData():
virtual lldb::addr_t
lldb_private::DynamicLoader::GetThreadLocalData(const lldb::ModuleSP module, const lldb::ThreadSP thread, lldb::addr_t tls_file_addr);
This allows each DynamicLoader plug-in do the right thing for the current OS.
The DynamicLoaderMacOSXDYLD was modified to be able to grab the pthread key from the data structure that is in memory and call "void *pthread_getspecific(pthread_key_t key)" to get the value of the thread local storage and it caches it per thread since it never changes.
I had to update the test case to access the thread local data before trying to print it as on Apple OS variants, thread locals are not available unless they have been accessed at least one by the current thread.
I also added a new lldb::ValueType named "eValueTypeVariableThreadLocal" so that we can ask SBValue objects for their ValueType and be able to tell when we have a thread local variable.
<rdar://problem/23308080>
llvm-svn: 274366
Target::Install() was assuming the module at index 0 was the executable.
This is often true, but not guaranteed to be the case. The
TestInferiorChanged.py test highlighted this when run against iOS.
After the binary is replaced in the middle of the test, it becomes the
last module in the list. The rest of the Target::Install() logic then
clobbers the executable file by using whatever happens to be the first
module in the target module list.
This change also marks the TestInferiorChanged.py test as a no-debug-info
test.
llvm-svn: 273960
This patch fixes various races between the time the private state thread is signaled to exit and the time it actually exits (during which it no longer responds to events). Previously, this was consistently causing 2-second timeout delays on process detach/stop for us.
This also prevents crashes that were caused by the thread controlling its own owning pointer while the controller was using it (copying the thread wrapper is not enough to mitigate this, since the internal thread object was getting reset anyway). Again, we were seeing this consistently.
Differential Revision: http://reviews.llvm.org/D21296
llvm-svn: 272682
This change implements dumping the executable, triple,
args and environment when using ProcessInfo::Dump().
It also tweaks the way Args::Dump() works so that it prints
a configurable label rather than argv[{index}]={value}. By
default it behaves the same, but if the Dump() method with
the additional arg is provided, it can be overridden. The
environment variables dumped as part of ProcessInfo::Dump()
make use of that.
lldb-server has been modified to dump the gdb-remote stub's
ProcessInfo before launching if the "gdb-remote process" channel
is logged.
llvm-svn: 271312
What with all sorts of folks (TSAN, ASAN, queue detection, etc...) trying to
gather info by calling functions down in the lower layers of lldb, we've started
to see people running expressions simultaneously. The expression evaluation part
is okay, but only one RunThreadPlan can be active at a time. I added a lock to
enforce that.
<rdar://problem/26431072>
llvm-svn: 270593
One of the things slowing us down is that ItaniumABILanguageRuntime class doesn't cache vtable to types in a map. This causes us, on every step, for every variable, to read the first pointer in a C++ type that could be dynamic and lookup the symbol, possibly in every symbol file (some symbols files on Darwin can end up having thousands of .o files when using DWARF in .o files, so thousands of .o files are searched each time).
This fix caches lldb_private::Address (the resolved vtable symbol address in section + offset format) to TypeAndOrName instances inside the one ItaniumABILanguageRuntime in a process. This allows caching of dynamic types and stops us from always doing deep searches in each file.
<rdar://problem/18890778>
llvm-svn: 270488
This is a pretty straightforward first pass over removing a number of uses of
Mutex in favor of std::mutex or std::recursive_mutex. The problem is that there
are interfaces which take Mutex::Locker & to lock internal locks. This patch
cleans up most of the easy cases. The only non-trivial change is in
CommandObjectTarget.cpp where a Mutex::Locker was split into two.
llvm-svn: 269877
The main issues were:
- Listeners recently were converted over to used by getting a shared pointer to a listener. And when they listened to broadcasters they would get a strong reference added to them meaning the listeners would never go away. This caused memory usage to increase and would cause performance issue if many steps were done.
- The lldb_private::Process private state thread had an issue where if a "stop" contol signal was attempted to be sent to that thread, it could end up not responding in 2 seconds and end up getting cancelled which might cause us to cancel a thread that had a mutex locked and it would deadlock the test.
This change makes broadcasters hold onto weak references to listeners. It also fixes some bad threading code that had races inside of it by making the m_events_mutex be non-recursive and getting rid of fragile use of a Predicate<bool> to say that new events are available, and replacing it with using the m_events_mutex with a new m_events_condition to control access to the events in a safer way.
The private state thread now uses a safer way to communicate that the control event has been received by the private state thread: it makes a EventDataReceipt instance that it attaches to the event that sends the control to the private state thread and used this to synchronize the fact that the private state thread has received the event instead of using a Predicate<bool> to convey the info. When the signal event is received, it will pull the event off of the queue in the private state thread and cause the EventData::DoOnRemoval() to be called, which will signal that the event has been received. This cleans up the signal delivery notification so it doesn't rely on a member variable of the process class to convey the info.
std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
m_private_state_control_broadcaster.BroadcastEvent(signal, event_receipt_sp);
<rdar://problem/26256353> Listeners are being kept around longer than they should be due to recent changs
<rdar://problem/26256258> Private process state thread can be cancelled and cause deadlocks in test suite
llvm-svn: 269377
Summary:
The "file" variable in a LineEntry was mapped using target.source-map, except when stepping through inlined code. This patch adds a new variable to LineEntry, "original_file", that contains the original file from the debug info. "file" will continue to (possibly) be mapped.
Some code has been changed to use "original_file". This is code dealing with symbols. Code dealing with source files will still use "file". Reviewers, please confirm that these particular changes are correct.
Tests run on Ubuntu 12.04 show no regression.
Reviewers: clayborg, jingham
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D20135
llvm-svn: 269250
Summary:
This replaces the C-style "void *" baton of the child process monitoring functions with a more
C++-like API taking a std::function. The motivation for this was that it was very difficult to
handle the ownership of the object passed into the callback function -- each caller ended up
implementing his own way of doing it, some doing it better than others. With the new API, one can
just pass a smart pointer into the callback and all of the lifetime management will be handled
automatically.
This has enabled me to simplify the rather complicated handshake in Host::RunShellCommand. I have
left handling of MonitorDebugServerProcess (my original motivation for this change) to a separate
commit to reduce the scope of this change.
Reviewers: clayborg, zturner, emaste, krytarowski
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D20106
llvm-svn: 269205
That's good 'cause it means all the different kinds of source line stepping won't leave user in the middle of
compiler implementation code or code inlined from odd places, etc. But it turns out that the compiler
also marks functions it MIGHT inline as all being of line 0. That would mean we single step through this code
instead of just stepping out. That is both inefficient, and more error prone 'cause these little nuggets tend
to be bits of hand-written assembly and the like and are hard to step through.
This change just checks and if the entire function is marked with line 0, we step out rather than step through.
<rdar://problem/25966460>
llvm-svn: 268823
within a source file.
This isn't done, I need to make the name match smarter (right now it requires an
exact match which is annoying for methods of a class in a namespace.
Also, though we use it in tests all over the place, it doesn't look like we have
a test for Source Regexp breakpoints by themselves, I'll add that in a follow-on patch.
llvm-svn: 267834
statements for, be sure not to include variables that have no locations. We wouldn't
be able to realize them, and that will cause all expressions to fail.
llvm-svn: 267500
When stopping the private state thread, there was a race condition between the time the thread exits (resetting the HostThread object) and the time a Join was attempted, especially in the case of a timeout.
The previous workaround of copying the HostThread object is not enough, since on a Reset the internal thread stuff gets nulled out regardless of which HostThread object actually has Reset called on it, resulting in an attempt to dereference a null pointer on the subsequent call to Join from the copy as well.
Additionally, there was a race between the detach (called when stopping the process) and the stop itself, causing the stop to time out because it was waiting for the private state thread to see the stop state, but it had exited immediately after entering the detached state.
Patch by cameron314
Differential Revision: http://reviews.llvm.org/D19122
llvm-svn: 266733
This patch fixes a bunch of issues that show up on big-endian systems:
- The gnu_libstdcpp.py script doesn't follow the way libstdc++ encodes
bit vectors: it should identify the enclosing *word* and then access
the appropriate bit within that word. Instead, the script simply
operates on bytes. This gives the same result on little-endian
systems, but not on big-endian.
- lldb_private::formatters::WCharSummaryProvider always assumes wchar_t
is UTF16, even though it could also be UTF8 or UTF32. This is mostly
not an issue on little-endian systems, but immediately fails on BE.
Fixed by checking the size of wchar_t like WCharStringSummaryProvider
already does.
- ClangASTContext::GetChildCompilerTypeAtIndex uses uint32_t to access
the virtual base offset stored in the vtable, even though the size
of this field matches the target pointer size according to the C++
ABI. Again, this is mostly not visible on LE, but fails on BE.
- Process::ReadStringFromMemory uses strncmp to search for a terminator
consisting of multiple zero bytes. This doesn't work since strncmp
will stop already at the first zero byte. Use memcmp instead.
Differential Revision: http://reviews.llvm.org/D18983
llvm-svn: 266313
This patch adds support for Linux on SystemZ:
- A new ArchSpec value of eCore_s390x_generic
- A new directory Plugins/ABI/SysV-s390x providing an ABI implementation
- Register context support
- Native Linux support including watchpoint support
- ELF core file support
- Misc. support throughout the code base (e.g. breakpoint opcodes)
- Test case updates to support the platform
This should provide complete support for debugging the SystemZ platform.
Not yet supported are optional features like transaction support (zEC12)
or SIMD vector support (z13).
There is no instruction emulation, since our ABI requires that all code
provide correct DWARF CFI at all PC locations in .eh_frame to support
unwinding (i.e. -fasynchronous-unwind-tables is on by default).
The implementation follows existing platforms in a mostly straightforward
manner. A couple of things that are different:
- We do not use PTRACE_PEEKUSER / PTRACE_POKEUSER to access single registers,
since some registers (access register) reside at offsets in the user area
that are multiples of 4, but the PTRACE_PEEKUSER interface only allows
accessing aligned 8-byte blocks in the user area. Instead, we use a s390
specific ptrace interface PTRACE_PEEKUSR_AREA / PTRACE_POKEUSR_AREA that
allows accessing a whole block of the user area in one go, so in effect
allowing to treat parts of the user area as register sets.
- SystemZ hardware does not provide any means to implement read watchpoints,
only write watchpoints. In fact, we can only support a *single* write
watchpoint (but this can span a range of arbitrary size). In LLDB this
means we support only a single watchpoint. I've set all test cases that
require read watchpoints (or multiple watchpoints) to expected failure
on the platform. [ Note that there were two test cases that install
a read/write watchpoint even though they nowhere rely on the "read"
property. I've changed those to simply use plain write watchpoints. ]
Differential Revision: http://reviews.llvm.org/D18978
llvm-svn: 266308
If the UnwindPlan did not identify how to unwind the stack pointer
register, LLDB currently assumes it can determine to caller's SP
from the current frame's CFA. This is true on most platforms
where CFA is by definition equal to the incoming SP at function
entry.
However, on the s390x target, we instead define the CFA to equal
the incoming SP plus an offset of 160 bytes. This is because
our ABI defines that the caller has to provide a register save
area of size 160 bytes. This area is allocated by the caller,
but is considered part of the callee's stack frame, and therefore
the CFA is defined as pointing to the top of this area.
In order to make this work on s390x, this patch introduces a new
ABI callback GetFallbackRegisterLocation that provides platform-
specific fallback register locations for unwinding. The existing
code to handle SP unwinding as well as volatile registers is moved
into the default implementation of that ABI callback, to allow
targets where that implementation is incorrect to override it.
This patch in itself is a no-op for all existing platforms.
But it is a pre-requisite for adding s390x support.
Differential Revision: http://reviews.llvm.org/D18977
llvm-svn: 266307
os to "ios" or "macosx" if it is unspecified. For environments
where there genuinely is no os, we don't want to errantly
convert that to ios/macosx, e.g. bare board debugging.
Change PlatformRemoteiOS, PlatformRemoteAppleWatch, and
PlatformRemoteAppleTV to not create themselves if we have
an unspecified OS. Same problem - these are not appropriate
platforms for bare board debugging environments.
Have Process::Attach's logging take place if either
process or target logging is enabled.
<rdar://problem/25592378>
llvm-svn: 265732
Summary:
There was a bug in linux core file handling, where if there was a running process with the same
process id as the id in the core file, the core file debugging would fail, as we would pull some
pieces of information (ProcessInfo structure) from the running process instead of the core file.
I fix this by routing the ProcessInfo requests through the Process class and overriding it in
ProcessElfCore to return correct data.
A (slightly convoluted) test is included.
Reviewers: clayborg, zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D18697
llvm-svn: 265391
Teach LLDB that different shells have different characters they are sensitive to, and use that knowledge to do shell-aware escaping
This helps solve a class of problems on OS X where LLDB would try to launch via sh, and run into problems if the command line being passed to the inferior contained such special markers (hint: the shell would error out and we'd fail to launch)
This makes those launch scenarios work transparently via shell expansion
Slightly improve the error message when this kind of failure occurs to at least suggest that the user try going through 'process launch' directly
Fixes rdar://problem/22749408
llvm-svn: 265357
quietly apply fixits for those who really trust clang's fixits.
Also, moved the retry into ClangUserExpression::Evaluate, where I can make a whole new ClangUserExpression
to do the work. Reusing any of the parts of a UserExpression in situ isn't supported at present.
<rdar://problem/25351938>
llvm-svn: 264793
This feature is controlled by an expression command option, a target property and the
SBExpressionOptions setting. FixIt's are only applied to UserExpressions, not UtilityFunctions,
those you have to get right when you make them.
This is just a first stage. At present the fixits are applied silently. The next step
is to tell the user about the applied fixit.
<rdar://problem/25351938>
llvm-svn: 264379
Win32 API calls that are Unicode aware require wide character
strings, but LLDB uses UTF8 everywhere. This patch does conversions
wherever necessary when passing strings into and out of Win32 API
calls.
Patch by Cameron
Differential Revision: http://reviews.llvm.org/D17107
Reviewed By: zturner, amccarth
llvm-svn: 264074
We want to do a better job presenting errors that occur when evaluating
expressions. Key to this effort is getting away from a model where all
errors are spat out onto a stream where the client has to take or leave
all of them.
To this end, this patch adds a new class, DiagnosticManager, which
contains errors produced by the compiler or by LLDB as an expression
is created. The DiagnosticManager can dump itself to a log as well as
to a string. Clients will (in the future) be able to filter out the
errors they're interested in by ID or present subsets of these errors
to the user.
This patch is not intended to change the *users* of errors - only to
thread DiagnosticManagers to all the places where streams are used. I
also attempt to standardize our use of errors a bit, removing trailing
newlines and making clients omit 'error:', 'warning:' etc. and instead
pass the Severity flag.
The patch is testsuite-neutral, with modifications to one part of the
MI tests because it relied on "error: error:" being erroneously
printed. This patch fixes the MI variable handling and the testcase.
<rdar://problem/22864976>
llvm-svn: 263859
Turns out that most of the code that runs expressions (e.g. the ObjC runtime grubber) on
behalf of the expression parser was using the currently selected thread. But sometimes,
e.g. when we are evaluating breakpoint conditions/commands, we don't select the thread
we're running on, we instead set the context for the interpreter, and explicitly pass
that to other callers. That wasn't getting communicated to these utility expressions, so
they would run on some other thread instead, and that could cause a variety of subtle and
hard to reproduce problems.
I also went through the commands and cleaned up the use of GetSelectedThread. All those
uses should have been trying the thread in the m_exe_ctx belonging to the command object
first. It would actually have been pretty hard to get misbehavior in these cases, but for
correctness sake it is good to make this usage consistent.
<rdar://problem/24978569>
llvm-svn: 263326
That way you can set offset breakpoints that will move as the function they are
contained in moves (which address breakpoints can't do...)
I don't align the new address to instruction boundaries yet, so you have to get
this right yourself for now.
<rdar://problem/13365575>
llvm-svn: 263049
to each other. This should remove some infrequent teardown crashes when the
listener is not the debugger's listener.
Processes now need to take a ListenerSP, not a Listener&.
This required changing over the Process plugin class constructors to take a ListenerSP, instead
of a Listener&. Other than that there should be no functional change.
<rdar://problem/24580184> CrashTracer: [USER] Xcode at …ework: lldb_private::Listener::BroadcasterWillDestruct + 39
llvm-svn: 262863
LLDB can remap a source file to a new directory based on the
"target.sorce-map" to handle the usecase when the source code moved
between the compliation and the debugging. Previously the remapping
was only used to display the content of the file. This CL fixes the
scenario when a breakpoint is set based on the new an absolute path
with adding an inverse remapping step before looking up the breakpoint
location.
Differential revision: http://reviews.llvm.org/D17848
llvm-svn: 262711
(lldb) command_that_steps_process_thousands_of_times
As the "command_that_steps_process_thousands_of_times" could be a python command that resumed the process thousands of times and in doing so the IOHandlerProcessSTDIO would get pushed when the process resumed, and popped when it stoppped, causing the call to IOHandlerProcessSTDIO::Cancel(). Since the IOHandler thread is currently in IOHandlerEditline::Run() for the command interpreter handling the "command_that_steps_process_thousands_of_times" command, IOHandlerProcessSTDIO::Run() would never get called, even though the IOHandlerProcessSTDIO is on the top of the stack. This caused the command pipe to keep getting 1 bytes written each time the IOHandlerProcessSTDIO::Cancel() was called and eventually we will deadlock since the write buffer is full.
The fix here is to make sure we are in IOHandlerProcessSTDIO::Run() before we write anything to the command pipe, and just call SetIsDone(true) if we are not.
<rdar://problem/22361364>
llvm-svn: 262040
The software breakpoint definitions for mips32 should have been included in my
recent patch that moved the software breakpoint definitions into the base platform
class.
llvm-svn: 262021
Additionally fix the type of some dwarf expression where we had a
confusion between scalar and load address types after a dereference.
Differential revision: http://reviews.llvm.org/D17604
llvm-svn: 262014
DWARF stores this information in the DW_AT_start_scope attribute. This
CL add support for this attribute and also changes the functions
displaying frame variables to only display the variables currently in
scope.
Differential revision: http://reviews.llvm.org/D17449
llvm-svn: 261858
This patch aims to reduce the code duplication among all of the platforms in GetSoftwareBreakpointTrapOpcode by pushing all common code into the Platform base class.
Differential Revision: http://reviews.llvm.org/D17395
llvm-svn: 261536
working directory by default -- a typical security problem that we
need to be more conservative about.
It adds a new target setting, target.load-cwd-lldbinit which may
be true (always read $cwd/.lldbinit), false (never read $cwd/.lldbinit)
or warn (warn if there is a $cwd/.lldbinit and don't read it). The
default is set to warn. If this is met with unhappiness, we can look
at changing the default to true (to match current behavior) on a
different platform.
This does not affect reading of ~/.lldbinit - that will still be read,
as before. If you run lldb in your home directory, it will not warn
about the presence of a .lldbinit file there.
I had to add two SB API - SBHostOS::GetUserHomeDirectory and
SBFileSpec::AppendPathComponent - for the lldb driver code to be
able to get the home directory path in an OS neutral manner.
The warning text is
There is a .lldbinit file in the current directory which is not being read.
To silence this warning without sourcing in the local .lldbinit,
add the following to the lldbinit file in your home directory:
settings set target.load-cwd-lldbinit false
To allow lldb to source .lldbinit files in the current working directory,
set the value of this variable to true. Only do so if you understand and
accept the security risk.
<rdar://problem/24199163>
llvm-svn: 261280
the xcode project file to catch switch statements that have a
case that falls through unintentionally.
Define LLVM_FALLTHROUGH to indicate instances where a case has code
and intends to fall through. This should be in llvm/Support/Compiler.h;
Peter Collingbourne originally checked in there (r237766), then
reverted (r237941) because he didn't have time to mark up all the
'case' statements that were intended to fall through. I put together
a patch to get this back in llvm http://reviews.llvm.org/D17063 but
it hasn't been approved in the past week. I added a new
lldb-private-defines.h to hold the definition for now.
Every place in lldb where there is a comment that the fall-through
is intentional, I added LLVM_FALLTHROUGH to silence the warning.
I haven't tried to identify whether the fallthrough is a bug or
not in the other places.
I haven't tried to add this to the cmake option build flags.
This warning will only work for clang.
This build cleanly (with some new warnings) on macosx with clang
under xcodebuild, but if this causes problems for people on other
configurations, I'll back it out.
llvm-svn: 260930
The Calculate* functions in general should not derive any information that isn't
implicit, but for Target the process pointer is a member so it's fine to return
it for CalculateProcess().
llvm-svn: 260713
llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files
Each time a SymbolFile::FindTypes() is called, it needs to check the searched_symbol_files list to make sure it hasn't already been asked to find the type and return immediately if it has been checked. This will stop circular dependencies from also crashing LLDB during type queries.
This has proven to be an issue when debugging large applications on MacOSX that use DWARF in .o files.
<rdar://problem/24581488>
llvm-svn: 260434
Obviously, if the original Debugger goes away, those commands are holding on to now stale memory, which has the potential to cause crashes
Fixes rdar://24460882
llvm-svn: 259964
reason to None when we stop due to a trace, then noticed that
we were on a breakpoint that was not valid for the current thread.
That should actually have set it back to trace.
This was pr26441 (<rdar://problem/24470203>)
llvm-svn: 259684
SUMMARY:
Get the load address for the address given by symbol and function.
Earlier, this was done for function only, this patch does it for symbol too.
This patch also adds TestAvoidBreakpointInDelaySlot.py to test this change.
Reviewers: clayborg
Subscribers: labath, zturner, mohit.bhakkad, sagar, jaydeep, lldb-commits
Differential Revision: http://reviews.llvm.org/D16049
llvm-svn: 258919
Seems that the patch was rebased on top of another change which obsoleted the
change but wasnt caught.
Thanks to nbjoerg for pointing this out!
llvm-svn: 258821
Address a couple of instances of -Wreturn-type warning from GCC. The switches
are covered, add an llvm_unreachable to the end of the functions to silence the
warning. NFC.
llvm-svn: 258546
Zachary introduced the 'default' case explicitly to placate a warning in
the Microsoft compiler but that broke clang with -Werror.
The new code should keep both compilers happy.
llvm-svn: 258212
If your program refers to modules (as indicated in DWARF) we will now try to
load these modules and give you access to their types in expressions. This used
to be gated by a setting ("settings set target.auto-import-clang-modules true")
but that setting defaulted to false. Now it defaults to true -- but you can
disable it by toggling the setting to false.
llvm-svn: 257812
with the one change that ThreadPlanStepOut::ThreadPlanStepOut
will now only advance the return address breakpoint to
the end of a source line, if we have source line debug information.
It will not advance to the end of a Symbol if we lack source line
information. This, or the recognition of the LEAVE instruction
in r257209, would have fixed the regression that Siva was seeing.
Both were good changes, so I've made both.
Original commit message:
Performance improvement: Change lldb so that it puts a breakpoint
on the first branch instruction after a function return (or the end
of a source line), instead of a breakpoint on the return address,
to skip an extra stop & start of the inferior process.
I changed Process::AdvanceAddressToNextBranchInstruction to not
take an optional InstructionList argument - no callers are providing
a cached InstructionList today, and if this function was going to
do that, the right thing to do would be to fill out / use a
DisassemblerSP which is a disassembler with the InstructionList for
this address range.
http://reviews.llvm.org/D15708
<rdar://problem/23309838>
llvm-svn: 257210
puts a breakpoint" it is causing a regression in the TestStepNoDebug
test case on ubuntu 14.04 with gcc 4.9.2. Thanks for the email
Siva. I'll recommit when I've figured out the regression.
llvm-svn: 257138
on the first branch instruction after a function return (or the end
of a source line), instead of a breakpoint on the return address,
to skip an extra stop & start of the inferior process.
I changed Process::AdvanceAddressToNextBranchInstruction to not
take an optional InstructionList argument - no callers are providing
a cached InstructionList today, and if this function was going to
do that, the right thing to do would be to fill out / use a
DisassemblerSP which is a disassembler with the InstructionList for
this address range.
http://reviews.llvm.org/D15708
<rdar://problem/23309838>
llvm-svn: 257117
Demangling complex Boost symbols can exhaust the default stack size. In practice, any thread that calls into LLDB functionality that touches symbols runs this risk. Guaranteeing a reasonable minimum for our own private state thread addressees some known scenarios debugging processes that make use of cpp-netlib.
llvm-svn: 255868
This patch reworks the breakpoint filter-by-language patch to use the
symbol context instead of trying to guess the language solely from the
symbol's name. This has the advantage that symbols compiled with debug
info will have their actual language known. Symbols without debug info
will still do the same "guess"ing because Symbol::GetLanguage() is
implemented using Mangled::GuessLanguage(). The recognition of ObjC
names was merged into Mangled::GuessLanguage.
Reviewed by: jingham, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D15326
llvm-svn: 255808
find the largest address range (possibly combining multiple
LineEntry's for this line number) that is contiguous.
This allows lldb's fast-step stepping algorithm to potentially
run for a longer address range than if we have to stop at every
LineEntry indicating a subexpression in the source line.
http://reviews.llvm.org/D15407
<rdar://problem/23270882>
llvm-svn: 255590
stl upper_bound method instead of lower_bound - we were
failing to find some cached data in the L1 cache resulting
in extra memory read packets while stepping.
The bug with the existing code looked like this:
If the L1 cache has 8 bytes at address 0x1000 and 8 bytes
at address 0x2000 and we are searching for 4 bytes at 0x2004,
the use of lower_bound would return the end() of the container
and so we would incorrectly treat the memory as uncached.
(the L1 cache is memory seeded from debugserver in the T aka
questionmark packet, where debugserver will send up the stack
memory that likely contains the caller's stack pointer and
frame pointer values.)
<rdar://problem/23869227>
llvm-svn: 255421
The standard remote debugging workflow with gdb is to start the
application on the remote host under gdbserver (e.g.: gdbserver :5039
a.out) and then connect to it with gdb.
The same workflow is supported by debugserver/lldb-gdbserver with a very
similar syntax but to access all features of lldb we need to be
connected also to an lldb-platform instance running on the target.
Before this change this had to be done manually with starting a separate
lldb-platform on the target machine and then connecting to it with lldb
before connecting to the process.
This change modifies the behavior of "platform connect" with
automatically connecting to the process instance if it was started by
the remote platform. With this command replacing gdbserver in a gdb
based worflow is usually as simple as replacing the command to execute
gdbserver with executing lldb-platform.
Differential revision: http://reviews.llvm.org/D14952
llvm-svn: 255016
This change introduce 3 different working mode for Platform::LoadImage
depending on the file specs specified.
* If only a remote file is specified then the remote file is loaded on
the target (same behavior as before)
* If only a local file is specified then the local file is installed to
the current working directory and then loaded from there.
* If both local and remote file is specified then the local file is
installed to the specified location and then loaded from there.
The same options are exposed on the SB API with a new method LoadImage
method while the old signature presers its meaning.
On the command line the installation of the shared library can be specified
with the "--install" option of "process load".
Differential revision: http://reviews.llvm.org/D15152
llvm-svn: 255014
This is a resubmit of r254403, see that commit's message for context. This fixes an issue in the
original commit, where we would incorrectly interrupt the process if the interrupt request came
just as we were about to send the stopped event to the public.
llvm-svn: 254902
This patch fixes setting breakpoints on symbol for variants of C and
Pascal where the language is "unknown" within the filter-by-language
process added in r252356. It also renames GetLanguageForSymbolByName to
GuessLanguageForSymbolByName and adds comments explaining the pitfalls
of the flawed assumption that the language can be determined solely from
the name and target.
Reviewed by: jingham
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D15175
llvm-svn: 254753
On android the symbols exposed by libdl (dlopen, dlclose, dlerror)
prefixed by "__dl_". This change moves the handling of process
load/unload to the platform object and override it for android to
handle the special prefix.
Differential revision: http://reviews.llvm.org/D11465
llvm-svn: 254504
Summary:
The following situation was occuring in TestAttachResume:
- we did a "continue" from a breakpoint (which involves a private start-stop to step over the
breakpoint)
- after receiving the stop-reply from the step-over, we issue a "detach" (which requires a
process interrupt)
- at this moment, the public state is "running", private state is "about-to-be-stopped" (the
stopped event was broadcast, but it was not received yet)
- StopForDestroyOrDetach (public thread) notes the public state is running, sends an interrupt
request to the private thread
- private thread gets the eBroadcastBitInterrupt (before the eStateStopped message), and asks the
process plugin to stop (via Halt())
- process plugin says it has nothing to do as the process is already stopped
- private thread shrugs and carries on. receives the stop event, restores the breakpoint and
resumes the process.
- after a while, the public thread times out and says it failed to stop the process
This patch does the following:
- splits Halt() into two functions, private and public, their usage depends on the context
- public Halt(): sends eBroadcastBitInterrupt to the private thread and waits for the Stop
event
- HaltPrivate(): asks the plugin to stop and makes a note that the halt was requested. When the
next stop event comes it sets the interrupt flag on it.
- removes HijackPrivateProcessEvents(), as the only user (old Halt()) has gone away
- removes the m_currently_handling_event hack, as the new Halt() does not need it
- adds a use_run_lock parameter to public Halt() and WaitForProcessToStop(). This was needed
because RunThreadPlan uses Halt() while holding the run lock and we don't want Halt() to take
it away from him.
Reviewers: clayborg, jingham
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D14989
llvm-svn: 254403
correct OS type when running on an apple tv or apple watch.
Also, in TargetList::CreateTargetInternal, check that a platform
is returned by GetPlatformForArchitecture fallback instead of
adding it to the vector of platforms unconditionally; we can end up
crashing when we call a member function on it later.
<rdar://problem/23601982>, <rdar://problem/21292886>
llvm-svn: 253763
breakpoint as "file address" so that the address breakpoint will track that
module even if it gets loaded in a different place. Also fixed the Address
breakpoint resolver so that it handles this tracking correctly.
llvm-svn: 253308
correctly handle stepping over one breakpoint directly onto another breakpoint.
This isn't fixing that bug, but rather just changing 252963 to not use breakpoints
if it is only stepping one instruction.
llvm-svn: 253008
of addresses, and the range has no branches, instead of running to the last instruction and
single-stepping over that, run to the first instruction after the end of the range. If there
are no branches in the current range, then the bytes right after it have to be in the current
function, and have to be instructions not data in code, so this is safe. And it cuts down one
extra stepi per source range step.
Incidentally, this also works around a bug in the llvm Intel assembler where it treats the "rep"
prefix as a separate instruction from the repeated instruction. If that were at the end of a
line range, then we would put a trap in place of the repeated instruction, which is undefined
behavior. Current processors just ignore the repetition in this case, which changes program behavior.
Since there would never be a line range break after the rep prefix, always doing the range stepping
to the beginning of the new range avoids this problem.
<rdar://problem/23461686>
llvm-svn: 252963
It used to be a unique pointer, and there could be a case where ClangASTSource
held onto a copy of the pointer but Target::Destroy destroyed the unique pointer
in the mean time.
I also ensured that there is a validity check on the target (which confirms that
a ClangASTImporter can be generated) before the target's shared pointer is
copied into ClangASTSource.
This race condition caused a crash if Target::Destroy was called and then later
the target objecct was deleted.
llvm-svn: 252665
This latter determination may or may not be possible on a per-language basis; and neither is mandatory to implement for any language
Use this knowledge in the ValueObjectPrinter to generalize the notion of IsObjCNil() and the respective printout
llvm-svn: 252663
"Modify internal breakpoints so they resolve just like external
breakpoints do. This allow you to set symbol and file + line internal
breakpoints and have them get updated correctly."
<rdar://problem/16931767>
llvm-svn: 252584
triple for a process. He writes, "Changes to the way setting the
triple works on a target so that if the target has passed a fully
specified triple, and the newly passed triple is not a revamp of
the current one, and the current one is fully specified, then do
not replace the existing triple."
Triple handling got a bit more complicated on mac with the addition
of ios/watchos/tvos and their simulators, and tracking the correct
os versions for them so expressions are compiled with the expected
APIs available to the user.
<rdar://problem/19820698>
llvm-svn: 252583
Summary:
Since this is within the lldb namespace, the compiler tries to
export a symbol for it. Unfortunately, since it is inlined, the
symbol is hidden and this results in a mess of warnings when
building on OS X with cmake.
Moving it to the lldb_private namespace eliminates that problem.
Reviewers: clayborg
Subscribers: emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D14417
llvm-svn: 252396
Summary:
On Linux, if a thread-specific conditional breakpoint was hit, it
won't necessarily be the thread that hit the breakpoint itself that
evaluates the conditional expression, so the thread that hit the
breakpoint could still be asked to stop, even though it hasn't been
allowed to run since the previous stop.
Reviewers: sivachandra, jingham
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D14472
llvm-svn: 252391
instance:
break set -l c++ -r Name
will only break on C++ symbols that match Name, not ObjC or plain C symbols. This also works
for "break set -n" and there are SB API's to pass this as well.
llvm-svn: 252356
so when it is run on a kext (which won't activate
any platform plugins), you'll get a warning message
which may be helpful to the user.
llvm-svn: 252245
in places where we check for Triple::IOS. They're mostly the same as far
as lldb is conerned.
.
Also add a base cass implementation for Process::IsAlive - Greg added this
last year but it didn't get upstreamed.
llvm-svn: 252227
Summary:
The code which was preventing the usage of the OS plugin while detach is in
progress also prevented us to update the thread list correctly. This resulted
in an empty thread list, which confused the detaching logic. Change the
condition do only do what it says (disable the usage of the OS plugin).
Reviewers: clayborg, jingham
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D14201
llvm-svn: 251932
StackFrame * (StackFrame is an ExecutionContextScope.) That allows you to call an
expression on a particular Thread, but not using the context of any particular frame.
That in turn is useful for injecting utility functions that don't actually depend on
locals/self/etc of the current frame.
I also had to include StackFrame.h in a couple of places so the compiler knew
how to downcast StackFrame to ExecutionContextScope.
<rdar://problem/22852953>
llvm-svn: 251564
On UNIX (but not Darwin) the username needs to be respected when creating a
temporary module directory, so that different users don't pollute each others'
module caches.
llvm-svn: 251340
Before, in the absence of any configured REPLs, LLDB would act as if there were
multiple possible REPL options, whereas actually no REPL language is supported.
Now we make a better error.
llvm-svn: 250931
To allow that, I've added a SetREPL call to the Target, which allows a REPL
that just created a target to install itself as the go-to REPL for the
corresponding language.
llvm-svn: 250870
Summary:
ADB packets have a maximum size of 4k. This means the size of memory reads does not affect speed
too much (as long as it fits in one packet). Therefore, I am increasing the default memory read
size for android to 2k. This value is used only if the user has not modified the default
memory-cache-line-size setting.
Reviewers: clayborg, tberghammer
Subscribers: tberghammer, danalbert, srhines, lldb-commits
Differential Revision: http://reviews.llvm.org/D13812
llvm-svn: 250814
This makes LLDB launch and create a REPL, specifying no target so that the REPL
can create one for itself. Also added the "--repl-language" option, which
specifies the language to use. Plumbed the relevant arguments and errors
through the REPL creation mechanism.
llvm-svn: 250773
A REPL takes over the command line and typically treats input as source code.
REPLs can also do code completion. The REPL class allows its subclasses to
implement the language-specific functionality without having to know about the
IOHandler-specific internals.
Also added a PluginManager-based way of getting to a REPL given a language and
a target.
Also brought in some utility code and expression options that are useful for
REPLs, such as line offsets for expressions, ANSI terminal coloring of errors,
and a few IOHandler convenience functions.
llvm-svn: 250753
Summary: This function reads m_frames, so it needs to lock the
mutex like all other function that access m_frames.
Found using AddressSanitizer.
Reviewers: jingham, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D13638
llvm-svn: 250493
Most platforms have "/dev/null". Windows has "nul". Instead of
hardcoding the string /dev/null at various places, make a constant
that contains the correct value depending on the platform, and use
that everywhere instead.
llvm-svn: 250331
* ArchSpec::MergeFrom() would erroneously promote an unspecified
unknown to a specified unknown when both the ArchSpec and the merged
in ArchSpec were both unspecified unknowns. This no longer happens,
which fixes issues with global module cache lookup in some
situations.
* Added ArchSpec::DumpTriple(Stream&) that now properly prints
unspecified unknowns as '*' and specified unknows as 'unknown'.
This makes it trivial to tell the difference between the two.
Converted printing code over ot using DumpTriple() rather than
building from scratch.
* Fixed up a couple places that were not guaranteeing that an
unspecified unknown was recorded as such.
llvm-svn: 250253
set to true, but all plans run by RunThreadPlan need to have this set to false so they will
return control to RunThreadPlan without consulting plans higher on the stack.
Since this seems like a common error, I also modified RunThreadPlan to enforce this behavior.
<rdar://problem/22543166>
llvm-svn: 250084
strictly necessary because RunToAddress is always used as a subsidiary plan, so
it's ShouldStop seldom matters. But get it right anyway.
llvm-svn: 250083
Instead check what languages are supported for expressions; use C if available,
but otherwise pick one of the supported languages.
This can be overridden using the target settings.
<rdar://problem/22290878>
llvm-svn: 249864
This involved changing the TypeSystem::CreateInstance to take a module or a target. This allows type systems to create an AST for modules (no expression support needed) or targets (expression support is needed) and return the correct class instance for both cases.
llvm-svn: 249747
Introduce the notion of Language-based formatter prefix/suffix
This is meant for languages that share certain data types but present them in syntatically different ways, such that LLDB can now have language-based awareness of which of the syntax variations it has to present to the user when formatting those values
This is goodness for new languages and interoperability, but is NFC for existing languages. As such, existing tests cover this
llvm-svn: 249587
Added the ability to specify if an attach by name should be synchronous or not in SBAttachInfo and ProcessAttachInfo.
<rdar://problem/22821480>
llvm-svn: 249361
The ClangExpressionVariable::CreateVariableInList functions looked cute, but
caused more confusion than they solved. I removed them, and instead made sure
that there are adequate facilities for easily adding newly-constructed
ExpressionVariables to lists.
I also made some of the constructors that are common be generic, so that it's
possible to construct expression variables from generic places (like the ABI and
ValueObject) without having to know the specifics about the class.
llvm-svn: 249095
Currently, it only supports Objective-C - C++ types can be looked up through debug info via 'image lookup -t', whereas ObjC types via this command are looked up by runtime introspection
This behavior is in line with type lookup's behavior in Xcode 7, but I am definitely open to feedback as to what makes the most sense here
llvm-svn: 249047
Also added some target-level search functions so that persistent variables and
symbols can be searched for without hand-iterating across the map of
TypeSystems.
llvm-svn: 249027
This is meant to support languages that have a scripting mode with top-level code that acts as global
For now, this flag only controls whether 'frame variable' will attempt to treat globals as locals when within such a function
llvm-svn: 248960
the corresponding TypeSystem. This makes sense because what kind of data there
is -- and how it can be looked up -- depends on the language.
Functionality that is common to all type systems is factored out into
PersistentExpressionState.
llvm-svn: 248934
There are still a bunch of dependencies on the plug-in, but this helps to
identify them.
There are also a few more bits we need to move (and abstract, for example the
ClangPersistentVariables).
llvm-svn: 248612
Summary:
The following situation occured in TestAttachResume:
The inferior was stoped at a breakpoint and we did a continue, immediately followed by a detach.
Since there was a trap instruction under the IP, the continue did a step-over-breakpoint before
resuming the inferior for real. In some cases, the detach command was executed between these two
events (after the step-over stop, but before continue). Here, public state was running, but
private state was stopped. This caused a problem because HaltForDestroyOrDetach was checking the
public state to see whether it needs to stop the process (call Halt()), but Halt() was checking
the private state and concluded that there is nothing for it to do.
Solution: Instead of Halt() call SendAsyncInterrupt(), which will then cause Halt() to be
executed in the context of the private state thread. I also rename HaltForDestroyOrDetach to
reflect it does not call halt directly.
Reviewers: jingham, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D13056
llvm-svn: 248371
Both GNU AS and LLVM emits language type DW_LANG_Mips_Assembler for
all assembly code.
Differential revision: http://reviews.llvm.org/D12962
llvm-svn: 248146
This cleans up type systems to be more pluggable. Prior to this we had issues:
- Module, SymbolFile, and many others has "ClangASTContext &GetClangASTContext()" functions. All have been switched over to use "TypeSystem *GetTypeSystemForLanguage()"
- Cleaned up any places that were using the GetClangASTContext() functions to use TypeSystem
- Cleaned up Module so that it no longer has dedicated type system member variables:
lldb::ClangASTContextUP m_ast; ///< The Clang AST context for this module.
lldb::GoASTContextUP m_go_ast; ///< The Go AST context for this module.
Now we have a type system map:
typedef std::map<lldb::LanguageType, lldb::TypeSystemSP> TypeSystemMap;
TypeSystemMap m_type_system_map; ///< A map of any type systems associated with this module
- Many places in code were using ClangASTContext static functions to place with CompilerType objects and add modifiers (const, volatile, restrict) and to make typedefs, L and R value references and more. These have been made into CompilerType functions that are abstract:
class CompilerType
{
...
//----------------------------------------------------------------------
// Return a new CompilerType that is a L value reference to this type if
// this type is valid and the type system supports L value references,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
GetLValueReferenceType () const;
//----------------------------------------------------------------------
// Return a new CompilerType that is a R value reference to this type if
// this type is valid and the type system supports R value references,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
GetRValueReferenceType () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a const modifier to this type if
// this type is valid and the type system supports const modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddConstModifier () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a volatile modifier to this type if
// this type is valid and the type system supports volatile modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddVolatileModifier () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a restrict modifier to this type if
// this type is valid and the type system supports restrict modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddRestrictModifier () const;
//----------------------------------------------------------------------
// Create a typedef to this type using "name" as the name of the typedef
// this type is valid and the type system supports typedefs, else return
// an invalid type.
//----------------------------------------------------------------------
CompilerType
CreateTypedef (const char *name, const CompilerDeclContext &decl_ctx) const;
};
Other changes include:
- Removed "CompilerType TypeSystem::GetIntTypeFromBitSize(...)" and CompilerType TypeSystem::GetFloatTypeFromBitSize(...) and replaced it with "CompilerType TypeSystem::GetBuiltinTypeForEncodingAndBitSize(lldb::Encoding encoding, size_t bit_size);"
- Fixed code in Type.h to not request the full type for a type for no good reason, just request the forward type and let the type expand as needed
llvm-svn: 247953
The Go runtime schedules user level threads (goroutines) across real threads.
This adds an OS plugin to create memory threads for goroutines.
It supports the 1.4 and 1.5 go runtime.
Differential Revision: http://reviews.llvm.org/D5871
llvm-svn: 247852
Before we had:
ClangFunction
ClangUtilityFunction
ClangUserExpression
and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression
base class, and three pure virtual implementations for the Expression kinds:
FunctionCaller
UtilityFunction
UserExpression
You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage.
The Target will then consult all the registered TypeSystem plugins, and if the type system that matches
the language can make an expression of that kind, it will do so and return it.
Because all of the real expression types need to communicate with their ExpressionParser in a uniform way,
I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper
that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types.
Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs.
The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller
to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a
FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions.
Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common
JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency
but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary.
llvm-svn: 247720
This used to be hardcoded in the FormatManager, but in a pluginized world that is not the right way to go
So, move this step to the Language plugin such that appropriate language plugins for a type get a say about adding candidates to the formatters lookup tables
llvm-svn: 247112
It is required because of the following edge case on arm:
bx <addr> Non-tail call in a no return function
[data-pool] Marked with $d mapping symbol
The return address of the function call will point to the data pool but
we have to treat it as code so the StackFrame can calculate the symbols
correctly.
Differential revision: http://reviews.llvm.org/D12556
llvm-svn: 246958
stores information about a variable that different parts of LLDB use, from the
compiler-specific portion that only the expression parser cares about.
http://reviews.llvm.org/D12602
llvm-svn: 246871
* Change Module::MatchesModuleSpec to return true in case the file spec
in the specified module spec matches with the platform file spec, but
not with the local file spec
* Change the module_resolver used when resolving a remote shared module
to always set the platform file spec to the file spec requested
Differential revision: http://reviews.llvm.org/D12601
llvm-svn: 246852
* Use the frame's context (instead of just the target's) when evaluating,
so that the language of the frame's CU can be used to select the
compiler and/or compiler options to use when parsing the expression.
This allows for modules built with mixed languages to be parsed in
the context of their frame.
* Add all C and C++ language variants when determining the language options
to set.
* Enable C++ language options when language is C or ObjC as a workaround since
the expression parser uses features of C++ to capture values.
* Enable ObjC language options when language is C++ as a workaround for ObjC
requirements.
* Disable C++11 language options when language is C++03.
* Add test TestMixedLanguages.py to check that the language being used
for evaluation is that of the frame.
* Fix test TestExprOptions.py to check for C++11 instead of C++ since C++ has
to be enabled for C, and remove redundant expr --language test for ObjC.
* Fix TestPersistentPtrUpdate.py to not require C++11 in C.
Reviewed by: clayborg, spyffe, jingham
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D11102
llvm-svn: 246829
Summary:
There was a race condition in Process class, where we would not wait for process stdout to
propagate fully before we would shut down the connection (repro case: slow down the stdio thread
by placing a sleep right at the end of the while loop in Communication::ReadThread). The Process
class already tried to solve this problem by synchronizing with the read thread in
Process::ShouldBroadcastEvent, but unfortunately the connection got closed before that in
Process::SetExitStatus. I solve this issue by delaying the connection shutdown until we get a
chance to process the event and synchronize. Alternatively, I could have moved the
synchronization point to an earlier point in SetExitStatus, but it seems safer to delay the
shutdown until other things get a chance to notice the process has exited.
Reviewers: clayborg, ovyalov
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12558
llvm-svn: 246753
Summary:
This doesn't exist in other LLVM projects any longer and doesn't
do anything.
Reviewers: chaoren, labath
Subscribers: emaste, tberghammer, lldb-commits, danalbert
Differential Revision: http://reviews.llvm.org/D12586
llvm-svn: 246749
Historically, data formatters all exist in a global repository (the category map)
On top of that, some formatters can be "hardcoded" when the conditions under which they apply are not expressible as a typename (or typename regex)
This change paves the way to move formatters into per-language buckets such that the C++ plugin is responsible for ownership of the C++ formatters, and so on
The advantages of this are:
a) language formatters only get created when they might apply
b) formatters for a language are clearly owned by the matching language plugin
The current model is one of static instantiation, that is a language knows the full set of formatters it vends and that is only asked-for once, and then handed off to the FormatManager
In a future revision it might be interesting to add similar ability to the language runtimes, and monitor for certain shared library events to add even more library-specific formatters
No formatters are moved as part of this change, so practically speaking this is NFC
llvm-svn: 246568
Historically, data formatters all exist in a global repository (the category map)
On top of that, some formatters can be "hardcoded" when the conditions under which they apply are not expressible as a typename (or typename regex)
This change paves the way to move formatters into per-language buckets such that the C++ plugin is responsible for ownership of the C++ formatters, and so on
The advantages of this are:
a) language formatters only get created when they might apply
b) formatters for a language are clearly owned by the matching language plugin
The current model is one of static instantiation, that is a language knows the full set of formatters it vends and that is only asked-for once, and then handed off to the FormatManager
In a future revision it might be interesting to add similar ability to the language runtimes, and monitor for certain shared library events to add even more library-specific formatters
No formatters are moved as part of this change, so practically speaking this is NFC
llvm-svn: 246515
The Language plugin is menat to answer language-specific questions that are not bound to the existence of a process. Those are still the domain of the LanguageRuntime plugin
The Language plugin will, instead, answer questions such as providing language-specific data formatters or expression evaluation
At the moment, the interface is hollowed out, and empty do-nothing plugins have been setup for ObjC, C++ and ObjC++
llvm-svn: 246212
This will do things like,
given mylibrary,
return
libmylibrary.dylib on OSX
mylibrary.dll on Windows
and so on for other platforms
It is currently implemented for Windows, Darwin, and Linux. Other platforms should fill in accordingly
llvm-svn: 246131
Added a new class called DWARFDIE that contains a DWARFCompileUnit and DWARFDebugInfoEntry so that these items always stay together.
There were many places where we just handed out DWARFDebugInfoEntry pointers and then use them with a compile unit that may or may not be the correct one. Clients outside of DWARFCompileUnit and DWARFDebugInfoEntry should all be dealing with DWARFDIE instances instead of playing with DWARFCompileUnit/DWARFDebugInfoEntry pairs manually.
This paves to the way for some modifications that are coming for DWO.
llvm-svn: 246100
SUMMARY:
This patch implements Target::GetBreakableLoadAddress() method that takes an address
and checks for any reason there is a better address than this to put a breakpoint on.
If there is then return that address.
MIPS uses this method to avoid breakpoint in delay slot.
Reviewers: clayborg, jingham
Subscribers: jingham, mohit.bhakkad, sagar, jaydeep, nitesh.jain, lldb-commits
Differential Revision: http://http://reviews.llvm.org/D12184
llvm-svn: 246015
Create a new "lldb_private::CompilerDeclContext" class that will replace all direct uses of "clang::DeclContext" when used in compiler agnostic code, yet still allow for conversion to clang::DeclContext subclasses by clang specific code. This completes the abstraction of type parsing by removing all "clang::" references from the SymbolFileDWARF. The new "lldb_private::CompilerDeclContext" class abstracts decl contexts found in compiler type systems so they can be used in internal API calls. The TypeSystem is required to support CompilerDeclContexts with new pure virtual functions that start with "DeclContext" in the member function names. Converted all code that used lldb_private::ClangNamespaceDecl over to use the new CompilerDeclContext class and removed the ClangNamespaceDecl.cpp and ClangNamespaceDecl.h files.
Removed direct use of clang APIs from SBType and now use the abstract type systems to correctly explore types.
Bulk renames for things that used to return a ClangASTType which is now CompilerType:
"Type::GetClangFullType()" to "Type::GetFullCompilerType()"
"Type::GetClangLayoutType()" to "Type::GetLayoutCompilerType()"
"Type::GetClangForwardType()" to "Type::GetForwardCompilerType()"
"Value::GetClangType()" to "Value::GetCompilerType()"
"Value::SetClangType (const CompilerType &)" to "Value::SetCompilerType (const CompilerType &)"
"ValueObject::GetClangType ()" to "ValueObject::GetCompilerType()"
many more renames that are similar.
llvm-svn: 245905
for eh_frame and stabs register numberings. This is not
complete but it's a step in the right direction. It's almost
entirely mechanical.
lldb informally uses "gcc register numbering" to mean eh_frame.
Why? Probably because there's a notorious bug with gcc on i386
darwin where the register numbers in eh_frame were incorrect.
In all other cases, eh_frame register numbering is identical to
dwarf.
lldb informally uses "gdb register numbering" to mean stabs.
There are no official definitions of stabs register numbers
for different architectures, so the implementations of gdb
and gcc are the de facto reference source.
There were some incorrect uses of these register number types
in lldb already. I fixed the ones that I saw as I made
this change.
This commit changes all references to "gcc" and "gdb" register
numbers in lldb to "eh_frame" and "stabs" to make it clear
what is actually being represented.
lldb cannot parse the stabs debug format, and given that no
one is using stabs any more, it is unlikely that it ever will.
A more comprehensive cleanup would remove the stabs register
numbers altogether - it's unnecessary cruft / complication to
all of our register structures.
In ProcessGDBRemote, when we get register definitions from
the gdb-remote stub, we expect to see "gcc:" (qRegisterInfo)
or "gcc_regnum" (qXfer:features:read: packet to get xml payload).
This patch changes ProcessGDBRemote to also accept "ehframe:"
and "ehframe_regnum" from these remotes.
I did not change GDBRemoteCommunicationServerLLGS or debugserver
to send these new packets. I don't know what kind of interoperability
constraints we might be working under. At some point in the future
we should transition to using the more descriptive names.
Throughout lldb we're still using enum names like "gcc_r0" and "gdb_r0",
for eh_frame and stabs register numberings. These should be cleaned
up eventually too.
The sources link cleanly on macosx native with xcode build. I
don't think we'll see problems on other platforms but please let
me know if I broke anyone.
llvm-svn: 245141
SUMMARY:
Last 3bits of the watchpoint address are masked by the kernel. For example, n is
at 0x120010d00 and m is 0x120010d04. When a watchpoint is set at m, then watch
exception is generated even when n is read/written. To handle this case, instruction
at PC is emulated to find the base address of the load/store instruction. This address
is then appended to the description of the stop-info packet. Client then reads this
information to check whether the user has set a watchpoint on this address.
Reviewers: jingham, clayborg
Subscribers: nitesh.jain, mohit.bhakkad, sagar, bhushan and lldb-commits
Differential Revision: http://reviews.llvm.org/D11672
llvm-svn: 244864
On android .oat files (compiled java code) don't have symbol
information but on SDK 23+ it can be generated by the oatdump tool
(based on the dex information).
This CL adds logic to download this information and store it in the
module cache.
Differential revision: http://reviews.llvm.org/D11936
llvm-svn: 244738
This is more preparation for multiple different kinds of types from different compilers (clang, Pascal, Go, RenderScript, Swift, etc).
llvm-svn: 244689
This is the work done by Ryan Brown from http://reviews.llvm.org/D8712 that makes a TypeSystem class and abstracts types to be able to use a type system.
All tests pass on MacOSX and passed on linux the last time this was submitted.
llvm-svn: 244679
contained within Process so that we won't be duplicating the warning
message if other parts of the code want to issue the message. Change
Process::PrintWarning to be a protected method - the public method
will be the PrintWarningOptimization et al. Also, Have
Thread::FunctionOptimizationWarning shortcut out if the warnings
have been disabled so that we don't (potentially) compute parts of
the SymbolContext unnecessarily.
llvm-svn: 244436
per Module instead of once per CompileUnit, and print the
module name. A module may have a mix of compile units built with
optimization and compile units built without optimization -- the
warning won't be printed until the user selects a stack frame of
a function that was built with optimization. And as before, it
will only be printed once per module per debug session.
<rdar://problem/19281172>
llvm-svn: 244281
The first part was in r243508 -- the extent of the UI changes in that
patchset was to add "[opt]" to the frame-format when a stack frame was
built with optimized code.
In this change, when a stack frame built with optimization is selected,
a message will be printed to the async output channel --
opt1.c was compiled with optimization - stepping may behave oddly; variables may not be available.
The warning will be only be printed once per source file in a debug session.
These warnings may be disabled by
settings set target.process.optimization-warnings false
Internally, a new Process::PrintWarning() method has been added for
warnings that we want to print only once to the user. It takes a type
of warning (currently only eWarningsOptimization) and an object
pointer (CompileUnit*) - the warning will only be printed once for a
given object pointer value.
This is a bit of a prototype of this change - I think we will be
tweaking it more in the future. But I wanted to land this and see
how it goes. Advanced users will find these warnings unnecessary
noise and will quickly disable them - but anyone who maintains a
debugger knows that debugging optimized code, without realizing it,
is a constant source of confusion and frustation for more typical
debugger users.
I imagine there will be more of these "warn once per whatever" style
warnings that we will want to add in the future and we'll need to
come up with a better way for enabling/disabling them. But I'm not
srue what form that warning settings should take and I didn't want
to code up something that we regret later, so for now I just added
another process setting for this one warning.
<rdar://problem/19281172>
llvm-svn: 244190
owners list, so the StopInfo machinery can get the list of owners without
some other thread being able to mess up the list by deleting/disabline one of its
locations in the process of doing so.
<rdar://problem/18685197>
llvm-svn: 243541
dSYMs, or reading binaries out of memory to the 'Host' log channel.
There's more to be done here, both for Mac and for other platforms,
but the initial set of new loggings are useful enough to check in
at this point.
llvm-svn: 243200
If the function is a template then the return type is part of the
function name. This CL fixes the parsing of these function names in
the case when the return type contains ':'.
The name of free functions in C++ don't have context part. Fix the
logic geting the function name without arguments out from a full
function name to handle this case.
Change the handling of step-in-avoid-regexp to match the value against
the function name without it's arguments and return value. This is
required because the default regex ("^std::") would match any template
function returning an std object.
Fifferential revision: http://reviews.llvm.org/D11461
llvm-svn: 243099
Summary:
This replaces (void)x; usages where they x was subsequently
involved in an assertion with this macro to make the
intent more clear.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D11451
llvm-svn: 243074
but that wasn't added to the list of reasons they don't explain. That
would mean we keep stepping after hitting the AsanDie breakpoint rather
than stopping when the Asan event occurred.
<rdar://problem/21925479>
llvm-svn: 243035
Target and breakpoints options were added:
breakpoint set --language lang --name func
settings set target.language pascal
These specify the Language to use when interpreting the breakpoint's
expression (note: currently only implemented for breakpoints on
identifiers). If the breakpoint language is not set, the target.language
setting is used.
This support is required by Pascal, for example, to set breakpoint at 'ns.foo'
for function 'foo' in namespace 'ns'.
Tests on the language were also added to Module::PrepareForFunctionNameLookup
for efficiency.
Reviewed by: clayborg
Subscribers: jingham, lldb-commits
Differential Revision: http://reviews.llvm.org/D11119
llvm-svn: 242844
Changed the "jthreads" key/value in the stop reply packets to be "jstopinfo". This JSON only contains threads with valid stop reasons and allows us not to have to ask about other threads via qThreadStopInfo when we are stepping. The "jstopinfo" only gets sent if there are more than one thread since the stop reply packet contains all the info needed for a single thread.
Added a Process::WillPublicStop() in case process subclasses want to do any extra gathering for public stops. For ProcessGDBRemote, we end up sending a jThreadsInfo packet to gather all expedited registers, expedited memory and MacOSX queue information. We only do this for public stops to minimize the packets we send when we have multiple private stops. Multiple private stops happen when a source level single step, step into or step out run the process multiple times while implementing the stepping, and none of these private stops make it out to the UI via notifications because they are private stops.
llvm-svn: 242593
For Hexagon we want to be able to call functions during debugging, however currently lldb only supports this when there is JIT support.
Although emulation using IR interpretation is an alternative, it is currently limited in that it can't make function calls.
In this patch we have extended the IR interpreter so that it can execute a function call on the target using register manipulation.
To do this we need to handle the Call IR instruction, passing arguments to a new thread plan and collecting any return values to pass back into the IR interpreter.
The new thread plan is needed to call an alternative ABI interface of "ABI::PerpareTrivialCall()", allowing more detailed information about arguments and return values.
Reviewers: jingham, spyffe
Subscribers: emaste, lldb-commits, ted, ADodds, deepak2427
Differential Revision: http://reviews.llvm.org/D9404
llvm-svn: 242137
Summary:
- Consolidate Unix signals selection in UnixSignals.
- Make Unix signals available from platform.
- Add jSignalsInfo packet to retrieve Unix signals from remote platform.
- Get a copy of the platform signal for each remote process.
- Update SB API for signals.
- Update signal utility in test suite.
Reviewers: ovyalov, clayborg
Subscribers: chaoren, jingham, labath, emaste, tberghammer, lldb-commits
Differential Revision: http://reviews.llvm.org/D11094
llvm-svn: 242101
Summary:
This commit avoids the Platform instance when spawning or attaching to a process in lldb-server.
Instead, I have the server call a (static) method of NativeProcessProtocol directly. The reason
for this is that I believe that NativeProcessProtocol should be decoupled from the Platform
(after all, it always knows which platform it is running on, unlike the rest of lldb).
Additionally, the kind of platform actions a NativeProcessProtocol instance is likely to differ
greatly from the platform actions of the lldb client, so I think the separation makes sense.
After this, the only dependency NativeProcessLinux has on PlatformLinux is the ResolveExecutable
method, which needs additional refactoring.
This is a resubmit of r241672, after it was reverted due to build failueres on non-linux
platforms.
Reviewers: ovyalov, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D10996
llvm-svn: 241796
platform-specific symbols that are not implemented on OS X.
The build error that caused this is
Undefined symbols for architecture x86_64:
"lldb_private::NativeProcessProtocol::Attach(unsigned long long, lldb_private::NativeProcessProtocol::NativeDelegate&, std::__1::shared_ptr<lldb_private::NativeProcessProtocol>&)", referenced from:
lldb_private::process_gdb_remote::GDBRemoteCommunicationServerLLGS::AttachToProcess(unsigned long long) in liblldb-core.a(GDBRemoteCommunicationServerLLGS.o)
"lldb_private::NativeProcessProtocol::Launch(lldb_private::ProcessLaunchInfo&, lldb_private::NativeProcessProtocol::NativeDelegate&, std::__1::shared_ptr<lldb_private::NativeProcessProtocol>&)", referenced from:
lldb_private::process_gdb_remote::GDBRemoteCommunicationServerLLGS::LaunchProcess() in liblldb-core.a(GDBRemoteCommunicationServerLLGS.o)
ld: symbol(s) not found for architecture x86_64
clang: error: linker command failed with exit code 1 (use -v to see invocation)
llvm-svn: 241688
Summary:
This commit avoids the Platform instance when spawning or attaching to a process in lldb-server.
Instead, I have the server call a (static) method of NativeProcessProtocol directly. The reason
for this is that I believe that NativeProcessProtocol should be decoupled from the Platform
(after all, it always knows which platform it is running on, unlike the rest of lldb).
Additionally, the kind of platform actions a NativeProcessProtocol instance is likely to differ
greatly from the platform actions of the lldb client, so I think the separation makes sense.
After this, the only dependency NativeProcessLinux has on PlatformLinux is the ResolveExecutable
method, which needs additional refactoring.
Reviewers: ovyalov, clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D10996
llvm-svn: 241672
A few extras were fixed
- Symbol::GetAddress() now returns an Address object, not a reference. There were places where people were accessing the address of a symbol when the symbol's value wasn't an address symbol. On MacOSX, undefined symbols have a value zero and some places where using the symbol's address and getting an absolute address of zero (since an Address object with no section and an m_offset whose value isn't LLDB_INVALID_ADDRESS is considered an absolute address). So fixing this required some changes to make sure people were getting what they expected.
- Since some places want to access the address as a reference, I added a few new functions to symbol:
Address &Symbol::GetAddressRef();
const Address &Symbol::GetAddressRef() const;
Linux test suite passes just fine now.
<rdar://problem/21494354>
llvm-svn: 240702
a hand-called function from the private state thread. The problem
was that on the way out of the private state thread, we try to drop
the run lock. That is appropriate for the main private state thread,
but not the secondary private state thread. Only the thread that
spawned them can know whether this is an appropriate thing to do or
not.
<rdar://problem/21375352>
llvm-svn: 240461
We have been working on reducing the packet count that is sent between LLDB and the debugserver on MacOSX and iOS. Our approach to this was to reduce the packets required when debugging multiple threads. We currently make one qThreadStopInfoXXXX call (where XXXX is the thread ID in hex) per thread except the thread that stopped with a stop reply packet. In order to implement multiple thread infos in a single reply, we need to use structured data, which means JSON. The new jThreadsInfo packet will attempt to retrieve all thread infos in a single packet. The data is very similar to the stop reply packets, but packaged in JSON and uses JSON arrays where applicable. The JSON output looks like:
[
{ "tid":1580681,
"metype":6,
"medata":[2,0],
"reason":"exception",
"qaddr":140735118423168,
"registers": {
"0":"8000000000000000",
"1":"0000000000000000",
"2":"20fabf5fff7f0000",
"3":"e8f8bf5fff7f0000",
"4":"0100000000000000",
"5":"d8f8bf5fff7f0000",
"6":"b0f8bf5fff7f0000",
"7":"20f4bf5fff7f0000",
"8":"8000000000000000",
"9":"61a8db78a61500db",
"10":"3200000000000000",
"11":"4602000000000000",
"12":"0000000000000000",
"13":"0000000000000000",
"14":"0000000000000000",
"15":"0000000000000000",
"16":"960b000001000000",
"17":"0202000000000000",
"18":"2b00000000000000",
"19":"0000000000000000",
"20":"0000000000000000"},
"memory":[
{"address":140734799804592,"bytes":"c8f8bf5fff7f0000c9a59e8cff7f0000"},
{"address":140734799804616,"bytes":"00000000000000000100000000000000"}
]
}
]
It contains an array of dicitionaries with all of the key value pairs that are normally in the stop reply packet. Including the expedited registers. Notice that is also contains expedited memory in the "memory" key. Any values in this memory will get included in a new L1 cache in lldb_private::Process where if a memory read request is made and that memory request fits into one of the L1 memory cache blocks, it will use that memory data. If a memory request fails in the L1 cache, it will fall back to the L2 cache which is the same block sized caching we were using before these changes. This allows a process to expedite memory that you are likely to use and it reduces packet count. On MacOSX with debugserver, we expedite the frame pointer backchain for a thread (up to 256 entries) by reading 2 pointers worth of bytes at the frame pointer (for the previous FP and PC), and follow the backchain. Most backtraces on MacOSX and iOS now don't require us to read any memory!
We will try these packets out and if successful, we should port these to lldb-server in the near future.
<rdar://problem/21494354>
llvm-svn: 240354
Summary:
* Fix enum LanguageType values so that they can be used as indexes
into array language_names and g_languages as assumed by
LanguageRuntime::GetNameForLanguageType,
Language::SetLanguageFromCString and Language::AsCString.
* Add DWARFCompileUnit::LanguageTypeFromDWARF to convert from DWARF
DW_LANG_* values to enum LanguageType values.
Reviewed By: clayborg, abidh
Differential Revision: http://reviews.llvm.org/D10484
llvm-svn: 239963
Summary:
`IsRelativeToCurrentWorkingDirectory` was misleading, because relative paths
are sometimes appended to other directories, not just the cwd. Plus, the new
name is shorter. Also added `IsAbsolute` for completeness.
Reviewers: clayborg, ovyalov
Reviewed By: ovyalov
Subscribers: tberghammer, lldb-commits
Differential Revision: http://reviews.llvm.org/D10262
llvm-svn: 239419
The problem was the mutex was only protecting the setting of m_exit_string and m_exit_string, but this function relies on the m_private_state being set to eStateExited in order to prevent more than 1 client setting the exit status. We want to only allow the first caller to succeed.
On MacOSX we have a thread that reaps the process we are debugging, and we also have a thread that monitors the debugserver process. When a process exists, the ProcessGDBRemote::AsyncThread() would set the exit status to the correct value and then another thread would reap the debugserver process and they would often both end up in Process::SetExitStatus() at the same time. With the mutex at the top we allow all variables to be set and the m_private_state to be set to eStateExited _before_ the other thread (debugserver reaped) can try to set th exist status to -1 and "lost connection to debugserver" being set as the exit status.
This was probably an issue for lldb-server as well and could very well cleanup some tests that might have been expecting a specific exit status from the process being debugged.
llvm-svn: 238794
When the current address is pointing 1 (unit) over the end of a
section the we have to do a section lookup after making the adjusment
of the current address.
Differential revision: http://reviews.llvm.org/D10124
llvm-svn: 238737
Summary:
This should solve the issue of sending denormalized paths over gdb-remote
if we stick to GetPath(false) in GDBRemoteCommunicationClient, and let the
server handle any denormalization.
Reviewers: ovyalov, zturner, vharron, clayborg
Reviewed By: clayborg
Subscribers: tberghammer, emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D9728
llvm-svn: 238604
Since interaction with the python interpreter is moving towards
being more isolated, we won't be able to include this header from
normal files anymore, all includes of it should be localized to
the python library which will live under source/bindings/API/Python
after a future patch.
None of the files that were including this header actually depended
on it anyway, so it was just a dead include in every single instance.
llvm-svn: 238581
Summary:
Previously, we reported inferior receiving SIGSEGV (or SIGILL, SIGFPE, SIGBUS) as an "exception"
to LLDB, presumably to match OSX behaviour. Beside the fact that we were basically lying to the
user, this was also causing problems with inferiors which handle SIGSEGV by themselves, since
LLDB was unable to reinject this signal back into the inferior.
This commit changes LLGS to report SIGSEGV as a signal. This has necessitated some changes in the
test-suite, which had previously used eStopReasonException to locate threads that crashed. Now it
uses platform-specific logic, which in the case of linux searches for eStopReasonSignaled with
signal=SIGSEGV.
I have also added the ability to set the description of StopInfoUnixSignal using the description
field of the gdb-remote packet. The linux stub uses this to display additional information about
the segfault (invalid address, address access protected, etc.).
Test Plan: All tests pass on linux and osx.
Reviewers: ovyalov, clayborg, emaste
Subscribers: emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D10057
llvm-svn: 238549
Summary:
IOHandlerProcessSTDIO::Run() was opening the pipe for interrupt requests lazily. This was racing
with another thread executing IOHandlerProcessSTDIO::Cancel() simultaneously. I fix this by
opening the pipe in the object constructor. The pipe will be automatically closed when the object
is destroyed.
Test Plan: Tests pass on linux.
Reviewers: clayborg, ribrdb
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D10060
llvm-svn: 238423
This was the original cause of the file descriptor leaks that would cause the test suite to die after running a few hundred processes since no process would ever get destroyed and the communication channel in ProcessGDBRemote and the ProcessIOHandler would never close their pipes.
This process leak was previously worked around by closing the pipes when the communication channel was disconnected.
This was found by using "ptr_refs" from the heap.py in the lldb.macosx.heap module. It was able to find all strong references to the Process and helped me to figure out who was holding this extra reference.
llvm-svn: 238392
Summary:
There is an issue in lldb where the command prompt can appear at the wrong time. The partial fix
we have in for this is not working all the time and is introducing unnecessary delays. This
change does:
- Change Process:SyncIOHandler to use integer start id's for synchronization to avoid it being
confused by quick start-stop cycles. I picked this up from a suggested patch by Greg to
lldb-dev.
- coordinates printing of asynchronous text with the iohandlers. This is also based on a
(different) Greg's patch, but I have added stronger synchronization to it to avoid races.
Together, these changes solve the prompt problem for me on linux (both with and without libedit).
I think they should behave similarly on Mac and FreeBSD and I think they will not make matters
worse for windows.
Test Plan: Prompt comes out alright. All tests still pass on linux.
Reviewers: clayborg, emaste, zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9823
llvm-svn: 238313
The main issue was the Communication::Disconnect() was calling its Connection::Disconnect() but this wouldn't release the pipes that the ConnectionFileDescriptor was using. We also have someone that is holding a strong reference to the Process so that when you re-run, target replaces its m_process_sp, but it doesn't get destructed because someone has a strong reference to it. I need to track that down. But, even if we have a strong reference to the a process that is outstanding, we need to call Process::Finalize() to have it release as much of its resources as possible to avoid memory bloat.
Removed the ProcessGDBRemote::SetExitStatus() override and replaced it with ProcessGDBRemote::DidExit().
Now we aren't leaking file descriptors and the stand alone test suite should run much better.
llvm-svn: 238089
This patch initially was committed in r237460 but later it was reverted (r237479) due to 4 new failures:
* TestExitDuringStep.py
* TestNumThreads.py
* TestThreadExit.py
* TestThreadStates.py
This patch also fixes these tests.
llvm-svn: 237566
Summary:
This option forces to only set a source line breakpoint when there is an exact-match
This patch includes the following commits:
# Add the -m/--exact-match option in "breakpoint set" command
## Add exact_match arg in BreakpointResolverFileLine ctor
## Add m_exact_match field in BreakpointResolverFileLine
## Add exact_match arg in BreakpointResolverFileRegex ctor
## Add m_exact_match field in BreakpointResolverFileRegex
## Add exact_match arg in Target::CreateSourceRegexBreakpoint
## Add exact_match arg in Target::CreateBreakpoint
## Add -m/--exact-match option in "breakpoint set" command
# Add target.exact-match option to skip BP if source line doesn't match
## Add target.exact-match global option
## Add Target::GetExactMatch
## Refactor Target::CreateSourceRegexBreakpoint to accept LazyBool exact_match (was bool)
## Refactor Target::CreateBreakpoint to accept LazyBool exact_match (was bool)
# Add target.exact-match test in SettingsCommandTestCase
# Add BreakpointOptionsTestCase tests to test --skip-prologue/--exact-match options
# Fix a few typos in lldbutil.check_breakpoint_result func
# Rename --exact-match/m_exact_match/exact_match/GetExactMatch to --move-to-nearest-code/m_move_to_nearest_code/move_to_nearest_code/GetMoveToNearestCode
# Add exact_match field in BreakpointResolverFileLine::GetDescription and BreakpointResolverFileRegex::GetDescription, for example:
was:
```
1: file = '/Users/IliaK/p/llvm/tools/lldb/test/functionalities/breakpoint/breakpoint_command/main.c', line = 12, locations = 1, resolved = 1, hit count = 2
1.1: where = a.out`main + 20 at main.c:12, address = 0x0000000100000eb4, resolved, hit count = 2
```
now:
```
1: file = '/Users/IliaK/p/llvm/tools/lldb/test/functionalities/breakpoint/breakpoint_command/main.c', line = 12, exact_match = 0, locations = 1, resolved = 1, hit count = 2
1.1: where = a.out`main + 20 at main.c:12, address = 0x0000000100000eb4, resolved, hit count = 2
```
Test Plan:
./dotest.py -v --executable $BUILDDIR/bin/lldb functionalities/breakpoint/
./dotest.py -v --executable $BUILDDIR/bin/lldb settings/
./dotest.py -v --executable $BUILDDIR/bin/lldb tools/lldb-mi/breakpoint/
Reviewers: jingham, clayborg
Reviewed By: clayborg
Subscribers: lldb-commits, clayborg, jingham
Differential Revision: http://reviews.llvm.org/D9273
llvm-svn: 237460
Summary:
Implementation of assembly profiler for MIPS32 using EmulateInstruction which currently scans only prologue/epilogue assembly instructions. It uses llvm::MCDisassembler to decode assembly instructions.
Reviewers: clayborg, jasonmolenda
Differential Revision: http://reviews.llvm.org/D9769
llvm-svn: 237420
Remove the m_description ivar from the StopInfoBreakpoint
and StopInfoWatchpoint subclasses of StopInfo. Also,
initialize the m_description ivar in the StopInfo ctor.
<rdar://problem/20902950>
llvm-svn: 237411
Summary:
This patch is the beginnings of support for Non-stop mode in the remote protocol. Letting a user examine stopped threads, while other threads execute freely.
Non-stop mode is enabled using the setting target.non-stop-mode, which sends a QNonStop packet when establishing the remote connection.
Changes are also made to treat the '?' stop reply packet differently in non-stop mode, according to spec https://sourceware.org/gdb/current/onlinedocs/gdb/Remote-Non_002dStop.html#Remote-Non_002dStop.
A setting for querying the remote for default thread on setup is also included.
Handling of '%' async notification packets will be added next.
Reviewers: clayborg
Subscribers: lldb-commits, ADodds, ted, deepak2427
Differential Revision: http://reviews.llvm.org/D9656
llvm-svn: 237239
A dummy target is used by TargetList::CreateTargetInternal to prime newly
created targets. the first time this is done it creates the dummy target. The
dummy target is created with the host platform (See
TargetList::CreateDummyTarget) which results in switching the selected platform
back to the host platform even when creating a target for a different platform.
This change avoids changing the selected platform while creating the dummy
target to prevent this side effect.
Test Plan:
./dotest.py $DOTEST_OPTS -t -p TestCreateAfterAttach.py
Tests using process attach (e.g. TestCreateAfterAttach.py, TestHelloWorld.py)
now run successfully mac -> linux.
Differential Revision: http://reviews.llvm.org/D9712
llvm-svn: 237221
Summary:
GetCurrentDirectory() returns the number of characters copied; 0 is a failure, not a success.
Add implementation for chdir().
Reviewers: zturner
Reviewed By: zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9300
llvm-svn: 237162
Summary:
TargetList::CreateTargetInternal() will only select the current Platform. A previous patch always sets platform_sp to the current Platform, so a check later to see if platform_sp was not defined always failed, and the current Platform was used. This patch removes that check, so if the current Platform is not compatible with the target architecture, CreateTargetInternal() will call Platform::GetPlatformForArchitecture() to select a compatible Platform.
Vince, remote linux tests (Ubuntu -> remote Ubuntu) pass the same with and without this patch.
Reviewers: vharron, clayborg
Reviewed By: clayborg
Subscribers: jingham, lldb-commits
Differential Revision: http://reviews.llvm.org/D8749
llvm-svn: 237053
Summary:
Hexagon is a VLIW processor. It can execute multiple instructions at once, called a packet. Breakpoints need to be alone in a packet. This patch will make sure that temporary breakpoints used for stepping are set at the start of a packet, which will put the breakpoint in a packet by itself.
Patch by Deepak Panickal of CodePlay and Ted Woodward of Qualcomm.
Reviewers: deepak2427, clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D9437
llvm-svn: 237047
Converts the MAP_PRIVATE and MAP_ANON options to the target platform constants
(on which the call runs) rather than using those of the compiled host.
Test Plan:
Run test suite, the following tests requiring memory allocation / JIT support
begin passing when running mac -> linux:
Test11588.py
TestAnonymous.py
TestBreakpointConditions.py
TestCPPStaticMethods.py
TestCStrings.py
TestCallStdStringFunction.py
TestDataFormatterCpp.py
TestDataFormatterStdList.py
TestExprDoesntBlock.py
TestExprHelpExamples.py
TestFunctionTypes.py
TestPrintfAfterUp.py
TestSBValuePersist.py
TestSetValues.py
Differential Revision: http://reviews.llvm.org/D9511
llvm-svn: 236933
Summary: This patch moves synchronization of iohandler to CommandObjectProcessLaunch::DoExecute like it was done in CommandObjectProcessContinue::DoExecute.
Reviewers: jingham, clayborg
Reviewed By: clayborg
Subscribers: lldb-commits, clayborg, jingham
Differential Revision: http://reviews.llvm.org/D9373
llvm-svn: 236699
Patch by Jaydeep Patil
Added MIPS32 and MIPS64 core revisions. This would be followed by register context and emulate-instruction for MIPS32.
DYLDRendezvous.cpp:
On Linux link map struct does not contain extra load offset field.
Reviewers: clayborg
Subscribers: bhushan, mohit.bhakkad, sagar, lldb-commits.
Differential Revision: http://reviews.llvm.org/D9190
llvm-svn: 235574
breakpoints, for instance on the class of the thrown object.
This change doesn't actually make that work, the part where we
extract the thrown object type from the throw site isn't done yet.
This provides a general programmatic "precondition" that you can add
to breakpoints to give them the ability to do filtering on the LLDB
side before we pass the stop on to the user-provided conditions &
callbacks.
llvm-svn: 235538
module-loading support for the expression parser.
- It adds support for auto-loading modules referred
to by a compile unit. These references are
currently in the form of empty translation units.
This functionality is gated by the setting
target.auto-import-clang-modules (boolean) = false
- It improves and corrects support for loading
macros from modules, currently by textually
pasting all #defines into the user's expression.
The improvements center around including only those
modules that are relevant to the current context -
hand-loaded modules and the modules that are imported
from the current compile unit.
- It adds an "opt-in" mechanism for all of this
functionality. Modules have to be explicitly
imported (via @import) or auto-loaded (by enabling
the above setting) to enable any of this
functionality.
It also adds support to the compile unit and symbol
file code to deal with empty translation units that
indicate module imports, and plumbs this through to
the CompileUnit interface.
Finally, it makes the following changes to the test
suite:
- It adds a testcase that verifies that modules are
automatically loaded when the appropriate setting
is enabled (lang/objc/modules-auto-import); and
- It modifies lanb/objc/modules-incomplete to test
the case where a module #undefs something that is
#defined in another module.
<rdar://problem/20299554>
llvm-svn: 235313
the changes in r233255/r233258. Normally if lldb attaches to
a running process, when we call Process::Destroy, we want to detach
from the process. If lldb launched the process itself, ::Destroy
should kill it.
However, if we attach to a process and the driver calls SBProcess::Kill()
(which calls Destroy), we need to kill it even if we didn't launch it
originally.
The force_kill param allows for the SBProcess::Kill method to force the
behavior of Destroy.
<rdar://problem/20424439>
llvm-svn: 235158
virtual void
LanguageRuntime::ModulesDidLoad (const ModuleList &module_list);
Then reorganized how the objective C plug-in is notified so it will work for all LanguageRuntime subclasses.
llvm-svn: 235118
Summary:
E.g., if thread 1 hits a breakpoint, then a `thread info` on thread 2 will cause
a segfault, since thread 2 will have no stop info (intended behavior?).
Reviewers: kubabrecka, clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D8905
llvm-svn: 234437
The OperatingSystem plug-ins allow code to detect threads in memory and then say "memory thread 0x11111" is backed by the actual thread 1.
You can then single step these virtual threads. A problem arose when thread specific breakpoints were used during thread plans where we would say "set a breakpoint on thread 0x11111" and we would hit the breakpoint on the real thread 1 and the thread IDs wouldn't match and we would get rid of the "stopped at breakpoint" stop info due to this mismatch. Code was added to ensure these events get forwarded and thus allow single stepping a memory thread to work correctly.
Added a test case for this as well.
<rdar://problem/19211770>
llvm-svn: 234364
verifying that the types from that module don't
override types from DWARF. Also added a target setting
to LLDB so we can tell Clang where to look for these
local modules.
<rdar://problem/18805055>
llvm-svn: 234016
There were a couple of real bugs here regarding error checking and
signed/unsigned comparisons, but mostly these were just noise.
There was one class of bugs fixed here which is particularly
annoying, dealing with MSVC's non-standard behavior regarding
the underlying type of enums. See the comment in
lldb-enumerations.h for details. In short, from now on please use
FLAGS_ENUM and FLAGS_ANONYMOUS_ENUM when defining enums which
contain values larger than can fit into a signed integer.
llvm-svn: 233943
Guard against this by setting a new "m_finalizing" flag that lets us know we are in the process of finalizing.
<rdar://problem/20369152>
llvm-svn: 233935
When no hijack listener is set up, the global event listener will
try to pull events off the queue, racing with the event thread.
By always forcing a hijack listener, even when one was not given,
we guarantee that the listener always gets all events.
This was causing problems in synchronous mode with the process
stop event sometimes never being picked up and causing the debugger
to hang while processing a .lldbinit file.
Reviewed by: Jim Ingham
Differential Revision: http://reviews.llvm.org/D8562
llvm-svn: 233315
Summary:
This patch fixes -gdb-exit for locally target. It includes the following changes:
# Fix Process::Finalize
# Use SBProcess::Destroy in -gdb-exit
Reviewers: abidh, zturner, clayborg
Reviewed By: clayborg
Subscribers: lldb-commits, clayborg, abidh
Differential Revision: http://reviews.llvm.org/D8298
llvm-svn: 233255
Summary:
This commit adds this alternate route only when parsing variable dies
corresponding to global or static variables. The motivation for this is that GCC
does not emit linkage names for functions and variables declared/defined in
anonymous namespaces. Having this alternate route fixes one part of
TestNamespace which fails when the test case is compiled with GCC.
An alternate route to get fully qualified names of functions whose linkage names
are missing will be added with a followup change. With that, the other failing
part of TestNamespace will also be fixed.
Test Plan: dotest.py -C gcc -p TestNamespace
Reviewers: clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D8569
llvm-svn: 233098
Previously the remote module sepcification was fetched only from the
remote platform. With this CL if we have a remote process then we ask it
if it have any information from a given module. It is required because
on android the dynamic linker only reports the name of the SO file and
the platform can't always find it without a full path (the process can
do it based on /proc/<pid>/maps).
Differential revision: http://reviews.llvm.org/D8547
llvm-svn: 233061
Summary:
Saw this while reading some code in DynamicLoader classes. Looks like this has
been a FIXME since 2011 at least.
Test Plan: Run unit tests.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D8558
llvm-svn: 232983
Specifically, there were some functions for converting enums
to strings and a function for matching a string using a specific
matching algorithm. This moves those functions to more appropriate
headers in lldb/Utility and updates references to include the
new headers.
llvm-svn: 232673
So that we don't have to update every single #include in the entire
codebase to #include this new header (which used to get included by
lldb-private-log.h, we automatically #include "Logging.h" from
within "Log.h".
llvm-svn: 232653
This removes ScriptInterpreterObject from the codebase completely.
Places that used to rely on ScriptInterpreterObject now use
StructuredData::Object and its derived classes. To support this,
a new type of StructuredData object is introduced, called
StructuredData::Generic, which stores a void*. Internally within
the python library, StructuredPythonObject subclasses this
StructuredData::Generic class so that it can addref and decref
the python object on construction and destruction.
Additionally, all of the classes in PythonDataObjects.h such
as PythonList, PythonDictionary, etc now provide a method to
create an instance of the corresponding StructuredData type. For
example, there is PythonDictionary::CreateStructuredDictionary.
To eliminate dependencies on PythonDataObjects for external
callers, all ScriptInterpreter methods now return only
StructuredData classes
The rest of the changes in this CL are focused on fixing up
users of PythonDataObjects classes to use the new StructuredData
classes.
llvm-svn: 232534
# Fix CommandInterpreter.Broadcaster name (it should be the same as CommandInterpreter::GetStaticBroadcasterClass())
# Prevent the same error in Process.Broadcaster
# Fix SBCommandInterpreter::GetBroadcasterClass (it should call CommandInterpreter::GetStaticBroadcasterClass(), was Communication::GetStaticBroadcasterClass())
llvm-svn: 232500
Previously it was fetched only if the architecture isn't valid, but the
architecture can be valid without containing all information about the
current target (e.g. missing os).
Differential revision: http://reviews.llvm.org/D8057
llvm-svn: 232153
Summary:
There was a race condition regarding the output of the inferior process. The reading of the
output is performed on a separate thread, and there was no guarantee that the output will get
eventually consumed. Because of that, it was happening that calling Process::GetSTDOUT was not
returning anything even though the process was terminated and would definitely not produce any
further output. This was usually happening only under very heavy system load, but it can be
reproduced by placing an usleep in the stdio thread (Process::STDIOReadThreadBytesReceived).
This patch addresses this by adding synchronization capabilities to the Communication thread.
After calling Communication::SynchronizeWithReadThread one can be sure that all pending input has
been processed by the read thread. This function is then called after every public event which
stops the process to obtain the entire process output.
Test Plan: TestProcessIO.py should now succeed every time instead of flaking in and out.
Reviewers: clayborg, jingham
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D8246
llvm-svn: 232023
Summary:
starting a debug session on linux with -o "process launch" lldb parameter was failing since
Target::Launch (in sychronous mode) is expecting to be able to receive public process events.
However, PlatformLinux did not set up event hijacking on process launch, which caused these
events to be processed elsewhere and left Target::Launch hanging. This patch enables event
interception in PlatformLinux (which was commented out).
Upon enabling event interception, I noticed an issue, which I traced back to the inconsistent
state of public run lock, which remained false even though public and private process states were
"stopped". I addressed this by making sure the run lock is "stopped" upon exit from
WaitForProcessToStop (which already had similar provisions for other return paths).
Test Plan: This should fix the intermittent TestFormats failure we have been experiencing on Linux.
Reviewers: jingham, clayborg, vharron
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D8079
llvm-svn: 231460
Debugger.h is a huge file that gets included everywhere, and
FormatManager.h brings in a ton of unnecessary stuff and doesn't
even use anything from it in the header.
llvm-svn: 231161