Commit Graph

632 Commits

Author SHA1 Message Date
Chandler Carruth fee1a04d04 [CallSite removal] Move the verifier to use `CallBase` instead of the
`CallSite` wrapper.

Mostly mechanical, but I've tried to tidy up code where it made sense to
do so.

Differential Revision: https://reviews.llvm.org/D56143

llvm-svn: 350507
2019-01-07 07:02:34 +00:00
Scott Linder de6beb02a5 Implement -frecord-command-line (-frecord-gcc-switches)
Implement options in clang to enable recording the driver command-line
in an ELF section.

Implement a new special named metadata, llvm.commandline, to support
frontends embedding their command-line options in IR/ASM/ELF.

This differs from the GCC implementation in some key ways:

* In GCC there is only one command-line possible per compilation-unit,
  in LLVM it mirrors llvm.ident and multiple are allowed.
* In GCC individual options are separated by NULL bytes, in LLVM entire
  command-lines are separated by NULL bytes. The advantage of the GCC
  approach is to clearly delineate options in the face of embedded
  spaces. The advantage of the LLVM approach is to support merging
  multiple command-lines unambiguously, while handling embedded spaces
  with escaping.

Differential Revision: https://reviews.llvm.org/D54487
Clang Differential Revision: https://reviews.llvm.org/D54489

llvm-svn: 349155
2018-12-14 15:38:15 +00:00
Leonard Chan 118e53fd63 [Intrinsic] Signed Fixed Point Multiplication Intrinsic
Add an intrinsic that takes 2 signed integers with the scale of them provided
as the third argument and performs fixed point multiplication on them.

This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.

Differential Revision: https://reviews.llvm.org/D54719

llvm-svn: 348912
2018-12-12 06:29:14 +00:00
Scott Linder 4ed5195712 [DWARFv5] Verify all-or-nothing constraint on DIFile source
Update IR verifier to check the constraint that DIFile source is present on all
files or no files.

Differential Revision: https://reviews.llvm.org/D54953

llvm-svn: 348022
2018-11-30 19:13:38 +00:00
Chandler Carruth e429c7941d [TI removal] Leverage the fact that TerminatorInst is gone to create
a normal base class that provides all common "call" functionality.

This merges two complex CRTP mixins for the common "call" logic and
common operand bundle logic into a single, normal base class of
`CallInst` and `InvokeInst`. Going forward, users can typically
`dyn_cast<CallBase>` and use the resulting API. No more need for the
`CallSite` wrapper. I'm planning to migrate current usage of the wrapper
to directly use the base class and then it can be removed, but those are
simpler and much more incremental steps. The big change is to introduce
this abstraction into the type system.

I've tried to do some basic simplifications of the APIs that I couldn't
really help but touch as part of this:
- I've tried to organize the attribute API and bundle API into groups to
  make understanding the API of `CallBase` easier. Without this,
  I wasn't able to navigate the API sanely for all of the ways I needed
  to modify it.
- I've added what seem like more clear and consistent APIs for getting
  at the called operand. These ended up being especially useful to
  consolidate the *numerous* duplicated code paths trying to do this.
- I've largely reworked the organization and implementation of the APIs
  for computing the argument operands as they needed to change to work
  with the new subclass approach.

To minimize any cost associated with this abstraction, I've moved the
operand layout in memory to store the called operand last. This makes
its position relative to the end of the operand array the same,
regardless of the subclass. It should make it much cheaper to reference
from the `CallBase` abstraction, and this is likely one of the most
frequent things to query.

We do still pay one abstraction penalty here: we have to branch to
determine whether there are 0 or 2 extra operands when computing the end
of the argument operand sequence. However, that seems both rare and
should optimize well. I've implemented this in a way specifically
designed to allow it to optimize fairly well. If this shows up in
profiles, we can add overrides of the relevant methods to the subclasses
that bypass this penalty. It seems very unlikely that this will be an
issue as the code was *already* dealing with an ever present abstraction
of whether or not there are operand bundles, so this isn't the first
branch to go into the computation.

I've tried to remove as much of the obvious vestigial API surface of the
old CRTP implementation as I could, but I suspect there is further
cleanup that should now be possible, especially around the operand
bundle APIs. I'm leaving all of that for future work in this patch as
enough things are changing here as-is.

One thing that made this harder for me to reason about and debug was the
pervasive use of unsigned values in subtraction and other arithmetic
computations. I had to debug more than one unintentional wrap. I've
switched a few of these to use `int` which seems substantially simpler,
but I've held back from doing this more broadly to avoid creating
confusing divergence within a single class's API.

I also worked to remove all of the magic numbers used to index into
operands, putting them behind named constants or putting them into
a single method with a comment and strictly using the method elsewhere.
This was necessary to be able to re-layout the operands as discussed
above.

Thanks to Ben for reviewing this (somewhat large and awkward) patch!

Differential Revision: https://reviews.llvm.org/D54788

llvm-svn: 347452
2018-11-22 10:31:35 +00:00
Than McIntosh 4a1c5da7ac [IRVerifier] Allow StructRet in statepoint
Summary:
StructRet attribute is not allowed in vararg calls. The statepoint
intrinsic is vararg, but the wrapped function may be not. Allow
calls of statepoint with StructRet arg, as long as the wrapped
function is not vararg.

Reviewers: thanm, anna

Reviewed By: anna

Subscribers: anna, llvm-commits

Differential Revision: https://reviews.llvm.org/D53602

llvm-svn: 347050
2018-11-16 14:28:05 +00:00
Cameron McInally cbde0d9c7b [IR] Add a dedicated FNeg IR Instruction
The IEEE-754 Standard makes it clear that fneg(x) and
fsub(-0.0, x) are two different operations. The former is a bitwise
operation, while the latter is an arithmetic operation. This patch
creates a dedicated FNeg IR Instruction to model that behavior.

Differential Revision: https://reviews.llvm.org/D53877

llvm-svn: 346774
2018-11-13 18:15:47 +00:00
Cameron McInally 9757d5d6c1 [FPEnv] Add constrained CEIL/FLOOR/ROUND/TRUNC intrinsics
Differential Revision: https://reviews.llvm.org/D53411

llvm-svn: 346141
2018-11-05 15:59:49 +00:00
Cameron McInally 2ad870e785 [FPEnv] [FPEnv] Add constrained intrinsics for MAXNUM and MINNUM
Differential Revision: https://reviews.llvm.org/D53216

llvm-svn: 345650
2018-10-30 21:01:29 +00:00
Leonard Chan 905abe5b5d [Intrinsic] Signed and Unsigned Saturation Subtraction Intirnsics
Add an intrinsic that takes 2 integers and perform saturation subtraction on
them.

This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.

Differential Revision: https://reviews.llvm.org/D53783

llvm-svn: 345512
2018-10-29 16:54:37 +00:00
Leonard Chan 0acfc6be38 [Intrinsic] Unigned Saturation Addition Intrinsic
Add an intrinsic that takes 2 integers and perform unsigned saturation
addition on them.

This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.

Differential Revision: https://reviews.llvm.org/D53340

llvm-svn: 344971
2018-10-22 23:08:40 +00:00
Leonard Chan 699b3b54da [Intrinsic] Signed Saturation Addition Intrinsic
Add an intrinsic that takes 2 integers and perform saturation addition on them.

This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.

Differential Revision: https://reviews.llvm.org/D53053

llvm-svn: 344629
2018-10-16 17:35:41 +00:00
Chandler Carruth 52eaaf3ff8 [TI removal] Rework `InstVisitor` to support visiting instructions that
are terminators without relying on the specific `TerminatorInst` type.

This required cleaning up two users of `InstVisitor`s usage of
`TerminatorInst` as well.

llvm-svn: 344503
2018-10-15 10:10:54 +00:00
Chandler Carruth edb12a838a [TI removal] Make variables declared as `TerminatorInst` and initialized
by `getTerminator()` calls instead be declared as `Instruction`.

This is the biggest remaining chunk of the usage of `getTerminator()`
that insists on the narrow type and so is an easy batch of updates.
Several files saw more extensive updates where this would cascade to
requiring API updates within the file to use `Instruction` instead of
`TerminatorInst`. All of these were trivial in nature (pervasively using
`Instruction` instead just worked).

llvm-svn: 344502
2018-10-15 10:04:59 +00:00
Dylan McKay e48f27a0b1 Generalize an IR verifier check to work with non-zero program address spaces
This commit modifies an existing IR verifier check that
assumes all functions will be located in the default address
space 0.

Rather than using the default paramater value getPointerTo(AddrSpace=0),
explicitly specify the program memory address space from the data layout.

This only affects targets that specify a nonzero address space
in their data layouts. The only in-tree target that does this
is AVR.

llvm-svn: 344243
2018-10-11 12:49:50 +00:00
Ewan Crawford fa120cbdbc [InstCombine] Fix incongruous GEP type addrspace
Currently running the @insertelem_after_gep function below through the InstCombine pass with opt produces invalid IR.

Input:
```
define void @insertelem_after_gep(<16 x i32>* %t0) {
   %t1 = bitcast <16 x i32>* %t0 to [16 x i32]*
   %t2 = addrspacecast [16 x i32]* %t1 to [16 x i32] addrspace(3)*
   %t3 = getelementptr inbounds [16 x i32], [16 x i32] addrspace(3)* %t2, i64 0, i64 0
   %t4 = insertelement <16 x i32 addrspace(3)*> undef, i32 addrspace(3)* %t3, i32 0
   call void @extern_vec_pointers_func(<16 x i32 addrspace(3)*> %t4)
   ret void
}
```

Output:

```
define void @insertelem_after_gep(<16 x i32>* %t0) {
  %t3 = getelementptr inbounds <16 x i32>, <16 x i32>* %t0, i64 0, i64 0
  %t4 = insertelement <16 x i32 addrspace(3)*> undef, i32 addrspace(3)* %t3, i32 0
  call void @my_extern_func(<16 x i32 addrspace(3)*> %t4)
  ret void
}
```

Which although causes no complaints when produced, isn't valid IR as the insertelement use of the %t3 GEP expects an address space.

```
opt: /tmp/bad.ll:52:73: error: '%t3' defined with type 'i32*' but expected 'i32 addrspace(3)*'
  %t4 = insertelement <16 x i32 addrspace(3)*> undef, i32 addrspace(3)* %t3, i32 0
```

I've fixed this by adding an addrspacecast after the GEP in the InstCombine pass, and including a check for this type mismatch to the verifier.

Reviewers: spatel, lebedev.ri
Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D52294

llvm-svn: 343956
2018-10-08 08:40:45 +00:00
Vedant Kumar 5931b4e5b5 [DebugInfo] Add support for DWARF5 call site-related attributes
DWARF v5 introduces DW_AT_call_all_calls, a subprogram attribute which
indicates that all calls (both regular and tail) within the subprogram
have call site entries. The information within these call site entries
can be used by a debugger to populate backtraces with synthetic tail
call frames.

Tail calling frames go missing in backtraces because the frame of the
caller is reused by the callee. Call site entries allow a debugger to
reconstruct a sequence of (tail) calls which led from one function to
another. This improves backtrace quality. There are limitations: tail
recursion isn't handled, variables within synthetic frames may not
survive to be inspected, etc. This approach is not novel, see:

  https://gcc.gnu.org/wiki/summit2010?action=AttachFile&do=get&target=jelinek.pdf

This patch adds an IR-level flag (DIFlagAllCallsDescribed) which lowers
to DW_AT_call_all_calls. It adds the minimal amount of DWARF generation
support needed to emit standards-compliant call site entries. For easier
deployment, when the debugger tuning is LLDB, the DWARF requirement is
adjusted to v4.

Testing: Apart from check-{llvm, clang}, I built a stage2 RelWithDebInfo
clang binary. Its dSYM passed verification and grew by 1.4% compared to
the baseline. 151,879 call site entries were added.

rdar://42001377

Differential Revision: https://reviews.llvm.org/D49887

llvm-svn: 343883
2018-10-05 20:37:17 +00:00
Matt Arsenault 0f83d66ae7 Add atomicrmw operation to error messages
llvm-svn: 343656
2018-10-03 02:37:15 +00:00
Fangrui Song 0cac726a00 llvm::sort(C.begin(), C.end(), ...) -> llvm::sort(C, ...)
Summary: The convenience wrapper in STLExtras is available since rL342102.

Reviewers: dblaikie, javed.absar, JDevlieghere, andreadb

Subscribers: MatzeB, sanjoy, arsenm, dschuff, mehdi_amini, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, javed.absar, gbedwell, jrtc27, mgrang, atanasyan, steven_wu, george.burgess.iv, dexonsmith, kristina, jsji, llvm-commits

Differential Revision: https://reviews.llvm.org/D52573

llvm-svn: 343163
2018-09-27 02:13:45 +00:00
Xin Tong 2533f747d7 Add some context to fatal verifier errors
Summary: Add function name when verification fails as an initial breadcrumb for debugging.

Patch by David Callahan.

Reviewers: mehdi_amini, modocache

Reviewed By: modocache

Subscribers: llvm-commits, modocache

Differential Revision: https://reviews.llvm.org/D51386

llvm-svn: 341974
2018-09-11 18:06:03 +00:00
Adrian Prantl 609bf36952 Remove addBlockByrefAddress(), it is dead code as far as clang is concerned.
This patch removes addBlockByrefAddress(), it is dead code as far as
clang is concerned: Every byref block capture is emitted with a
complex expression that is equivalent to what this function does.

rdar://problem/31629055

Differential Revision: https://reviews.llvm.org/D51763

llvm-svn: 341737
2018-09-08 00:21:55 +00:00
Chandler Carruth 664aa868f5 [x86/SLH] Add a real Clang flag and LLVM IR attribute for Speculative
Load Hardening.

Wires up the existing pass to work with a proper IR attribute rather
than just a hidden/internal flag. The internal flag continues to work
for now, but I'll likely remove it soon.

Most of the churn here is adding the IR attribute. I talked about this
Kristof Beyls and he seemed at least initially OK with this direction.
The idea of using a full attribute here is that we *do* expect at least
some forms of this for other architectures. There isn't anything
*inherently* x86-specific about this technique, just that we only have
an implementation for x86 at the moment.

While we could potentially expose this as a Clang-level attribute as
well, that seems like a good question to defer for the moment as it
isn't 100% clear whether that or some other programmer interface (or
both?) would be best. We'll defer the programmer interface side of this
for now, but at least get to the point where the feature can be enabled
without relying on implementation details.

This also allows us to do something that was really hard before: we can
enable *just* the indirect call retpolines when using SLH. For x86, we
don't have any other way to mitigate indirect calls. Other architectures
may take a different approach of course, and none of this is surfaced to
user-level flags.

Differential Revision: https://reviews.llvm.org/D51157

llvm-svn: 341363
2018-09-04 12:38:00 +00:00
Adrian Prantl 3807217d02 Verifier: verify that a DILocation's scope is a DILocalScope.
This fixes an assertion failure(!) in the Verifier.

rdar://problem/43687474

llvm-svn: 340653
2018-08-24 21:01:58 +00:00
Adrian Prantl 55f4262999 [DebugInfoMetadata] Added DIFlags interface in DIBasicType.
Flags in DIBasicType will be used to pass attributes used in
DW_TAG_base_type, such as DW_AT_endianity.

Patch by Chirag Patel!

Differential Revision: https://reviews.llvm.org/D49610

llvm-svn: 339714
2018-08-14 19:35:34 +00:00
Hsiangkai Wang ef72e481ea [DebugInfo] Refactor DbgInfoIntrinsic class hierarchy.
In the past, DbgInfoIntrinsic has a strong assumption that these
intrinsics all have variables and expressions attached to them.
However, it is too strong to derive the class for other debug entities.
Now, it has problems for debug labels.

In order to make DbgInfoIntrinsic as a base class for 'debug info', I
create a class for 'variable debug info', DbgVariableIntrinsic.

DbgDeclareInst, DbgAddrIntrinsic, and DbgValueInst will be derived from it.

Differential Revision: https://reviews.llvm.org/D50220

llvm-svn: 338984
2018-08-06 03:59:47 +00:00
Michael J. Spencer 7bb2767fba Recommit r335794 "Add support for generating a call graph profile from Branch Frequency Info." with fix for removed functions.
llvm-svn: 337140
2018-07-16 00:28:24 +00:00
Vedant Kumar b3091da3af Use Type::isIntOrPtrTy where possible, NFC
It's a bit neater to write T.isIntOrPtrTy() over `T.isIntegerTy() ||
T.isPointerTy()`.

I used Python's re.sub with this regex to update users:

  r'([\w.\->()]+)isIntegerTy\(\)\s*\|\|\s*\1isPointerTy\(\)'

llvm-svn: 336462
2018-07-06 20:17:42 +00:00
Benjamin Kramer 269eb21e1c Revert "Add support for generating a call graph profile from Branch Frequency Info."
This reverts commits r335794 and r335797. Breaks ThinLTO+FDO selfhost.

llvm-svn: 335851
2018-06-28 13:15:03 +00:00
Michael J. Spencer 5bf1ead377 Add support for generating a call graph profile from Branch Frequency Info.
=== Generating the CG Profile ===

The CGProfile module pass simply gets the block profile count for each BB and scans for call instructions.  For each call instruction it adds an edge from the current function to the called function with the current BB block profile count as the weight.

After scanning all the functions, it generates an appending module flag containing the data. The format looks like:
```
!llvm.module.flags = !{!0}

!0 = !{i32 5, !"CG Profile", !1}
!1 = !{!2, !3, !4} ; List of edges
!2 = !{void ()* @a, void ()* @b, i64 32} ; Edge from a to b with a weight of 32
!3 = !{void (i1)* @freq, void ()* @a, i64 11}
!4 = !{void (i1)* @freq, void ()* @b, i64 20}
```

Differential Revision: https://reviews.llvm.org/D48105

llvm-svn: 335794
2018-06-27 23:58:08 +00:00
Chandler Carruth aa5f4d2e23 Revert r335306 (and r335314) - the Call Graph Profile pass.
This is the first pass in the main pipeline to use the legacy PM's
ability to run function analyses "on demand". Unfortunately, it turns
out there are bugs in that somewhat-hacky approach. At the very least,
it leaks memory and doesn't support -debug-pass=Structure. Unclear if
there are larger issues or not, but this should get the sanitizer bots
back to green by fixing the memory leaks.

llvm-svn: 335320
2018-06-22 05:33:57 +00:00
Michael J. Spencer fc93dd8e18 [Instrumentation] Add Call Graph Profile pass
This patch adds support for generating a call graph profile from Branch Frequency Info.

The CGProfile module pass simply gets the block profile count for each BB and scans for call instructions. For each call instruction it adds an edge from the current function to the called function with the current BB block profile count as the weight.

After scanning all the functions, it generates an appending module flag containing the data. The format looks like:

!llvm.module.flags = !{!0}

!0 = !{i32 5, !"CG Profile", !1}
!1 = !{!2, !3, !4} ; List of edges
!2 = !{void ()* @a, void ()* @b, i64 32} ; Edge from a to b with a weight of 32
!3 = !{void (i1)* @freq, void ()* @a, i64 11}
!4 = !{void (i1)* @freq, void ()* @b, i64 20}

Differential Revision: https://reviews.llvm.org/D48105

llvm-svn: 335306
2018-06-21 23:31:10 +00:00
Shiva Chen 2c864551df [DebugInfo] Add DILabel metadata and intrinsic llvm.dbg.label.
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is

!DILabel(scope: !1, name: "foo", file: !2, line: 3)

We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is

llvm.dbg.label(metadata !1)

It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.

We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.

Differential Revision: https://reviews.llvm.org/D45024

Patch by Hsiangkai Wang.

llvm-svn: 331841
2018-05-09 02:40:45 +00:00
Adrian Prantl 5f8f34e459 Remove \brief commands from doxygen comments.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.

Patch produced by

  for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done

Differential Revision: https://reviews.llvm.org/D46290

llvm-svn: 331272
2018-05-01 15:54:18 +00:00
Daniel Neilson 5e10637a3b [Verifier] Refactor duplicate code for atomic mem intrinsic verification (NFC)
Summary:
The verification rules for the intrinsics for atomic memcpy, atomic memmove,
and atomic memset are basically code clones. This change merges their verification
rules into a single block to remove duplication.

llvm-svn: 329753
2018-04-10 20:23:50 +00:00
Hans Wennborg da8b71f292 Tweak an assert message in the verifier
llvm-svn: 329387
2018-04-06 10:20:19 +00:00
Mandeep Singh Grang f3555650bd [IR] Change std::sort to llvm::sort in response to r327219
r327219 added wrappers to std::sort which randomly shuffle the container before
sorting.  This will help in uncovering non-determinism caused due to undefined
sorting order of objects having the same key.

To make use of that infrastructure we need to invoke llvm::sort instead of
std::sort.

Note: This patch is one of a series of patches to replace *all* std::sort to
llvm::sort.  Refer D44363 for a list of all the required patches.

llvm-svn: 329353
2018-04-05 21:52:24 +00:00
Vlad Tsyrklevich d17f61ea3b Add the ShadowCallStack attribute
Summary:
Introduce the ShadowCallStack function attribute. It's added to
functions compiled with -fsanitize=shadow-call-stack in order to mark
functions to be instrumented by a ShadowCallStack pass to be submitted
in a separate change.

Reviewers: pcc, kcc, kubamracek

Reviewed By: pcc, kcc

Subscribers: cryptoad, mehdi_amini, javed.absar, llvm-commits, kcc

Differential Revision: https://reviews.llvm.org/D44800

llvm-svn: 329108
2018-04-03 20:10:40 +00:00
Matt Morehouse 236cdaf84c [SimplifyCFG] Create attribute for fuzzing-specific optimizations.
Summary:
When building with libFuzzer, converting control flow to selects or
obscuring the original operands of CMPs reduces the effectiveness of
libFuzzer's heuristics.

This patch provides an attribute to disable or modify certain optimizations
for optimal fuzzing signal.

Provides a less aggressive alternative to https://reviews.llvm.org/D44057.

Reviewers: vitalybuka, davide, arsenm, hfinkel

Reviewed By: vitalybuka

Subscribers: junbuml, mehdi_amini, wdng, javed.absar, hiraditya, llvm-commits, kcc

Differential Revision: https://reviews.llvm.org/D44232

llvm-svn: 328214
2018-03-22 17:07:51 +00:00
Oren Ben Simhon fdd72fd522 [X86] Added support for nocf_check attribute for indirect Branch Tracking
X86 Supports Indirect Branch Tracking (IBT) as part of Control-Flow Enforcement Technology (CET).
IBT instruments ENDBR instructions used to specify valid targets of indirect call / jmp.
The `nocf_check` attribute has two roles in the context of X86 IBT technology:
	1. Appertains to a function - do not add ENDBR instruction at the beginning of the function.
	2. Appertains to a function pointer - do not track the target function of this pointer by adding nocf_check prefix to the indirect-call instruction.

This patch implements `nocf_check` context for Indirect Branch Tracking.
It also auto generates `nocf_check` prefixes before indirect branchs to jump tables that are guarded by range checks.

Differential Revision: https://reviews.llvm.org/D41879

llvm-svn: 327767
2018-03-17 13:29:46 +00:00
Peter Collingbourne 2974856ad4 Use branch funnels for virtual calls when retpoline mitigation is enabled.
The retpoline mitigation for variant 2 of CVE-2017-5715 inhibits the
branch predictor, and as a result it can lead to a measurable loss of
performance. We can reduce the performance impact of retpolined virtual
calls by replacing them with a special construct known as a branch
funnel, which is an instruction sequence that implements virtual calls
to a set of known targets using a binary tree of direct branches. This
allows the processor to speculately execute valid implementations of the
virtual function without allowing for speculative execution of of calls
to arbitrary addresses.

This patch extends the whole-program devirtualization pass to replace
certain virtual calls with calls to branch funnels, which are
represented using a new llvm.icall.jumptable intrinsic. It also extends
the LowerTypeTests pass to recognize the new intrinsic, generate code
for the branch funnels (x86_64 only for now) and lay out virtual tables
as required for each branch funnel.

The implementation supports full LTO as well as ThinLTO, and extends the
ThinLTO summary format used for whole-program devirtualization to
support branch funnels.

For more details see RFC:
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120672.html

Differential Revision: https://reviews.llvm.org/D42453

llvm-svn: 327163
2018-03-09 19:11:44 +00:00
Matt Davis 50472279d4 [DebugInfo] Add verifier for DICompositeType vector
Summary:
This patch adds verification logic for DICompositeType vectors, ensuring that they only have one element, and that element is of type subrange.

This patch complements https://reviews.llvm.org/D44048

Reviewers: aprantl

Reviewed By: aprantl

Subscribers: JDevlieghere, llvm-commits

Tags: #debug-info

Differential Revision: https://reviews.llvm.org/D44262

llvm-svn: 327048
2018-03-08 19:31:37 +00:00
Rafael Espindola 6cd91f1d44 Refactor check for dllimport in the Verifier.
This avoids duplicated code and now also rejects dllimport aliases.

llvm-svn: 326814
2018-03-06 17:19:23 +00:00
Scott Linder 7160384d40 [DebugInfo] Unify ChecksumKind and Checksum value in DIFile
Rather than encode the absence of a checksum with a Kind variant, instead put
both the kind and value in a struct and wrap it in an Optional.

Differential Revision: http://reviews.llvm.org/D43043

llvm-svn: 324928
2018-02-12 19:45:54 +00:00
Adrian Prantl 8c59921ca3 Add DWARF for discriminated unions
n Rust, an enum that carries data in the variants is, essentially, a
discriminated union. Furthermore, the Rust compiler will perform
space optimizations on such enums in some situations. Previously,
DWARF for these constructs was emitted using a hack (a magic field
name); but this approach stopped working when more space optimizations
were added in https://github.com/rust-lang/rust/pull/45225.

This patch changes LLVM to allow discriminated unions to be
represented in DWARF. It adds createDiscriminatedUnionType and
createDiscriminatedMemberType to DIBuilder and then arranges for this
to be emitted using DWARF's DW_TAG_variant_part and DW_TAG_variant.

Note that DWARF requires that a discriminated union be represented as
a structure with a variant part. However, as Rust only needs to emit
pure discriminated unions, this is what I chose to expose on
DIBuilder.

Patch by Tom Tromey!

Differential Revision: https://reviews.llvm.org/D42082

llvm-svn: 324426
2018-02-06 23:45:59 +00:00
Daniel Neilson 551a4d6557 Add IRBuilder API to create memcpy/memmove calls with differing source and dest alignments
Summary:
  This change is step two in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. Steps:

Step 1) Remove alignment parameter and create alignment parameter attributes for
   memcpy/memmove/memset. ( rL322965 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
   source and dest alignments.
Step 3) Update Clang to use the new IRBuilder API.
Step 4) Update Polly to use the new IRBuilder API.
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
        and those that use use MemIntrinsicInst::[get|set]Alignment() to use
        getDestAlignment() and getSourceAlignment() instead.
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
        MemIntrinsicInst::[get|set]Alignment() methods.

Reference
   http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html
   http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html

llvm-svn: 323597
2018-01-27 17:59:10 +00:00
Sander de Smalen fdf40917d9 [Metadata] Extend 'count' field of DISubrange to take a metadata node
Summary:
This patch extends the DISubrange 'count' field to take either a
(signed) constant integer value or a reference to a DILocalVariable
or DIGlobalVariable.

This is patch [1/3] in a series to extend LLVM's DISubrange Metadata
node to support debugging of C99 variable length arrays and vectors with
runtime length like the Scalable Vector Extension for AArch64. It is
also a first step towards representing more complex cases like arrays
in Fortran.

Reviewers: echristo, pcc, aprantl, dexonsmith, clayborg, kristof.beyls, dblaikie

Reviewed By: aprantl

Subscribers: rnk, probinson, fhahn, aemerson, rengolin, JDevlieghere, llvm-commits

Differential Revision: https://reviews.llvm.org/D41695

llvm-svn: 323313
2018-01-24 09:56:07 +00:00
Yaxun Liu d0820433b1 Verifier: fix bug treating debug info issue as non-debug info issue
Normally when llvm-as sees only debug info errors in LLVM assembly, it simply
drops the debug info and outputs a valid LLVM bitcode and returns 0.

There is a bug in LLVM verifier which incorrectly treats a debug info error
as non-debug info error, which causes llvm-as returns 1 even though llvm-as
can drop the invalid debug info and outputs a valid LLVM bitcode.

This patch fixes that.

Differential Revision: https://reviews.llvm.org/D42391

llvm-svn: 323216
2018-01-23 16:11:15 +00:00
Daniel Neilson 1e68724d24 Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1)
Summary:
 This is a resurrection of work first proposed and discussed in Aug 2015:
   http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html
and initially landed (but then backed out) in Nov 2015:
   http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html

 The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument
which is required to be a constant integer. It represents the alignment of the
dest (and source), and so must be the minimum of the actual alignment of the
two.

 This change is the first in a series that allows source and dest to each
have their own alignments by using the alignment attribute on their arguments.

 In this change we:
1) Remove the alignment argument.
2) Add alignment attributes to the source & dest arguments. We, temporarily,
   require that the alignments for source & dest be equal.

 For example, code which used to read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false)
will now read
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false)

 Downstream users may have to update their lit tests that check for
@llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script
may help with updating the majority of your tests, but it does not catch all possible
patterns so some manual checking and updating will be required.

s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g
s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g

 The remaining changes in the series will:
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
   source and dest alignments.
Step 3) Update Clang to use the new IRBuilder API.
Step 4) Update Polly to use the new IRBuilder API.
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
        and those that use use MemIntrinsicInst::[get|set]Alignment() to use
        getDestAlignment() and getSourceAlignment() instead.
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
        MemIntrinsicInst::[get|set]Alignment() methods.

Reviewers: pete, hfinkel, lhames, reames, bollu

Reviewed By: reames

Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits

Differential Revision: https://reviews.llvm.org/D41675

llvm-svn: 322965
2018-01-19 17:13:12 +00:00
Rafael Espindola 9fbc040599 Make GlobalValues with non-default visibilility dso_local.
This is similar to r322317, but for visibility. It is not as neat
because we have to special case extern_weak.

The idea is the same as the previous change, make the transition to
explicit dso_local easier for the frontends. With this they only have
to add dso_local to symbols where we need some external information to
decide if it is dso_local (like it being part of an ELF executable).

llvm-svn: 322806
2018-01-18 02:08:23 +00:00
Daniel Neilson 2409d24201 [NFC] Change MemIntrinsicInst::setAlignment() to take an unsigned instead of a Constant
Summary:
 In preparation for https://reviews.llvm.org/D41675 this NFC changes this
prototype of MemIntrinsicInst::setAlignment() to accept an unsigned instead
of a Constant.

llvm-svn: 322403
2018-01-12 21:33:37 +00:00
Rafael Espindola e4b0231c63 Make internal/private GVs implicitly dso_local.
While updating clang tests for having clang set dso_local I noticed
that:

- There are *a lot* of tests to update.
- Many of the updates are redundant.

They are redundant because a GV is "obviously dso_local". This patch
starts formalizing that a bit by requiring that internal and private
GVs be dso_local too. Since they all are, we don't have to print
dso_local to the textual representation, making it a bit more compact
and easier to read.

llvm-svn: 322317
2018-01-11 22:15:05 +00:00
Paul Robinson cc9c8b95bd Tighten up DIFile verifier for checksums
Differential Revision: https://reviews.llvm.org/D41965

llvm-svn: 322314
2018-01-11 22:03:43 +00:00
Easwaran Raman bdf20261d8 Add a pass to generate synthetic function entry counts.
Summary:
This pass synthesizes function entry counts by traversing the callgraph
and using the relative block frequencies of the callsites. The intended
use of these counts is in inlining to determine hot/cold callsites in
the absence of profile information.

The pass is split into two files with the code that propagates the
counts in a callgraph in a Utils file. I plan to add support for
propagation in the thinlto link phase and the propagation code will be
shared and hence this split. I did not add support to the old PM since
hot callsite determination in inlining is not possible in old PM
(although we could use hot callee heuristic with synthetic counts in the
old PM it is not worth the effort tuning it)

Reviewers: davidxl, silvas

Subscribers: mgorny, mehdi_amini, llvm-commits

Differential Revision: https://reviews.llvm.org/D41604

llvm-svn: 322110
2018-01-09 19:39:35 +00:00
Adrian Prantl a29aac7b77 Debug Info: Support DW_AT_calling_convention on composite types.
This implements the DWARF 5 feature described at
http://www.dwarfstd.org/ShowIssue.php?issue=141215.1

This allows a consumer to understand whether a composite data type is
trivially copyable and thus should be passed by value instead of by
reference. The canonical example is being able to distinguish the
following two types:

  // S is not trivially copyable because of the explicit destructor.
  struct S {
     ~S() {}
  };

  // T is a POD type.
  struct T {
     ~T() = default;
  };

This patch adds two new (DI)flags to LLVM metadata: TypePassByValue
and TypePassByReference.

<rdar://problem/36034922>
Differential Revision: https://reviews.llvm.org/D41743

llvm-svn: 321844
2018-01-05 01:13:37 +00:00
Benjamin Kramer c7fc81e659 Use phi ranges to simplify code. No functionality change intended.
llvm-svn: 321585
2017-12-30 15:27:33 +00:00
Ivan A. Kosarev 422a380a3e [IR] Support the new TBAA metadata format in IR verifier
Differential Revision: https://reviews.llvm.org/D40438

llvm-svn: 321007
2017-12-18 18:46:44 +00:00
Igor Laevsky 753395fa0a [Verifier] Check that GEP indexes has correct types
Differential Revision: https://reviews.llvm.org/D40391

llvm-svn: 320680
2017-12-14 09:33:58 +00:00
Michael Zolotukhin f05cb4374d Remove redundant includes from lib/IR.
llvm-svn: 320622
2017-12-13 21:30:52 +00:00
Evgeniy Stepanov c667c1f47a Hardware-assisted AddressSanitizer (llvm part).
Summary:
This is LLVM instrumentation for the new HWASan tool. It is basically
a stripped down copy of ASan at this point, w/o stack or global
support. Instrumenation adds a global constructor + runtime callbacks
for every load and store.

HWASan comes with its own IR attribute.

A brief design document can be found in
clang/docs/HardwareAssistedAddressSanitizerDesign.rst (submitted earlier).

Reviewers: kcc, pcc, alekseyshl

Subscribers: srhines, mehdi_amini, mgorny, javed.absar, eraman, llvm-commits, hiraditya

Differential Revision: https://reviews.llvm.org/D40932

llvm-svn: 320217
2017-12-09 00:21:41 +00:00
Adrian Prantl 3e0e1d0934 Move getVariableSize from Verifier.cpp into DIVariable::getSize() (NFC)
llvm-svn: 319125
2017-11-28 00:57:51 +00:00
Vedant Kumar fb15180054 [Verifier] Remove the -verify-debug-info cl::opt
This cl::opt has been dead for a while. It's no longer possible to run
the verifier without also verifying debug info.

llvm-svn: 317288
2017-11-02 23:44:20 +00:00
Daniel Neilson f9c7d29c77 Create instruction classes for identifying any atomicity of memory intrinsic. (NFC)
Summary:
For reference, see: http://lists.llvm.org/pipermail/llvm-dev/2017-August/116589.html

This patch fleshes out the instruction class hierarchy with respect to atomic and
non-atomic memory intrinsics. With this change, the relevant part of the class
hierarchy becomes:

IntrinsicInst
  -> MemIntrinsicBase (methods-only class)
    -> MemIntrinsic (non-atomic intrinsics)
      -> MemSetInst
      -> MemTransferInst
        -> MemCpyInst
        -> MemMoveInst
    -> AtomicMemIntrinsic (atomic intrinsics)
      -> AtomicMemSetInst
      -> AtomicMemTransferInst
        -> AtomicMemCpyInst
        -> AtomicMemMoveInst
    -> AnyMemIntrinsic (both atomicities)
      -> AnyMemSetInst
      -> AnyMemTransferInst
        -> AnyMemCpyInst
        -> AnyMemMoveInst

This involves some class renaming:
    ElementUnorderedAtomicMemCpyInst -> AtomicMemCpyInst
    ElementUnorderedAtomicMemMoveInst -> AtomicMemMoveInst
    ElementUnorderedAtomicMemSetInst -> AtomicMemSetInst
A script for doing this renaming in downstream trees is included below.

An example of where the Any* classes should be used in LLVM is when reasoning
about the effects of an instruction (ex: aliasing).

---
Script for renaming AtomicMem* classes:
PREFIXES="[<,([:space:]]"
CLASSES="MemIntrinsic|MemTransferInst|MemSetInst|MemMoveInst|MemCpyInst"
SUFFIXES="[;)>,[:space:]]"

REGEX="(${PREFIXES})ElementUnorderedAtomic(${CLASSES})(${SUFFIXES})"
REGEX2="visitElementUnorderedAtomic(${CLASSES})"

FILES=$( grep -E "(${REGEX}|${REGEX2})" -r . | tr ':' ' ' | awk '{print $1}' | sort | uniq )

SED_SCRIPT="s~${REGEX}~\1Atomic\2\3~g"
SED_SCRIPT2="s~${REGEX2}~visitAtomic\1~g"

for f in $FILES; do
    echo "Processing: $f"
    sed  -i ".bak" -E "${SED_SCRIPT};${SED_SCRIPT2};${EA_SED_SCRIPT};${EA_SED_SCRIPT2}" $f
done

Reviewers: sanjoy, deadalnix, apilipenko, anna, skatkov, mkazantsev

Reviewed By: sanjoy

Subscribers: hfinkel, jholewinski, arsenm, sdardis, nhaehnle, JDevlieghere, javed.absar, llvm-commits

Differential Revision: https://reviews.llvm.org/D38419

llvm-svn: 316950
2017-10-30 19:51:48 +00:00
Sean Fertile c70d28bff5 Represent runtime preemption in the IR.
Currently we do not represent runtime preemption in the IR, which has several
drawbacks:

  1) The semantics of GlobalValues differ depending on the object file format
     you are targeting (as well as the relocation-model and -fPIE value).
  2) We have no way of disabling inlining of run time interposable functions,
     since in the IR we only know if a function is link-time interposable.
     Because of this llvm cannot support elf-interposition semantics.
  3) In LTO builds of executables we will have extra knowledge that a symbol
     resolved to a local definition and can't be preemptable, but have no way to
     propagate that knowledge through the compiler.

This patch adds preemptability specifiers to the IR with the following meaning:

dso_local --> means the compiler may assume the symbol will resolve to a
 definition within the current linkage unit and the symbol may be accessed
 directly even if the definition is not within this compilation unit.

dso_preemptable --> means that the compiler must assume the GlobalValue may be
replaced with a definition from outside the current linkage unit at runtime.

To ease transitioning dso_preemptable is treated as a 'default' in that
low-level codegen will still do the same checks it did previously to see if a
symbol should be accessed indirectly. Eventually when IR producers emit the
specifiers on all Globalvalues we can change dso_preemptable to mean 'always
access indirectly', and remove the current logic.

Differential Revision: https://reviews.llvm.org/D20217

llvm-svn: 316668
2017-10-26 15:00:26 +00:00
Adrian Prantl 5a82f0a470 Verifier: Ignore CUs pulled in by ODR-uniqued types.
When more than one Module is imported into the same context, such as during
an LTO build before linking the modules, ODR type uniquing may cause types
to point to a different CU. This check does not make sense in this case.

This fixes the error reported in PR34944.

https://bugs.llvm.org/show_bug.cgi?id=34944
rdar://problem/34940685

This reapplies a cleaner implementation of r316049.

llvm-svn: 316052
2017-10-18 01:11:01 +00:00
Adrian Prantl fe8226fd94 Revert "Verifier: Ignore CUs pulled in by ODR-uniqued types."
This reverts commit r316049.

llvm-svn: 316050
2017-10-18 00:54:31 +00:00
Adrian Prantl f9a1cf6dcc Verifier: Ignore CUs pulled in by ODR-uniqued types.
When more than one Module is imported into the same context, such as during
an LTO build before linking the modules, ODR type uniquing may cause types
to point to a different CU. This check does not make sense in this case.

This fixes the error reported in PR34944.

https://bugs.llvm.org/show_bug.cgi?id=34944
rdar://problem/34940685

llvm-svn: 316049
2017-10-18 00:49:31 +00:00
Adrian Prantl a8b2ddbde4 Move the stripping of invalid debug info from the Verifier to AutoUpgrade.
This came out of a recent discussion on llvm-dev
(https://reviews.llvm.org/D38042). Currently the Verifier will strip
the debug info metadata from a module if it finds the dbeug info to be
malformed. This feature is very valuable since it allows us to improve
the Verifier by making it stricter without breaking bcompatibility,
but arguable the Verifier pass should not be modifying the IR. This
patch moves the stripping of broken debug info into AutoUpgrade
(UpgradeDebugInfo to be precise), which is a much better location for
this since the stripping of malformed (i.e., produced by older, buggy
versions of Clang) is a (harsh) form of AutoUpgrade.

This change is mostly NFC in nature, the one big difference is the
behavior when LLVM module passes are introducing malformed debug
info. Prior to this patch, a NoAsserts build would have printed a
warning and stripped the debug info, after this patch the Verifier
will report a fatal error. I believe this behavior is actually more
desirable anyway.

Differential Revision: https://reviews.llvm.org/D38184

llvm-svn: 314699
2017-10-02 18:31:29 +00:00
Davide Italiano 2122119150 [Verifier] Stop accepting broken DIGlobalVariable(s).
The code wasn't yelling at the user when there's a reference
from a DIGlobalVariableExpression. Thanks to Adrian for the
reduced testcase. Fixes PR34672.

llvm-svn: 314069
2017-09-24 01:06:35 +00:00
Reid Kleckner 8db6260098 Fix uninteneded fallthrough detected by GCC warning
llvm-svn: 314043
2017-09-22 23:19:52 +00:00
Reid Kleckner 0fe506bc5e Re-land r313825: "[IR] Add llvm.dbg.addr, a control-dependent version of llvm.dbg.declare"
The fix is to avoid invalidating our insertion point in
replaceDbgDeclare:
     Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
+    if (DII == InsertBefore)
+      InsertBefore = &*std::next(InsertBefore->getIterator());
     DII->eraseFromParent();

I had to write a unit tests for this instead of a lit test because the
use list order matters in order to trigger the bug.

The reduced C test case for this was:
  void useit(int*);
  static inline void inlineme() {
    int x[2];
    useit(x);
  }
  void f() {
    inlineme();
    inlineme();
  }

llvm-svn: 313905
2017-09-21 19:52:03 +00:00
Daniel Jasper 7d2f38d600 Revert r313825: "[IR] Add llvm.dbg.addr, a control-dependent version of llvm.dbg.declare"
.. as well as the two subsequent changes r313826 and r313875.

This leads to segfaults in combination with ASAN. Will forward repro
instructions to the original author (rnk).

llvm-svn: 313876
2017-09-21 12:07:33 +00:00
Reid Kleckner 3f547e87b2 [IR] Add llvm.dbg.addr, a control-dependent version of llvm.dbg.declare
Summary:
This implements the design discussed on llvm-dev for better tracking of
variables that live in memory through optimizations:
  http://lists.llvm.org/pipermail/llvm-dev/2017-September/117222.html

This is tracked as PR34136

llvm.dbg.addr is intended to be produced and used in almost precisely
the same way as llvm.dbg.declare is today, with the exception that it is
control-dependent. That means that dbg.addr should always have a
position in the instruction stream, and it will allow passes that
optimize memory operations on local variables to insert llvm.dbg.value
calls to reflect deleted stores. See SourceLevelDebugging.rst for more
details.

The main drawback to generating DBG_VALUE machine instrs is that they
usually cause LLVM to emit a location list for DW_AT_location. The next
step will be to teach DwarfDebug.cpp how to recognize more DBG_VALUE
ranges as not needing a location list, and possibly start setting
DW_AT_start_offset for variables whose lifetimes begin mid-scope.

Reviewers: aprantl, dblaikie, probinson

Subscribers: eraman, hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D37768

llvm-svn: 313825
2017-09-20 21:52:33 +00:00
Reid Kleckner 3cdf713fd2 Move duplicate helpers from DbgValueInst / DbgDeclareInst to DbgInfoIntrinsic
NFC

llvm-svn: 312754
2017-09-07 22:46:24 +00:00
Adrian Prantl 28454efc67 Revert "Revert r312139 "Verifier: Verify the correctness of fragment expressions attached to globals.""
This reverts commit r312182 after fixing PR34390.

llvm-svn: 312197
2017-08-31 00:07:33 +00:00
Hans Wennborg 76794daf05 Revert r312139 "Verifier: Verify the correctness of fragment expressions attached to globals."
This caused PR34390.

llvm-svn: 312182
2017-08-30 22:41:27 +00:00
Adrian Prantl 8550e88eb7 Verifier: Verify the correctness of fragment expressions attached to globals.
llvm-svn: 312139
2017-08-30 16:49:21 +00:00
Davide Italiano 26053818a3 [Verifier] Diagnose invalid DIType references instead of crashing.
Fixes PR34325.

llvm-svn: 311805
2017-08-25 22:08:15 +00:00
Wei Ding a131d3fb29 Add ‘llvm.experimental.constrained.fma‘ Intrinsic.
Differential Revision: http://reviews.llvm.org/D36335

llvm-svn: 311629
2017-08-24 04:18:24 +00:00
Adrian Prantl 7db6b5e2b3 Retire the llvm.dbg.mir hack after r311594.
llvm-svn: 311610
2017-08-23 22:02:36 +00:00
Adrian Prantl 33aa8acb40 Add a Verifier check for DILocation's scopes.
Found via https://bugs.llvm.org/show_bug.cgi?id=33997.

llvm-svn: 311608
2017-08-23 21:52:24 +00:00
Davide Italiano 903fd3ea4e [Verifier] Avoid visiting DIGlobalVariables twice.
We currently visit them twice.
Once, through `visitMDNode()` -> (the code generated by)
  `../include/llvm/IR/Metadata.def:109` -> `visitDIGlobalVariable()`
Then, through `visitMDNode()` -> `visitDIGlobalVariableExpression()`
  -> `visitDIGlobalVariable()`

This results in verification failures printed twice, e.g.:

  $ ./opt -verify ../../test/DebugInfo/pr34186.ll
  missing global variable type
  !4 = distinct !DIGlobalVariable(name: "pat", scope: !0,
    file: !1, line: 27, isLocal: true, isDefinition: true)
  missing global variable type
  !4 = distinct !DIGlobalVariable(name: "pat", scope: !0,
    file: !1, line: 27, isLocal: true, isDefinition: true)
  ./opt: ../../test/DebugInfo/pr34186.ll: error: input module is broken!

The patch removes one call so we ensure each GV is visited exactly once.

Differential Revision:  https://reviews.llvm.org/D36797

llvm-svn: 311081
2017-08-17 11:32:21 +00:00
Davide Italiano cd21378ff6 [Verifier] Reject globals without a type associated.
llvm-svn: 311012
2017-08-16 15:16:33 +00:00
Andrew Kaylor 53a5fbb45f Add strictfp attribute to prevent unwanted optimizations of libm calls
Differential Revision: https://reviews.llvm.org/D34163

llvm-svn: 310885
2017-08-14 21:15:13 +00:00
Adrian Prantl 032d2381bf Remove PrologEpilogInserter's usage of DBG_VALUE's offset field
In the last half-dozen commits to LLVM I removed code that became dead
after removing the offset parameter from llvm.dbg.value gradually
proceeding from IR towards the backend. Before I can move on to
DwarfDebug and friends there is one last side-called offset I need to
remove:  This patch modifies PrologEpilogInserter's use of the
DBG_VALUE's offset argument to use a DIExpression instead. Because the
PrologEpilogInserter runs at the Machine level I had to play a little
trick with a named llvm.dbg.mir node to get the DIExpressions to print
in MIR dumps (which print the llvm::Module followed by the
MachineFunction dump).

I also had to add rudimentary DwarfExpression support to CodeView and
as a side-effect also fixed a bug (CodeViewDebug::collectVariableInfo
was supposed to give up on variables with complex DIExpressions, but
would fail to do so for fragments, which are also modeled as
DIExpressions).

With this last holdover removed we will have only one canonical way of
representing offsets to debug locations which will simplify the code
in DwarfDebug (and future versions of CodeViewDebug once it starts
handling more complex expressions) and make it easier to reason about.

This patch is NFC-ish: All test case changes are for assembler
comments and the binary output does not change.

rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D36125

llvm-svn: 309751
2017-08-01 21:45:24 +00:00
Daniel Neilson 965613ef1b Add element atomic memset intrinsic
Summary: Continuing the work from https://reviews.llvm.org/D33240, this change introduces an element unordered-atomic memset intrinsic. This intrinsic is essentially memset with the implementation requirement that all stores used for the assignment are done with unordered-atomic stores of a given element size.

Reviewers: eli.friedman, reames, mkazantsev, skatkov

Reviewed By: reames

Subscribers: jfb, dschuff, sbc100, jgravelle-google, aheejin, efriedma, llvm-commits

Differential Revision: https://reviews.llvm.org/D34885

llvm-svn: 307854
2017-07-12 21:57:23 +00:00
Daniel Neilson 57226ef33c Add element atomic memmove intrinsic
Summary: Continuing the work from https://reviews.llvm.org/D33240, this change introduces an element unordered-atomic memmove intrinsic. This intrinsic is essentially memmove with the implementation requirement that all loads/stores used for the copy are done with unordered-atomic loads/stores of a given element size.

Reviewers: eli.friedman, reames, mkazantsev, skatkov

Reviewed By: reames

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D34884

llvm-svn: 307796
2017-07-12 15:25:26 +00:00
Konstantin Zhuravlyov bb80d3e1d3 Enhance synchscope representation
OpenCL 2.0 introduces the notion of memory scopes in atomic operations to
  global and local memory. These scopes restrict how synchronization is
  achieved, which can result in improved performance.

  This change extends existing notion of synchronization scopes in LLVM to
  support arbitrary scopes expressed as target-specific strings, in addition to
  the already defined scopes (single thread, system).

  The LLVM IR and MIR syntax for expressing synchronization scopes has changed
  to use *syncscope("<scope>")*, where <scope> can be "singlethread" (this
  replaces *singlethread* keyword), or a target-specific name. As before, if
  the scope is not specified, it defaults to CrossThread/System scope.

  Implementation details:
    - Mapping from synchronization scope name/string to synchronization scope id
      is stored in LLVM context;
    - CrossThread/System and SingleThread scopes are pre-defined to efficiently
      check for known scopes without comparing strings;
    - Synchronization scope names are stored in SYNC_SCOPE_NAMES_BLOCK in
      the bitcode.

Differential Revision: https://reviews.llvm.org/D21723

llvm-svn: 307722
2017-07-11 22:23:00 +00:00
Craig Topper 95d2347ae1 [IR] Make use of Type::isPtrOrPtrVectorTy/isIntOrIntVectorTy/isFPOrFPVectorTy to shorten code. NFC
llvm-svn: 307491
2017-07-09 07:04:00 +00:00
Craig Topper 4584476cac [IR] Use CmpInst::isFPPredicate/isIntPredicate in a few other places. NFC
llvm-svn: 307224
2017-07-05 23:35:46 +00:00
Daniel Neilson 3faabbbe85 [Atomics] Rename and change prototype for atomic memcpy intrinsic
Summary:

Background: http://lists.llvm.org/pipermail/llvm-dev/2017-May/112779.html

This change is to alter the prototype for the atomic memcpy intrinsic. The prototype itself is being changed to more closely resemble the semantics and parameters of the llvm.memcpy intrinsic -- to ease later combination of the llvm.memcpy and atomic memcpy intrinsics. Furthermore, the name of the atomic memcpy intrinsic is being changed to make it clear that it is not a generic atomic memcpy, but specifically a memcpy is unordered atomic.

Reviewers: reames, sanjoy, efriedma

Reviewed By: reames

Subscribers: mzolotukhin, anna, llvm-commits, skatkov

Differential Revision: https://reviews.llvm.org/D33240

llvm-svn: 305558
2017-06-16 14:43:59 +00:00
Peter Collingbourne 89061b2224 IR: Replace the "Linker Options" module flag with "llvm.linker.options" named metadata.
The new metadata is easier to manipulate than module flags.

Differential Revision: https://reviews.llvm.org/D31349

llvm-svn: 305227
2017-06-12 20:10:48 +00:00
Zachary Turner 264b5d9e88 Move Object format code to lib/BinaryFormat.
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.

Differential Revision: https://reviews.llvm.org/D33843

llvm-svn: 304864
2017-06-07 03:48:56 +00:00
Chandler Carruth 6bda14b313 Sort the remaining #include lines in include/... and lib/....
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.

I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.

This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.

Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).

llvm-svn: 304787
2017-06-06 11:49:48 +00:00
Andrew Kaylor f466001eef Add constrained intrinsics for some libm-equivalent operations
Differential revision: https://reviews.llvm.org/D32319

llvm-svn: 303922
2017-05-25 21:31:00 +00:00
Reid Kleckner 8bf67fe98f [IR] Switch AttributeList to use an array for O(1) access
Summary:
Before this change, AttributeLists stored a pair of index and
AttributeSet. This is memory efficient if most arguments do not have
attributes. However, it requires doing a search over the pairs to test
an argument or function attribute. Profiling shows that this loop was
0.76% of the time in 'opt -O2' of sqlite3.c, because LLVM constantly
tests values for nullability.

This was worth about 2.5% of mid-level optimization cycles on the
sqlite3 amalgamation. Here are the full perf results:
https://reviews.llvm.org/P7995

Here are just the before and after cycle counts:
```
$ perf stat -r 5 ./opt_before -O2 sqlite3.bc -o /dev/null
    13,274,181,184      cycles                    #    3.047 GHz                      ( +-  0.28% )
$ perf stat -r 5 ./opt_after -O2 sqlite3.bc -o /dev/null
    12,906,927,263      cycles                    #    3.043 GHz                      ( +-  0.51% )
```

This patch *does not* change the indices used to query attributes, as
requested by reviewers. Tracking whether an index is usable for array
indexing is a huge pain that affects many of the internal APIs, so it
would be good to come back later and do a cleanup to remove this
internal adjustment.

Reviewers: pete, chandlerc

Subscribers: javed.absar, llvm-commits

Differential Revision: https://reviews.llvm.org/D32819

llvm-svn: 303654
2017-05-23 17:01:48 +00:00
Teresa Johnson 2db1369c1f Support for taking the max of module flags when linking, use for PIE/PIC
Summary:
Add Max ModFlagBehavior, which can be used to take the max of two
module flag values when merging modules. Use it for the PIE and PIC
levels.

This avoids an error when we try to import from a module built -fpic
into a module built -fPIC, for example. For both PIE and PIC levels,
this will be legal, since the code generation gets more conservative
as the level is increased. Therefore we can take the max instead of
somehow trying to block importing between modules compiled with
different levels.

Reviewers: tmsriram, pcc

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D33418

llvm-svn: 303590
2017-05-23 00:08:00 +00:00
Matthias Braun 57fd12db0c Fix breakage after r303461
- Improve wchar_t size predicitions based on target triple.
- Be less strict in wchar_t size verifier.

llvm-svn: 303477
2017-05-20 01:28:52 +00:00
Matthias Braun 89f3bcf0b5 Verifier: Check wchar_size module flag.
Differential Revision: https://reviews.llvm.org/D32974

llvm-svn: 303460
2017-05-19 22:37:01 +00:00
Adrian Prantl c10d0e5ccd Make it illegal for two Functions to point to the same DISubprogram
As recently discussed on llvm-dev [1], this patch makes it illegal for
two Functions to point to the same DISubprogram and updates
FunctionCloner to also clone the debug info of a function to conform
to the new requirement. To simplify the implementation it also factors
out the creation of inlineAt locations from the Inliner into a
general-purpose utility in DILocation.

[1] http://lists.llvm.org/pipermail/llvm-dev/2017-May/112661.html
<rdar://problem/31926379>

Differential Revision: https://reviews.llvm.org/D32975

This reapplies r302469 with a fix for a bot failure (reparentDebugInfo
now checks for the case the orig and new function are identical).

llvm-svn: 302576
2017-05-09 19:47:37 +00:00
Hans Wennborg 66fb0d9768 Revert r302469 "Make it illegal for two Functions to point to the same DISubprogram"
This caused PR32977.

Original commit message:

> Make it illegal for two Functions to point to the same DISubprogram
>
> As recently discussed on llvm-dev [1], this patch makes it illegal for
> two Functions to point to the same DISubprogram and updates
> FunctionCloner to also clone the debug info of a function to conform
> to the new requirement. To simplify the implementation it also factors
> out the creation of inlineAt locations from the Inliner into a
> general-purpose utility in DILocation.
>
> [1] http://lists.llvm.org/pipermail/llvm-dev/2017-May/112661.html
> <rdar://problem/31926379>
>
> Differential Revision: https://reviews.llvm.org/D32975

llvm-svn: 302533
2017-05-09 14:44:15 +00:00