Because memory intrinsics are handled differently than other calls, we need to
check them for tail call eligiblity in the legalizer. This allows us to still
inline them when it's beneficial to do so, but also tail call when possible.
This adds simple tail calling support for when the intrinsic is followed by a
return.
It ports the attribute checks from `TargetLowering::isInTailCallPosition` into
a similarly-named function in LegalizerHelper.cpp. The target-specific
`isUsedByReturnOnly` hook is not ported here.
Update tailcall-mem-intrinsics.ll to show that GlobalISel can now tail call
memory intrinsics.
Update legalize-memcpy-et-al.mir to have a case where we don't tail call.
Differential Revision: https://reviews.llvm.org/D67566
llvm-svn: 371893
This adds support for tail calling callees with varargs, equivalent to how it
is done in AArch64ISelLowering.
This only works for sibling calls, and does not add the necessary support for
musttail with varargs. (See r345641 for equivalent ISelLowering support.) This
should be implemented when we stop falling back on musttail.
Update call-translator-tail-call.ll to show that we can now tail call varargs.
Differential Revision: https://reviews.llvm.org/D67518
llvm-svn: 371868
Swiftself uses a callee-saved register. We can tail call when the register used
in the caller and callee is the same.
This behaviour is equivalent to that in `TargetLowering::parametersInCSRMatch`.
Update call-translator-tail-call.ll to verify that we can do this. When we
support inline assembly, we can write a check similar to the one in the
general swiftself.ll. For now, we need to verify that we get the correct COPY
instruction after call lowering.
Differential Revision: https://reviews.llvm.org/D67511
llvm-svn: 371788
This adds support for lowering sibling calls with outgoing arguments.
e.g
```
define void @foo(i32 %a)
```
Support is ported from AArch64ISelLowering's `isEligibleForTailCallOptimization`.
The only thing that is missing is a full port of
`TargetLowering::parametersInCSRMatch`. So, if we're using swiftself,
we'll never tail call.
- Rename `analyzeCallResult` to `analyzeArgInfo`, since the function is now used
for both outgoing and incoming arguments
- Teach `OutgoingArgHandler` about tail calls. Tail calls use frame indices for
stack arguments.
- Teach `lowerFormalArguments` to set the bytes in the caller's stack argument
area. This is used later to check if the tail call's parameters will fit on
the caller's stack.
- Add `areCalleeOutgoingArgsTailCallable` to perform the eligibility check on
the callee's outgoing arguments.
For testing:
- Update call-translator-tail-call to verify that we can now tail call with
outgoing arguments, use G_FRAME_INDEX for stack arguments, and respect the
size of the caller's stack
- Remove GISel-specific check lines from speculation-hardening.ll, since GISel
now tail calls like the other selectors
- Add a GISel test line to tailcall-string-rvo.ll since we can tail call in that
test now
- Add a GISel test line to tailcall_misched_graph.ll since we tail call there
now. Add specific check lines for GISel, since the debug output from the
machine-scheduler differs with GlobalISel. The dependency still holds, but
the output comes out in a different order.
Differential Revision: https://reviews.llvm.org/D67471
llvm-svn: 371780
This is the main CodeGen patch to support the arm64_32 watchOS ABI in LLVM.
FastISel is mostly disabled for now since it would generate incorrect code for
ILP32.
llvm-svn: 371722
Before, we only checked the callee for swifterror. However, we should also be
checking the caller to see if it has a swifterror parameter.
Since we don't currently handle outgoing arguments, this didn't show up in the
swifterror.ll testcase.
Also, remove the swifterror checks from call-translator-tail-call.ll, since
they are covered by the existing swifterror testing. Better to have it all in
one place.
Differential Revision: https://reviews.llvm.org/D67465
llvm-svn: 371692
This fixes a crash in tail call translation caused by assume and lifetime_end
intrinsics.
It's possible to have instructions other than a return after a tail call which
will still have `Analysis::isInTailCallPosition` return true. (Namely,
lifetime_end and assume intrinsics.)
If we emit a tail call, we should stop translating instructions in the block.
Otherwise, we can end up emitting an extra return, or dead instructions in
general. This makes the verifier unhappy, and is generally unfortunate for
codegen.
This also removes the code from AArch64CallLowering that checks if we have a
tail call when lowering a return. This is covered by the new code now.
Also update call-translator-tail-call.ll to show that we now properly tail call
in the presence of lifetime_end and assume.
Differential Revision: https://reviews.llvm.org/D67415
llvm-svn: 371572
Add support for sibcalling calls whose calling convention differs from the
caller's.
- Port over `CCState::resultsCombatible` from CallingConvLower.cpp into
CallLowering. This is used to verify that the way the caller and callee CC
handle incoming arguments matches up.
- Add `CallLowering::analyzeCallResult`. This is basically a port of
`CCState::AnalyzeCallResult`, but using `ArgInfo` rather than `ISD::InputArg`.
- Add `AArch64CallLowering::doCallerAndCalleePassArgsTheSameWay`. This checks
that the calling conventions are compatible, and that the caller and callee
preserve the same registers.
For testing:
- Update call-translator-tail-call.ll to show that we can now handle this.
- Add a GISel line to tailcall-ccmismatch.ll to show that we will not tail call
when the regmasks don't line up.
Differential Revision: https://reviews.llvm.org/D67361
llvm-svn: 371570
Just return once you emit the call, which is exactly what SelectionDAG does in
this situation.
Update call-translator-tail-call.ll.
Also update dllimport.ll to show that we tail call here in GISel again. Add
-verify-machineinstrs to the GISel line too, to defend against verifier
failures.
Differential revision: https://reviews.llvm.org/D67282
llvm-svn: 371425
-tailcallopt requires that we perform different stack adjustments than with
sibling calls. For example, the `@caller_to0_from8` function in
test/CodeGen/AArch64/tail-call.ll requires that we adjust SP. Without
-tailcallopt, this adjustment does not happen. With it, however, it is expected.
So, to ensure that adding sibling call support doesn't break -tailcallopt,
make CallLowering always fall back on possible tail calls when -tailcallopt
is passed in.
Update test/CodeGen/AArch64/tail-call.ll with a GlobalISel line to make sure
that we don't differ from the SDAG implementation at any point.
Differential Revision: https://reviews.llvm.org/D67245
llvm-svn: 371227
Recommit basic sibling call lowering (https://reviews.llvm.org/D67189)
The issue was that if you have a return type other than void, call lowering
will emit COPYs to get the return value after the call.
Disallow sibling calls other than ones that return void for now. Also
proactively disable swifterror tail calls for now, since there's a similar issue
with COPYs there.
Update call-translator-tail-call.ll to include test cases for each of these
things.
llvm-svn: 371114
This adds support for basic sibling call lowering in AArch64. The intent here is
to only handle tail calls which do not change the ABI (hence, sibling calls.)
At this point, it is very restricted. It does not handle
- Vararg calls.
- Calls with outgoing arguments.
- Calls whose calling conventions differ from the caller's calling convention.
- Tail/sibling calls with BTI enabled.
This patch adds
- `AArch64CallLowering::isEligibleForTailCallOptimization`, which is equivalent
to the same function in AArch64ISelLowering.cpp (albeit with the restrictions
above.)
- `mayTailCallThisCC` and `canGuaranteeTCO`, which are identical to those in
AArch64ISelLowering.cpp.
- `getCallOpcode`, which is exactly what it sounds like.
Tail/sibling calls are lowered by checking if they pass target-independent tail
call positioning checks, and checking if they satisfy
`isEligibleForTailCallOptimization`. If they do, then a tail call instruction is
emitted instead of a normal call. If we have a sibling call (which is always the
case in this patch), then we do not emit any stack adjustment operations. When
we go to lower a return, we check if we've already emitted a tail call. If so,
then we skip the return lowering.
For testing, this patch
- Adds call-translator-tail-call.ll to test which tail calls we currently lower,
which ones we don't, and which ones we shouldn't.
- Updates branch-target-enforcement-indirect-calls.ll to show that we fall back
as expected.
Differential Revision: https://reviews.llvm.org/D67189
........
This fails on EXPENSIVE_CHECKS builds due to a -verify-machineinstrs test failure in CodeGen/AArch64/dllimport.ll
llvm-svn: 371051
This adds support for basic sibling call lowering in AArch64. The intent here is
to only handle tail calls which do not change the ABI (hence, sibling calls.)
At this point, it is very restricted. It does not handle
- Vararg calls.
- Calls with outgoing arguments.
- Calls whose calling conventions differ from the caller's calling convention.
- Tail/sibling calls with BTI enabled.
This patch adds
- `AArch64CallLowering::isEligibleForTailCallOptimization`, which is equivalent
to the same function in AArch64ISelLowering.cpp (albeit with the restrictions
above.)
- `mayTailCallThisCC` and `canGuaranteeTCO`, which are identical to those in
AArch64ISelLowering.cpp.
- `getCallOpcode`, which is exactly what it sounds like.
Tail/sibling calls are lowered by checking if they pass target-independent tail
call positioning checks, and checking if they satisfy
`isEligibleForTailCallOptimization`. If they do, then a tail call instruction is
emitted instead of a normal call. If we have a sibling call (which is always the
case in this patch), then we do not emit any stack adjustment operations. When
we go to lower a return, we check if we've already emitted a tail call. If so,
then we skip the return lowering.
For testing, this patch
- Adds call-translator-tail-call.ll to test which tail calls we currently lower,
which ones we don't, and which ones we shouldn't.
- Updates branch-target-enforcement-indirect-calls.ll to show that we fall back
as expected.
Differential Revision: https://reviews.llvm.org/D67189
llvm-svn: 370996
On AArch64, s128 types have to be split into s64 GPRs when passed as arguments.
This change adds the generic support in call lowering for dealing with multiple
registers, for incoming and outgoing args.
Support for splitting for return types not yet implemented.
Differential Revision: https://reviews.llvm.org/D66180
llvm-svn: 370822
These are currently translated as normal functions calls in AArch64.
Until we have proper tail call lowering, we shouldn't translate these.
Differential Revision: https://reviews.llvm.org/D66842
llvm-svn: 370225
I've now needed to add an extra parameter to this call twice recently. Not only
is the signature getting extremely unwieldy, but just updating all of the
callsites and implementations is a pain. Putting the parameters in a struct
sidesteps both issues.
llvm-svn: 368408
Summary:
This will make it possible to improve IPRA by taking into account
register usage in indirect calls.
NFC yet; this is just laying the groundwork to start building
up patches to take advantage of the information for improved register
allocation.
Reviewers: aditya_nandakumar, volkan, qcolombet, arsenm, rovka, aemerson, paquette
Subscribers: sdardis, wdng, javed.absar, hiraditya, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65488
llvm-svn: 367476
Now that lowerCall and lowerFormalArgs have been refactored, we can
simplify splitToValueTypes.
Differential Revision: https://reviews.llvm.org/D63552
llvm-svn: 364513
Change the interface of CallLowering::lowerCall to accept several
virtual registers for each argument, instead of just one. This is a
follow-up to D46018.
CallLowering::lowerReturn was similarly refactored in D49660 and
lowerFormalArguments in D63549.
With this change, we no longer pack the virtual registers generated for
aggregates into one big lump before delegating to the target. Therefore,
the target can decide itself whether it wants to handle them as separate
pieces or use one big register.
ARM and AArch64 have been updated to use the passed in virtual registers
directly, which means we no longer need to generate so many
merge/extract instructions.
NFCI for AMDGPU, Mips and X86.
Differential Revision: https://reviews.llvm.org/D63551
llvm-svn: 364512
Change the interface of CallLowering::lowerCall to accept several
virtual registers for the call result, instead of just one. This is a
follow-up to D46018.
CallLowering::lowerReturn was similarly refactored in D49660 and
lowerFormalArguments in D63549.
With this change, we no longer pack the virtual registers generated for
aggregates into one big lump before delegating to the target. Therefore,
the target can decide itself whether it wants to handle them as separate
pieces or use one big register.
ARM and AArch64 have been updated to use the passed in virtual registers
directly, which means we no longer need to generate so many
merge/extract instructions.
NFCI for AMDGPU, Mips and X86.
Differential Revision: https://reviews.llvm.org/D63550
llvm-svn: 364511
Change the interface of CallLowering::lowerFormalArguments to accept
several virtual registers for each formal argument, instead of just one.
This is a follow-up to D46018.
CallLowering::lowerReturn was similarly refactored in D49660. lowerCall
will be refactored in the same way in follow-up patches.
With this change, we forward the virtual registers generated for
aggregates to CallLowering. Therefore, the target can decide itself
whether it wants to handle them as separate pieces or use one big
register. We also copy the pack/unpackRegs helpers to CallLowering to
facilitate this.
ARM and AArch64 have been updated to use the passed in virtual registers
directly, which means we no longer need to generate so many
merge/extract instructions.
AArch64 seems to have had a bug when lowering e.g. [1 x i8*], which was
put into a s64 instead of a p0. Added a test-case which illustrates the
problem more clearly (it crashes without this patch) and fixed the
existing test-case to expect p0.
AMDGPU has been updated to unpack into the virtual registers for
kernels. I think the other code paths fall back for aggregates, so this
should be NFC.
Mips doesn't support aggregates yet, so it's also NFC.
x86 seems to have code for dealing with aggregates, but I couldn't find
the tests for it, so I just added a fallback to DAGISel if we get more
than one virtual register for an argument.
Differential Revision: https://reviews.llvm.org/D63549
llvm-svn: 364510
Allow CallLowering::ArgInfo to contain more than one virtual register.
This is useful when passes split aggregates into several virtual
registers, but need to also provide information about the original type
to the call lowering. Used in follow-up patches.
Differential Revision: https://reviews.llvm.org/D63548
llvm-svn: 364509
Avoids using a plain unsigned for registers throughoug codegen.
Doesn't attempt to change every register use, just something a little
more than the set needed to build after changing the return type of
MachineOperand::getReg().
llvm-svn: 364191
swifterror marks an argument as a register pretending to be a pointer, so we
need a guaranteed mem2reg-like analysis of its uses. Fortunately most of the
infrastructure can be reused from the DAG world.
llvm-svn: 361608
After support for dealing with types that need to be extended in some way was
added in r358032 we didn't correctly handle <1 x T> return types. These types
don't have a GISel direct representation, instead we just see them as scalars.
When we need to pad them into <2 x T> types however we need to use a
G_BUILD_VECTOR instead of trying to do a G_CONCAT_VECTOR.
This fixes PR41738.
llvm-svn: 360068
required to be passed as different register types. E.g. <2 x i16> may need to
be passed as a larger <2 x i32> type, so formal arg lowering needs to be able
truncate it back. Likewise, when dealing with returns of these types, they need
to be widened in the appropriate way back.
Differential Revision: https://reviews.llvm.org/D60425
llvm-svn: 358032
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
Specifying X[8-15,18] registers as callee-saved is used to support
CONFIG_ARM64_LSE_ATOMICS in Linux kernel. As part of this patch we:
- use custom CSR list/mask when user specifies custom CSRs
- update Machine Register Info's list of CSRs with additional custom CSRs in
LowerCall and LowerFormalArguments.
Reviewers: srhines, nickdesaulniers, efriedma, javed.absar
Reviewed By: nickdesaulniers
Subscribers: kristof.beyls, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D52216
llvm-svn: 342824
Summary:
Reserving registers x1-7 is used to support CONFIG_ARM64_LSE_ATOMICS in Linux kernel. This change adds support for reserving registers x1 through x7.
Reviewers: javed.absar, phosek, srhines, nickdesaulniers, efriedma
Reviewed By: nickdesaulniers, efriedma
Subscribers: niravd, jfb, manojgupta, nickdesaulniers, jyknight, efriedma, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D48580
llvm-svn: 341706
r336120 resulted in falling back to SelectionDAG more often due to the G_STORE
MMOs not matching the vreg size. This fixes that by explicitly any-extending the
value.
llvm-svn: 336209
We currently don't any-extend vararg parameters before storing them to the stack
locations on Darwin. However, SelectionDAG however does this, and so user code
is in the wild which inadvertently relies on this extension. This can manifest
in cases where the value stored is (int)0, but the actual parameter is interpreted
by va_arg as a pointer, and so not extending to 64 bits causes the callee to
load additional undefined bits.
llvm-svn: 336120
Before we were relying on the any extend of the s1 to s32, but
for AAPCS we need to zero-extend it to at least s8.
Fixes PR36719
Differential Revision: https://reviews.llvm.org/D47425
llvm-svn: 333747
We currently handle all aggregates by creating one large LLT, and letting the
legalizer deal with splitting them up. However using this approach means that
we can't support big endian code correctly.
This patch changes the way that the IRTranslator deals with aggregate values,
by splitting them up into their constituent element values. To do this, parts
of the translator need to be modified to deal with multiple VRegs for a single
Value.
A new Value to VReg mapper is introduced to help keep compile time under
control, currently there is no measurable impact on CTMark despite the extra
code being generated in some cases.
Patch is based on the original work of Tim Northover.
Differential Revision: https://reviews.llvm.org/D46018
llvm-svn: 332449
Currently EVT is in the IR layer only because of Function.cpp needing a very small piece of the functionality of EVT::getEVTString(). The rest of EVT is used in codegen making CodeGen a better place for it.
The previous code converted a Type* to EVT and then called getEVTString. This was only expected to handle the primitive types from Type*. Since there only a few primitive types, we can just print them as strings directly.
Differential Revision: https://reviews.llvm.org/D45017
llvm-svn: 328806
This is used by llvm tblgen as well as by LLVM Targets, so the only
common place is Support for now. (maybe we need another target for these
sorts of things - but for now I'm at least making them correct & we can
make them better if/when people have strong feelings)
llvm-svn: 328395
Currently we assert that only non target specific opcodes can have
missing RegisterClass constraints in the MCDesc. The backend can have
instructions with register operands but don't have RegisterClass
constraints (say using unknown_class) in which case the instruction
defining the register will constrain it.
Change the assert to only fire if a def has no regclass.
https://reviews.llvm.org/D43409
llvm-svn: 326142
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
We end up creating COPY's that are either truncating/extending and this
should be illegal.
https://reviews.llvm.org/D37640
Patch for X86 and ARM by igorb, rovka
llvm-svn: 315240
If a struct would end up half in GPRs and half on SP the ABI says it should
actually go entirely on the stack. We were getting this wrong in GlobalISel
before, causing compatibility issues.
llvm-svn: 311388
This reverts commit e8fd20964798ca6d46d2729dd3a789707a6416da in an
attempt to appease the GlobalISel buildbot, which fails in the
test-suite with errors like
fpcmp: files differ without tolerance allowance
llvm-svn: 311151