Currently we check whether LR is stored/loaded to/from inbetween the
loop decrement and loop end pseudo instructions. There's two problems
here:
- It relies on all load/store instructions being labelled as such in
tablegen.
- Actually any use of loop decrement is troublesome because the value
doesn't exist!
So we need to check for any read/write of LR that occurs between the
two instructions and revert if we find anything.
Differential Revision: https://reviews.llvm.org/D65792
llvm-svn: 368130
Summary:
This is patch is part of a serie to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet, jfb, jakehehrlich
Reviewed By: jfb
Subscribers: wuzish, jholewinski, arsenm, dschuff, nemanjai, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65514
llvm-svn: 367828
Add an explicit construction of the ArrayRef, gcc 5 and earlier don't
seem to select the ArrayRef constructor which takes a C array when the
construction is implicit.
Original commit message:
- Avoid a crash when IPRA calls ARMFrameLowering::determineCalleeSaves
with a null RegScavenger. Simply not updating the register scavenger
is fine because IPRA only cares about the SavedRegs vector, the acutal
code of the function has already been generated at this point.
- Add a new hook to TargetRegisterInfo to get the set of registers which
can be clobbered inside a call, even if the compiler can see both
sides, by linker-generated code.
Differential revision: https://reviews.llvm.org/D64908
llvm-svn: 367819
This adds big endian MVE patterns for bitcasts. They are defined in llvm as
being the same as a store of the existing type and the load into the new. This
means that they have to become a VREV between the two types, working in the
same way that NEON works in big-endian. This also adds some example tests for
bigendian, showing where code is and isn't different.
The main difference, especially from a testing perspective is that vectors are
passed as v2f64, and so are VREV into and out of call arguments, and the
parameters are passed in a v2f64 format. Same happens for inline assembly where
the register class is used, so it is VREV to a v16i8.
So some of this is probably not correct yet, but it is (mostly) self-consistent
and seems to be consistent with how llvm treats vectors. The rest we can
hopefully fix later. More details about big endian neon can be found in
https://llvm.org/docs/BigEndianNEON.html.
Differential Revision: https://reviews.llvm.org/D65581
llvm-svn: 367780
Fix for https://bugs.llvm.org/show_bug.cgi?id=42760. A tBR_JTr
instruction is duplicated by tail duplication, which results in
the same jumptable with the same label being emitted twice.
Fix this by marking tBR_JTr as not duplicable. The corresponding
ARM/Thumb instructions are already marked as not duplicable.
Additionally also mark tTBB_JT and tTBH_JT to be consistent with
Thumb2, even though this shouldn't be strictly necessary.
Differential Revision: https://reviews.llvm.org/D65606
llvm-svn: 367753
This optimisation isn't generally profitable for ARM, because we can
save/restore many registers in the prologue and epilogue using the PUSH
and POP instructions, but mostly use individual LDR/STR instructions for
other spills.
Differential revision: https://reviews.llvm.org/D64910
llvm-svn: 367670
- Avoid a crash when IPRA calls ARMFrameLowering::determineCalleeSaves
with a null RegScavenger. Simply not updating the register scavenger
is fine because IPRA only cares about the SavedRegs vector, the acutal
code of the function has already been generated at this point.
- Add a new hook to TargetRegisterInfo to get the set of registers which
can be clobbered inside a call, even if the compiler can see both
sides, by linker-generated code.
Differential revision: https://reviews.llvm.org/D64908
llvm-svn: 367669
The VREV64 instruction is apparently unpredictable if Qd == Qm, due to the
cross-beat nature of the instruction. This adds an earlyclobber to Qd, which
seems to be the same way we deal with this on other instructions like the
write-back on loads and stores.
Differential Revision: https://reviews.llvm.org/D65502
llvm-svn: 367544
This is extremely specific, but saves three instructions when it's
legal. I don't think the code can be usefully generalized.
Differential Revision: https://reviews.llvm.org/D65351
llvm-svn: 367492
Thumb1 has very limited immediate modes, so turning an "and" into a
shift can save multiple instructions.
It's possible to simplify the generated code for test2 and test3 in
cmp-and-fold.ll a little more, but I'll implement that as a followup.
Differential Revision: https://reviews.llvm.org/D65175
llvm-svn: 367491
Summary:
This will make it possible to improve IPRA by taking into account
register usage in indirect calls.
NFC yet; this is just laying the groundwork to start building
up patches to take advantage of the information for improved register
allocation.
Reviewers: aditya_nandakumar, volkan, qcolombet, arsenm, rovka, aemerson, paquette
Subscribers: sdardis, wdng, javed.absar, hiraditya, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65488
llvm-svn: 367476
Summary:
According to the Armv8.1-M manual CSEL, CSINC, CSINV and CSNEG are
"constrained unpredictable" when SP is used as the source register Rn.
The assembler should diagnose this case.
Reviewers: momchil.velikov, dmgreen, ostannard, simon_tatham, t.p.northover
Reviewed By: ostannard
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65505
llvm-svn: 367433
Use a switch instead of many isa<> while checking for supported
values. Also be explicit about which cast instructions are supported;
This allows the removal of SIToFP from GenerateSignBits.
llvm-svn: 367402
The code is now in a good enough state to pass the bunch of tests that
I have run (after fixing the bugs), so let's enable it by default.
Differential Revision: https://reviews.llvm.org/D65277
llvm-svn: 367297
Revert the hardware loop upon finding a LoopEnd that doesn't target
the loop header, instead of asserting a failure.
Differential Revision: https://reviews.llvm.org/D65268
llvm-svn: 367296
- Remove some unused typedefs.
- Rename BinOpChain struct to MulCandidate.
- Remove the size method of MulCandidate.
- Store only the first input of the ValueList provided to
MulCandidate, as it's the only value we care about. This means we
don't have to perform any ugly (and unnecessary) iterations of the
list later on.
llvm-svn: 367208
This adds the patterns required to transform xor P0, -1 to a VPNOT. The
instruction operands have to change a little for this, adding an in and an out
VCCR reg and using a custom DecodeMVEVPNOT for the decode.
Differential Revision: https://reviews.llvm.org/D65133
llvm-svn: 367192
These are some better patterns for converting between predicates and floating
points. Much like the extends, we select "1"/"-1" or "0" depending on the
predicate value. Or we perform a compare against 0 to convert to a predicate.
Differential Revision: https://reviews.llvm.org/D65103
llvm-svn: 367191
Both WhileLoopStart and LoopEnd may get turned into a cmp and br pair,
so add an implicit def to these pseudo instructions in case that WLS
and LE aren't generated.
Differential Revision: https://reviews.llvm.org/D65275
llvm-svn: 367089
This removes the VCEQ/VCNE/VCGE/VCEQZ/etc nodes, just using two called VCMP and
VCMPZ with an extra operand as the condition code. I believe this will make
some combines simpler, allowing us to just look at these codes and not the
operands. It also helps fill in a missing VCGTUZ MVE selection without adding
extra nodes for it.
Differential Revision: https://reviews.llvm.org/D65072
llvm-svn: 366934
The prevents us from trying to convert an i1 predicate vector to a float, or
vice-versa. Better patterns are possible, which will follow in a subsequent
commit. For now we just expand them.
Differential Revision: https://reviews.llvm.org/D65066
llvm-svn: 366931
MVE VCMP instructions can use a general purpose register as the second operand.
This adds the combines for it, selecting from a compare of a vdup.
Differential Revision: https://reviews.llvm.org/D65061
llvm-svn: 366924
This adds a DeMorgan combine for OR's of compares to turn them into AND's,
helping prevent them from going into and out of gpr registers. It also fills in
the VCLE and VCLT nodes that MVE can select, allowing it to invert more
compares.
Differential Revision: https://reviews.llvm.org/D65059
llvm-svn: 366920
Add a number of folds to convert and(vcmp, vcmp) into a single VPT block, where
the second vcmp becomes predicated on the first.
The VCMP; VPST; VCMP will eventually be converted to VPT; VCMP in the
VPTBlockPass.
Differential Revision: https://reviews.llvm.org/D65058
llvm-svn: 366910
Much like integers, this adds MVE floating point compares and select. It
requires a lot more buildvector/shuffle code because we may need to expand the
compares without mve.fp, and requires support for and/or because of the way we
lower llvm condition codes.
Some original code by David Sherwood
Differential Revision: https://reviews.llvm.org/D65054
llvm-svn: 366909
This adds some basic, "worst case" handling for MVE predicate Or/And/Xor. It
does this by going into and out of GPRs, doing the operation on scalars.
Code by David Sherwood.
Differential Revision: https://reviews.llvm.org/D65053
llvm-svn: 366907
This change make sure that llvm does not emit an invalid IT block
by putting the constant pool in the middle of an IT block.
We have code to try to avoid putting a constant island in the middle of an
IT block, but it only works if we see an IT between the one currently
referencing CPE and possible insertion point. If the first instruction
we look at is the VLDRD after the IT , we never see the IT and does not
realize that the instruction doing the load could be in an IT block itself.
Differential Revision: https://reviews.llvm.org/D64621
Change-Id: I24cecb37cded75e8992870bd997f6226853bd920
llvm-svn: 366905
This adds support code for building and shuffling i1 predicate registers. It
generally uses two basic principles, either converting the predicate into an
scalar (through a PREDICATE_CAST) and doing scalar operations on it there, or
by converting the register to an full vector register and back.
Some of the code here is a not super efficient but will hopefully cover most
cases of moving i1 vectors around and can be improved in subsequent patches.
Some code by David Sherwood.
Differential Revision: https://reviews.llvm.org/D65052
llvm-svn: 366890
This adds the very basics for MVE vector predication, adding integer VCMP and
VSEL instruction support. This is done through predicate registers (MVT::v16i1,
MVT::v8i1, MVT::v4i1), but otherwise using same mechanics as NEON to custom
lower setcc's through ARMISD::VCXX nodes (VCEQ, VCGT, VCEQZ, etc).
An extra VCNE was added, as this can be handled sensibly by MVE's expanded
number of VCMP condition codes. (There are also VCLE and VCLT which are added
later).
VPSEL is also added here, simply selecting on the vselect.
Original code by David Sherwood.
Differential Revision: https://reviews.llvm.org/D65051
llvm-svn: 366885
While combining two loads into a single load, we often need to
reorder the pointer operands for the new load. This reordering was
broken in the cases where there was a chain of values that built up
the pointer.
Differential Revision: https://reviews.llvm.org/D65193
llvm-svn: 366881
While lowering test.set.loop.iterations, it wasn't checked how the
brcond was using the result and so the wls could branch to the loop
preheader instead of not entering it. The same was true for
loop.decrement.reg.
So brcond and br_cc and now lowered manually when using the hwloop
intrinsics. During this we now check whether the result has been
negated and whether we're using SETEQ or SETNE and 0 or 1. We can
then figure out which basic block the WLS and LE should be targeting.
Differential Revision: https://reviews.llvm.org/D64616
llvm-svn: 366809
ARMLowOverheadLoops would assert a failure if it did not find all the
pseudo instructions that comprise the hardware loop. Instead of doing
this, iterate through all the instructions of the function and revert
any remaining pseudo instructions that haven't been converted.
Differential Revision: https://reviews.llvm.org/D65080
llvm-svn: 366691
We need to ensure that the number of T's is correct when adding multiple
instructions into the same VPT block.
Differential revision: https://reviews.llvm.org/D65049
llvm-svn: 366684
ARM has code to recognise uses of the "returned" function parameter
attribute which guarantee that the value passed to the function in r0
will be returned in r0 unmodified. IPRA replaces the regmask on call
instructions, so needs to be told about this to avoid reverting the
optimisation.
Differential revision: https://reviews.llvm.org/D64986
llvm-svn: 366669
Summary:
According to the new Armv8-M specification
https://static.docs.arm.com/ddi0553/bh/DDI0553B_h_armv8m_arm.pdf the
instructions SQRSHRL and UQRSHLL now have an additional immediate
operand <saturate>. The new assembly syntax is:
SQRSHRL<c> RdaLo, RdaHi, #<saturate>, Rm
UQRSHLL<c> RdaLo, RdaHi, #<saturate>, Rm
where <saturate> can be either 64 (the existing behavior) or 48, in
that case the result is saturated to 48 bits.
The new operand is encoded as follows:
#64 Encoded as sat = 0
#48 Encoded as sat = 1
sat is bit 7 of the instruction bit pattern.
This patch adds a new assembler operand class MveSaturateOperand which
implements parsing and encoding. Decoding is implemented in
DecodeMVEOverlappingLongShift.
Reviewers: ostannard, simon_tatham, t.p.northover, samparker, dmgreen, SjoerdMeijer
Reviewed By: simon_tatham
Subscribers: javed.absar, kristof.beyls, hiraditya, pbarrio, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64810
llvm-svn: 366555
Summary:
PerformVMOVRRDCombine ommits adding a offset
of 4 to the PointerInfo, when converting a
f64 = load[M]
to
{i32, i32} = {load[M], load[M + 4]}
Which would allow the machine scheduller
to break dependencies with the second load.
- pr42638
Reviewers: eli.friedman, dmgreen, ostannard
Reviewed By: ostannard
Subscribers: ostannard, javed.absar, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64870
llvm-svn: 366423
Migrate CallLowering::lowerReturnVal to use the same infrastructure as
lowerCall/FormalArguments and remove the now obsolete code path from
splitToValueTypes.
Forgot to push this earlier.
llvm-svn: 366308
We need to make sure that we are sensibly dealing with vectors of types v2i64
and v2f64, even if most of the time we cannot generate native operations for
them. This mostly adds a lot of testing, plus fixes up a couple of the issues
found. And, or and xor can be legal for v2i64, and shifts combining needs a
slight fixup.
Differential Revision: https://reviews.llvm.org/D64316
llvm-svn: 366106
This adds basic lowering for MVE shifts. There are many shifts in MVE, but the
instructions handled here are:
VSHL (imm)
VSHRu (imm)
VSHRs (imm)
VSHL (vector)
VSHL (register)
MVE, like NEON before it, doesn't have shift right by a vector (or register).
We instead have to negate the amount and shift in the opposite direction. This
means we have to convert any SHR's into a form of SHL (that is still signed or
unsigned) with a negated condition and selecting from there. MVE still does
have shifting by an immediate for SHL, ASR and LSR.
This adds lowering for these and for register forms, which work well for shift
lefts but may require an extra fold of neg(vdup(x)) -> vdup(neg(x)) to potentially
work optimally for right shifts.
Differential Revision: https://reviews.llvm.org/D64212
llvm-svn: 366056
This just moves the shift instruction definitions further down the
ARMInstrMVE.td file, to make positioning patterns slightly more natural.
llvm-svn: 366054
This adjusts the way that we lower NEON shifts to use a DAG target node, not
via a neon intrinsic. This is useful for handling MVE shifts operations in the
same the way. It also renames some of the immediate shift nodes for
consistency, and moves some of the processing of immediate shifts into
LowerShift allowing it to capture more cases.
Differential Revision: https://reviews.llvm.org/D64426
llvm-svn: 366051
The vmovlb instructions can be uses to sign or zero extend vector registers
between types. This adds some patterns for them and relevant testing. The
VBICIMM generation is also put behind a hasNEON check (as is already done for
VORRIMM).
Code originally by David Sherwood.
Differential Revision: https://reviews.llvm.org/D64069
llvm-svn: 366008
This selects integer VNEG instructions, which can be especially useful with shifts.
Differential Revision: https://reviews.llvm.org/D64204
llvm-svn: 366006
This simply makes the MVE integer min and max instructions legal and adds the
relevant patterns for them.
Differential Revision: https://reviews.llvm.org/D64026
llvm-svn: 366004
This adds support for the floor/ceil/trunc/... series of instructions,
converting to various forms of VRINT. They use the same suffixes as their
floating point counterparts. There is not VTINTR, so nearbyint is expanded.
Also added a copysign test, to show it is expanded.
Differential Revision: https://reviews.llvm.org/D63985
llvm-svn: 366003
This adds the patterns for minnm and maxnm from the fminnum and fmaxnum nodes,
similar to scalar types.
Original patch by Simon Tatham
Differential Revision: https://reviews.llvm.org/D63870
llvm-svn: 366002
This patch addresses a couple of problems:
1) The maximum supported offset of LE is -4094.
2) The offset of WLS also needs to be checked, this uses a
maximum positive offset of 4094.
The use of BasicBlockUtils has been changed because the block offsets
weren't being initialised, but the isBBInRange checks both positive
and negative offsets.
ARMISelLowering has been tweaked because the test case presented
another pattern that we weren't supporting.
llvm-svn: 365749
The VQDMLAH.U8, VQDMLAH.U16 and VQDMLAH.U32 instructions don't
actually exist: the Armv8.1-M architecture spec only lists signed
forms of that instruction. The unsigned ones were added in error: they
existed in an early draft of the spec, but they were removed before
the public version, and we missed that particular spec change.
Also affects the variant forms VQDMLASH, VQRDMLAH and VQRDMLASH.
Reviewers: miyuki
Subscribers: javed.absar, kristof.beyls, hiraditya, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64502
llvm-svn: 365747
Two functional changes have been made here:
- Now search up from any add instruction to find the chains of
operations that we may turn into a smlad. This allows the
generation of a smlad which doesn't accumulate into a phi.
- The search function has been corrected to stop it falsely searching
up through an invalid path.
The bulk of the changes have been making the Reduction struct a class
and making it more C++y with getters and setters.
Differential Revision: https://reviews.llvm.org/D61780
llvm-svn: 365740
Summary:
Use the same predicates as VSTMDB/VLDMIA since VPUSH/VPOP alias to
these.
Patch by Momchil Velikov.
Reviewers: ostannard, simon_tatham, SjoerdMeijer, samparker, t.p.northover, dmgreen
Reviewed By: dmgreen
Subscribers: javed.absar, kristof.beyls, hiraditya, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64413
llvm-svn: 365604
Summary:
According to a recently updated Armv8-M spec
(https://static.docs.arm.com/ddi0553/bh/DDI0553B_h_armv8m_arm.pdf) the
32-bit width versions of the following instructions:
* VQDMLADH
* VQDMLADHX
* VQRDMLADH
* VQRDMLADHX
* VQDMLSDH
* VQDMLSDHX
* VQRDMLSDH
* VQRDMLSDHX
are no longer unpredictable when their output register is the same as
one of the input registers.
This patch updates the assembler parser and the corresponding tests
and also removes @earlyclobber from the instruction constraints.
Reviewers: simon_tatham, ostannard, dmgreen, SjoerdMeijer, samparker
Reviewed By: simon_tatham
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64250
llvm-svn: 365306
This adds some handling for VMOVimm, using the same method that NEON uses. We
create VMOVIMM/VMVNIMM/VMOVFPIMM nodes based on the immediate, and select them
using the now renamed ARMvmovImm/etc. There is also an extra 64bit immediate
mode that I have not yet added here.
Code by David Sherwood
Differential Revision: https://reviews.llvm.org/D63884
llvm-svn: 365178
The arm condition codes for GE is N==V (and for LT is N!=V). If the source of
flags cannot set V (overflow), such as a cmp against #0, then we can use the
simpler PL and MI conditions that only check N. As these PL/MI conditions are
simpler than GE/LT, other passes like the peephole optimiser can have a better
time optimising away the redundant CMPs.
The exception is the VSEL instruction, which cannot take the PL code, so there
the transform favours GE.
Differential Revision: https://reviews.llvm.org/D64160
llvm-svn: 365117
This adds patterns for the simpler VAND, VORR and VEOR bitwise vector
instructions. It also adjusts the top16Zero PatLeaf to not match on vector
instructions, which can otherwise cause problems.
Code written by David Sherwood.
Differential Revision: https://reviews.llvm.org/D63867
llvm-svn: 365113
For Thumb2, we prefer low regs (costPerUse = 0) to allow narrow
encoding. However, current allocation order is like:
R0-R3, R12, LR, R4-R11
As a result, a lot of instructs that use R12/LR will be wide instrs.
This patch changes the allocation order to:
R0-R7, R12, LR, R8-R11
for thumb2 and -Osize.
In most cases, there is no extra push/pop instrs as they will be folded
into existing ones. There might be slight performance impact due to more
stack usage, so we only enable it when opt for min size.
https://reviews.llvm.org/D30324
llvm-svn: 365014
Summary:
This is the backend part of [[ https://bugs.llvm.org/show_bug.cgi?id=42457 | PR42457 ]].
In middle-end, we'd want to prefer the form with two adds - D63992,
but as this diff shows, not every target will prefer that pattern.
Out of 4 targets for which i added tests all seem to be ok with inc-of-add for scalars,
but only X86 prefer that same pattern for vectors.
Here i'm adding a new TLI hook, always defaulting to the inc-of-add,
but adding AArch64,ARM,PowerPC overrides to prefer inc-of-add only for scalars.
Reviewers: spatel, RKSimon, efriedma, t.p.northover, hfinkel
Reviewed By: efriedma
Subscribers: nemanjai, javed.absar, kristof.beyls, kbarton, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64090
llvm-svn: 365010
There were two issues here: one, some of the relevant instructions were
missing the expected "FrameSetup" flag, and two,
ARMAsmPrinter::EmitUnwindingInstruction wasn't expecting "mov"
instructions in the prologue.
I'm sticking the additional state into ARMFunctionInfo so it's obvious
it only applies to the current function.
I considered a few alternative approaches where we would compute the
correct unwind information as part of the prologue/epilogue lowering,
but it seems like a lot of work to introduce pseudo-instructions, and
the current code seems to be reliable enough.
Fixes https://bugs.llvm.org/show_bug.cgi?id=42408.
Differential Revision: https://reviews.llvm.org/D63964
llvm-svn: 364970
Passing a vector type over the soft-float ABI involves it being split
into four GPRs, so the first thing that has to happen at the start of
the function is to recombine those into a vector register. The ABI
types all vectors as v2f64, so we need to support BUILD_VECTOR for
that type, which I do in this patch by allowing it to be expanded in
terms of INSERT_VECTOR_ELT, and writing an ISel pattern for that in
turn. Similarly, I provide a rule for EXTRACT_VECTOR_ELT so that a
returned vector can be marshalled back into GPRs.
While I'm here, I've also added ISD::UNDEF to the list of operations
we turn back on in `setAllExpand`, because I noticed that otherwise it
gets expanded into a BUILD_VECTOR with explicit zero inputs, leading
to pointless machine instructions to zero out a vector register that's
about to have every lane overwritten of in any case.
Reviewers: dmgreen, ostannard
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63937
llvm-svn: 364910
If you compile with `-mattr=+mve` (enabling integer MVE instructions
but not floating-point ones), then the scalar FP //registers// exist
and it's legal to move things in and out of them, load and store them,
but it's not legal to do arithmetic on them.
In D60708, the calls to `addRegisterClass` in ARMISelLowering that
enable use of the scalar FP registers became conditionalised on
`Subtarget->hasFPRegs()` instead of `Subtarget->hasVFP2Base()`, so
that loads, stores and moves of those registers would work. But I
didn't realise that that would also enable all the operations on those
types by default.
Now, if the target doesn't have basic VFP, we follow up those
`addRegisterClass` calls by turning back off all the nontrivial
operations you can perform on f32 and f64. That causes several
knock-on failures, which are fixed by allowing the `VMOVDcc` and
`VMOVScc` instructions to be selected even if all you have is
`HasFPRegs`, and adjusting several checks for 'is this a double in a
single-precision-only world?' to the more general 'is this any FP type
we can't do arithmetic on?'. Between those, the whole of the
`float-ops.ll` and `fp16-instructions.ll` tests can now run in
MVE-without-FP mode and generate correct-looking code.
One odd side effect is that I had to relax the check lines in that
test so that they permit test functions like `add_f` to be generated
as tailcalls to software FP library functions, instead of ordinary
calls. Doing that is entirely legal, but the mystery is why this is
the first RUN line that's needed the relaxation: on the usual kind of
non-FP target, no tailcalls ever seem to be generated. Going by the
llc messages, I think `SoftenFloatResult` must be perturbing the code
generation in some way, but that's as much as I can guess.
Reviewers: dmgreen, ostannard
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63938
llvm-svn: 364909
Summary:
According to the ARMARM, the VQDMLADH, VQRDMLADH, VQDMLSDH and
VQRDMLSDH instructions handle their results as follows: "The base
variant writes the results into the lower element of each pair of
elements in the destination register, whereas the exchange variant
writes to the upper element in each pair". I.e., the initial content
of the output register affects the result, as usual, we model this
with an additional input.
Also, for 32-bit variants Qd is not allowed to be the same register as
Qm and Qn, we use @earlyclobber to indicate this.
This patch also changes vpred_r to vpred_n because the instructions
don't have an explicit 'inactive' operand.
Reviewers: dmgreen, ostannard, simon_tatham
Reviewed By: simon_tatham
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64007
llvm-svn: 364796
Backend changes to enable WLS/LE low-overhead loops for armv8.1-m:
1) Use TTI to communicate to the HardwareLoop pass that we should try
to generate intrinsics that guard the loop entry, as well as setting
the loop trip count.
2) Lower the BRCOND that uses said intrinsic to an Arm specific node:
ARMWLS.
3) ISelDAGToDAG the node to a new pseudo instruction:
t2WhileLoopStart.
4) Add support in ArmLowOverheadLoops to handle the new pseudo
instruction.
Differential Revision: https://reviews.llvm.org/D63816
llvm-svn: 364733
MVE adds the lsll, lsrl and asrl instructions, which perform a shift on a 64 bit value separated into two 32 bit registers.
The Expand64BitShift function is modified to accept ISD::SHL, ISD::SRL and ISD::SRA and convert it into the appropriate opcode in ARMISD. An SHL is converted into an lsll, an SRL is converted into an lsrl for the immediate form and a negation and lsll for the register form, and SRA is converted into an asrl.
test/CodeGen/ARM/shift_parts.ll is added to test the logic of emitting these instructions.
Differential Revision: https://reviews.llvm.org/D63430
llvm-svn: 364654
This simply adds integer and floating point VMUL patterns for MVE, same as we
have add and sub.
Differential Revision: https://reviews.llvm.org/D63866
llvm-svn: 364643
This adds handling and tests for a number of floating point math routines,
which have no MVE instructions.
Differential Revision: https://reviews.llvm.org/D63725
llvm-svn: 364641
MVE has instructions to widen as it loads, and narrow as it stores. This adds
the required patterns and legalisation to make them work including specifying
that they are legal, patterns to select them and test changes.
Patch by David Sherwood.
Differential Revision: https://reviews.llvm.org/D63839
llvm-svn: 364636
This fills in the gaps for basic MVE loads and stores, allowing unaligned
access and adding far too many tests. These will become important as
narrowing/expanding and pre/post inc are added. Big endian might still not be
handled very well, because we have not yet added bitcasts (and I'm not sure how
we want it to work yet). I've included the alignment code anyway which maps
with our current patterns. We plan to return to that later.
Code written by Simon Tatham, with additional tests from Me and Mikhail Maltsev.
Differential Revision: https://reviews.llvm.org/D63838
llvm-svn: 364633
We don't have vector operations for these, so they need to be expanded for both
integer and float.
Differential Revision: https://reviews.llvm.org/D63595
llvm-svn: 364631
The same as integer arithmetic, we can add simple floating point MVE addition and
subtraction patterns.
Initial code by David Sherwood
Differential Revision: https://reviews.llvm.org/D63257
llvm-svn: 364629
This adds the first few patterns for MVE code generation, adding simple integer
add and sub patterns.
Initial code by David Sherwood
Differential Revision: https://reviews.llvm.org/D63255
llvm-svn: 364627
This patch adds necessary shuffle vector and buildvector support for ARM MVE.
It essentially adds support for VDUP, VREVs and some VMOVs, which are often
required by other code (like upcoming patches).
This mostly uses the same code from Neon that already generated
NEONvdup/NEONvduplane/NEONvrev's. These have been renamed to ARMvdup/etc and
moved to ARMInstrInfo as they are common to both architectures. Most of the
selection code seems to be applicable to both, but NEON does have some more
instructions making some parts specific.
Most code originally by David Sherwood.
Differential Revision: https://reviews.llvm.org/D63567
llvm-svn: 364626
The code to generate register move instructions in and out of VPR and
FPSCR_NZCV had assertions checking that the other register involved
was a GPR _pair_, instead of a single GPR as it should have been.
Reviewers: miyuki, ostannard
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63865
llvm-svn: 364534
The BF and WLS/WLSTP instructions have various branch-offset fields
occupying different positions and lengths in the instruction encoding,
and all of them were decoded at disassembly time by the function
DecodeBFLabelOffset() which returned SoftFail if the offset was zero.
In fact, it's perfectly fine and not even a SoftFail for most of those
offset fields to be zero. The only one that can't be zero is the 4-bit
field labelled `boff` in the architecture spec, occupying bits {26-23}
of the BF instruction family. If that one is zero, the encoding
overlaps other instructions (WLS, DLS, LETP, VCTP), so it ought to be
a full Fail.
Fixed by adding an extra template parameter to DecodeBFLabelOffset
which controls whether a zero offset is accepted or rejected. Adjusted
existing tests (only in error messages for bad disassemblies); added
extra tests to demonstrate zero offsets being accepted in all the
right places, and a few demonstrating rejection of zero `boff`.
Reviewers: DavidSpickett, ostannard
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63864
llvm-svn: 364533
Different versions of the Arm architecture disallow the use of generic
coprocessor instructions like MCR and CDP on different sets of
coprocessors. This commit centralises the check of the coprocessor
number so that it's consistent between assembly and disassembly, and
also updates it for the new restrictions in Arm v8.1-M.
New tests added that check all the coprocessor numbers; old tests
updated, where they used a number that's now become illegal in the
context in question.
Reviewers: DavidSpickett, ostannard
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63863
llvm-svn: 364532
In the `CSEL Rd,Rm,Rn` instruction family (also including CSINC, CSINV
and CSNEG), the architecture lists it as CONSTRAINED UNPREDICTABLE
(i.e. SoftFail) to use SP in the Rd or Rm slot, but outright illegal
to use it in the Rn slot, not least because some encodings of that
form are used by MVE instructions such as UQRSHLL.
MC was treating all three slots the same, as SoftFail. So the only
reason UQRSHLL was disassembled correctly at all was because the MVE
decode table is separate from the Thumb2 one and takes priority; if
you turned off MVE, then encodings such as `[0x5f,0xea,0x0d,0x83]`
would disassemble as spurious CSELs.
Fixed by inventing another version of the `GPRwithZR` register class,
which disallows SP completely instead of just SoftFailing it.
Reviewers: DavidSpickett, ostannard
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63862
llvm-svn: 364531
Change the interface of CallLowering::lowerCall to accept several
virtual registers for each argument, instead of just one. This is a
follow-up to D46018.
CallLowering::lowerReturn was similarly refactored in D49660 and
lowerFormalArguments in D63549.
With this change, we no longer pack the virtual registers generated for
aggregates into one big lump before delegating to the target. Therefore,
the target can decide itself whether it wants to handle them as separate
pieces or use one big register.
ARM and AArch64 have been updated to use the passed in virtual registers
directly, which means we no longer need to generate so many
merge/extract instructions.
NFCI for AMDGPU, Mips and X86.
Differential Revision: https://reviews.llvm.org/D63551
llvm-svn: 364512
Change the interface of CallLowering::lowerCall to accept several
virtual registers for the call result, instead of just one. This is a
follow-up to D46018.
CallLowering::lowerReturn was similarly refactored in D49660 and
lowerFormalArguments in D63549.
With this change, we no longer pack the virtual registers generated for
aggregates into one big lump before delegating to the target. Therefore,
the target can decide itself whether it wants to handle them as separate
pieces or use one big register.
ARM and AArch64 have been updated to use the passed in virtual registers
directly, which means we no longer need to generate so many
merge/extract instructions.
NFCI for AMDGPU, Mips and X86.
Differential Revision: https://reviews.llvm.org/D63550
llvm-svn: 364511
Change the interface of CallLowering::lowerFormalArguments to accept
several virtual registers for each formal argument, instead of just one.
This is a follow-up to D46018.
CallLowering::lowerReturn was similarly refactored in D49660. lowerCall
will be refactored in the same way in follow-up patches.
With this change, we forward the virtual registers generated for
aggregates to CallLowering. Therefore, the target can decide itself
whether it wants to handle them as separate pieces or use one big
register. We also copy the pack/unpackRegs helpers to CallLowering to
facilitate this.
ARM and AArch64 have been updated to use the passed in virtual registers
directly, which means we no longer need to generate so many
merge/extract instructions.
AArch64 seems to have had a bug when lowering e.g. [1 x i8*], which was
put into a s64 instead of a p0. Added a test-case which illustrates the
problem more clearly (it crashes without this patch) and fixed the
existing test-case to expect p0.
AMDGPU has been updated to unpack into the virtual registers for
kernels. I think the other code paths fall back for aggregates, so this
should be NFC.
Mips doesn't support aggregates yet, so it's also NFC.
x86 seems to have code for dealing with aggregates, but I couldn't find
the tests for it, so I just added a fallback to DAGISel if we get more
than one virtual register for an argument.
Differential Revision: https://reviews.llvm.org/D63549
llvm-svn: 364510
Allow CallLowering::ArgInfo to contain more than one virtual register.
This is useful when passes split aggregates into several virtual
registers, but need to also provide information about the original type
to the call lowering. Used in follow-up patches.
Differential Revision: https://reviews.llvm.org/D63548
llvm-svn: 364509
The current implementation of ThumbRegisterInfo::saveScavengerRegister
is bad for two reasons: one, it's buggy, and two, it blocks using R12
for other optimizations. So this patch gets rid of it, and adds the
necessary support for using an ordinary emergency spill slot on Thumb1.
(Specifically, I think saveScavengerRegister was broken by r305625, and
nobody noticed for two years because the codepath is almost never used.
The new code will also probably not be used much, but it now has better
tests, and if we fail to emit a necessary emergency spill slot we get a
reasonable error message instead of a miscompile.)
A rough outline of the changes in the patch:
1. Gets rid of ThumbRegisterInfo::saveScavengerRegister.
2. Modifies ARMFrameLowering::determineCalleeSaves to allocate an
emergency spill slot for Thumb1.
3. Implements useFPForScavengingIndex, so the emergency spill slot isn't
placed at a negative offset from FP on Thumb1.
4. Modifies the heuristics for allocating an emergency spill slot to
support Thumb1. This includes fixing ExtraCSSpill so we don't try to
use "lr" as a substitute for allocating an emergency spill slot.
5. Allocates a base pointer in more cases, so the emergency spill slot
is always accessible.
6. Modifies ARMFrameLowering::ResolveFrameIndexReference to compute the
right offset in the new cases where we're forcing a base pointer.
7. Ensures we never generate a load or store with an offset outside of
its frame object. This makes the heuristics more straightforward.
8. Changes Thumb1 prologue and epilogue emission so it never uses
register scavenging.
Some of the changes to the emergency spill slot heuristics in
determineCalleeSaves affect ARM/Thumb2; hopefully, they should allow
the compiler to avoid allocating an emergency spill slot in cases
where it isn't necessary. The rest of the changes should only affect
Thumb1.
Differential Revision: https://reviews.llvm.org/D63677
llvm-svn: 364490
Summary:
The getFixupKindContainerSizeBytes function returns the size of the
instruction containing a given fixup. Currently fixup_arm_pcrel_9 is
not handled in this function, this causes an assertion failure in
the debug build and incorrect codegen in the release build.
This patch fixes the problem.
Reviewers: ostannard, simon_tatham
Reviewed By: ostannard
Subscribers: javed.absar, kristof.beyls, hiraditya, pbarrio, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63778
llvm-svn: 364404
"To" selects an odd-numbered GPR, and "Te" an even one. There are some
8.1-M instructions that have one too few bits in their register fields
and require registers of particular parity, without necessarily using
a consecutive even/odd pair.
Also, the constraint letter "t" should select an MVE q-register, when
MVE is present. This didn't need any source changes, but some extra
tests have been added.
Reviewers: dmgreen, samparker, SjoerdMeijer
Subscribers: javed.absar, eraman, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D60709
llvm-svn: 364331
This provides the low-level support to start using MVE vector types in
LLVM IR, loading and storing them, passing them to __asm__ statements
containing hand-written MVE vector instructions, and *if* you have the
hard-float ABI turned on, using them as function parameters.
(In the soft-float ABI, vector types are passed in integer registers,
and combining all those 32-bit integers into a q-reg requires support
for selection DAG nodes like insert_vector_elt and build_vector which
aren't implemented yet for MVE. In fact I've also had to add
`arm_aapcs_vfpcc` to a couple of existing tests to avoid that
problem.)
Specifically, this commit adds support for:
* spills, reloads and register moves for MVE vector registers
* ditto for the VPT predication mask that lives in VPR.P0
* make all the MVE vector types legal in ISel, and provide selection
DAG patterns for BITCAST, LOAD and STORE
* make loads and stores of scalar FP types conditional on
`hasFPRegs()` rather than `hasVFP2Base()`. As a result a few
existing tests needed their llc command lines updating to use
`-mattr=-fpregs` as their method of turning off all hardware FP
support.
Reviewers: dmgreen, samparker, SjoerdMeijer
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60708
llvm-svn: 364329
The expensive buildbots highlighted the mir tests were broken, which
I've now updated and added --verify-machineinstrs to them. This also
uncovered a couple of bugs in the backend pass, so these have also
been fixed.
llvm-svn: 364323
Including both 'case ARM_AM::uxtw' and 'default' in the getShiftOp
switch caused a buildbot to fail with
error: default label in switch which covers all enumeration values [-Werror,-Wcovered-switch-default]
llvm-svn: 364300
A minor iteration on the MVE VPT Block pass to enable more efficient VPT Block
code generation: consecutive VPT predicated statements, predicated on the same
condition, will be placed within the same VPT Block. This essentially is also
an exercise to write some more tests for the next step, which should be more
generic also merging instructions when they are not consecutive.
Differential Revision: https://reviews.llvm.org/D63711
llvm-svn: 364298
If an FP_EXTEND or FP_ROUND isel dag node converts directly between
f16 and f32 when the target CPU has no instruction to do it in one go,
it has to be done in two steps instead, going via f32.
Previously, this was done implicitly, because all such CPUs had the
storage-only implementation of f16 (i.e. the only thing you can do
with one at all is to convert it to/from f32). So isel would legalize
the f16 into an f32 as soon as it saw it, by inserting an fp16_to_fp
node (or vice versa), and then the fp_extend would already be f32->f64
rather than f16->f64.
But that technique can't support a target CPU which has full f16
support but _not_ f64, such as some variants of Arm v8.1-M. So now we
provide custom lowering for FP_EXTEND and FP_ROUND, which checks
support for f16 and f64 and decides on the best thing to do given the
combination of flags it gets back.
Reviewers: dmgreen, samparker, SjoerdMeijer
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60692
llvm-svn: 364294
This final batch includes the tail-predicated versions of the
low-overhead loop instructions (LETP); the VPSEL instruction to select
between two vector registers based on the predicate mask without
having to open a VPT block; and VPNOT which complements the predicate
mask in place.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62681
llvm-svn: 364292
This adds the rest of the vector memory access instructions. It
includes contiguous loads/stores, with an ordinary addressing mode
such as [r0,#offset] (plus writeback variants); gather loads and
scatter stores with a scalar base address register and a vector of
offsets from it (written [r0,q1] or similar); and gather/scatters with
a vector of base addresses (written [q0,#offset], again with
writeback). Additionally, some of the loads can widen each loaded
value into a larger vector lane, and the corresponding stores narrow
them again.
To implement these, we also have to add the addressing modes they
need. Also, in AsmParser, the `isMem` query function now has
subqueries `isGPRMem` and `isMVEMem`, according to which kind of base
register is used by a given memory access operand.
I've also had to add an extra check in `checkTargetMatchPredicate` in
the AsmParser, without which our last-minute check of `rGPR` register
operands against SP and PC was failing an assertion because Tablegen
had inserted an immediate 0 in place of one of a pair of tied register
operands. (This matches the way the corresponding check for `MCK_rGPR`
in `validateTargetOperandClass` is guarded.) Apparently the MVE load
instructions were the first to have ever triggered this assertion, but
I think only because they were the first to have a combination of the
usual Arm pre/post writeback system and the `rGPR` class in particular.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62680
llvm-svn: 364291
Introduce three pseudo instructions to be used during DAG ISel to
represent v8.1-m low-overhead loops. One maps to set_loop_iterations
while loop_decrement_reg is lowered to two, so that we can separate
the decrement and branching operations. The pseudo instructions are
expanded pre-emission, where we can still decide whether we actually
want to generate a low-overhead loop, in a new pass:
ARMLowOverheadLoops. The pass currently bails, reverting to an sub,
icmp and br, in the cases where a call or stack spill/restore happens
between the decrement and branching instructions, or if the loop is
too large.
Differential Revision: https://reviews.llvm.org/D63476
llvm-svn: 364288
Avoids using a plain unsigned for registers throughoug codegen.
Doesn't attempt to change every register use, just something a little
more than the set needed to build after changing the return type of
MachineOperand::getReg().
llvm-svn: 364191
This adds the family of loads and stores with names like VLD20.8 and
VST42.32, which load and store parts of multiple q-registers in such a
way that executing both VLD20 and VLD21, or all four of VLD40..VLD43,
will distribute 2 or 4 vectors' worth of memory data across the lanes
of the same number of registers but in a transposed order.
In addition to the Tablegen descriptions of the instructions
themselves, this patch also adds encode and decode support for the
QQPR and QQQQPR register classes (representing the range of loaded or
stored vector registers), and tweaks to the parsing system for lists
of vector registers to make it return the right format in this case
(since, unlike NEON, MVE regards q-registers as primitive, and not
just an alias for two d-registers).
llvm-svn: 364172
These instructions let you load half a vector register at once from
two general-purpose registers, or vice versa.
The assembly syntax for these instructions mentions the vector
register name twice. For the move _into_ a vector register, the MC
operand list also has to mention the register name twice (once as the
output, and once as an input to represent where the unchanged half of
the output register comes from). So we can conveniently assign one of
the two asm operands to be the output $Qd, and the other $QdSrc, which
avoids confusing the auto-generated AsmMatcher too much. For the move
_from_ a vector register, there's no way to get round the fact that
both instances of that register name have to be inputs, so we need a
custom AsmMatchConverter to avoid generating two separate output MC
operands. (And even that wouldn't have worked if it hadn't been for
D60695.)
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62679
llvm-svn: 364041
This adds the `MVE_qDest_rSrc` superclass and all its instances, plus
a few other instructions that also take a scalar input register or two.
I've also belatedly added custom diagnostic messages to the operand
classes for odd- and even-numbered GPRs, which required matching
changes in two of the existing MVE assembly test files.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62678
llvm-svn: 364040
Summary:
This adds the `MVE_qDest_qSrc` superclass and all instructions that
inherit from it. It's not the complete class of _everything_ with a
q-register as both destination and source; it's a subset of them that
all have similar encodings (but it would have been hopelessly unwieldy
to call it anything like MVE_111x11100).
This category includes add/sub with carry; long multiplies; halving
multiplies; multiply and accumulate, and some more complex
instructions.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62677
llvm-svn: 364037
Summary:
These take a pair of vector register to compare, and a comparison type
(written in the form of an Arm condition suffix); they output a vector
of booleans in the VPR register, where predication can conveniently
use them.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62676
llvm-svn: 364027
Teach RegisterBankInfo to use the correct register class, and tell the
legalizer it's legal. Everything else just works.
The one thing that's slightly weird about this compared to SelectionDAG
isel is that legalization can't distinguish between i64 and <1 x i64>,
so we might end up with more NEON instructions than the user expects.
Differential Revision: https://reviews.llvm.org/D63585
llvm-svn: 363989
This includes integer arithmetic of various kinds (add/sub/multiply,
saturating and not), and the immediate forms of VMOV and VMVN that
load an immediate into all lanes of a vector.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62674
llvm-svn: 363936
The ARMDisassembler changes allow changing between ARM and Thumb mode
based on the MCSubtargetInfo, rather than the Target, which simplifies
the other changes a bit.
I'm not really happy with adding more target-specific logic to
tools/llvm-objdump/, but there isn't any easy way around it: the logic
in question specifically applies to disassembling an object file, and
that code simply isn't located in lib/Target, at least at the moment.
Differential Revision: https://reviews.llvm.org/D60927
llvm-svn: 363903
This includes all the obvious bitwise operations (AND, OR, BIC, ORN,
MVN) in register-to-register forms, and the immediate forms of
AND/OR/BIC/ORN; byte-order reverse instructions; and the VMOVs that
access a single lane of a vector.
Some of those VMOVs (specifically, the ones that access a 32-bit lane)
share an encoding with existing instructions that were disassembled as
accessing half of a d-register (e.g. `vmov.32 r0, d1[0]`), but in
8.1-M they're now written as accessing a quarter of a q-register (e.g.
`vmov.32 r0, q0[2]`). The older syntax is still accepted by the
assembler.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62673
llvm-svn: 363838
Summary:
When identifing instructions that can be folded into a MOVCC instruction,
checking for a predicate operand is not enough, also need to check for
thumb2 function, with restrict-IT, is the machine instruction eligible for
ARMv8 IT or not.
Notes in ARMv8-A Architecture Reference Manual, section "Partial deprecation of IT"
https://usermanual.wiki/Pdf/ARM20Architecture20Reference20ManualARMv8.1667877052.pdf
"ARMv8-A deprecates some uses of the T32 IT instruction. All uses of IT that apply to
instructions other than a single subsequent 16-bit instruction from a restricted set
are deprecated, as are explicit references to the PC within that single 16-bit
instruction. This permits the non-deprecated forms of IT and subsequent instructions
to be treated as a single 32-bit conditional instruction."
Reviewers: efriedma, lebedev.ri, t.p.northover, jmolloy, aemerson, compnerd, stoklund, ostannard
Reviewed By: ostannard
Subscribers: ostannard, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63474
llvm-svn: 363739
This includes saturating and non-saturating shifts, both with
immediate shift count and with the shift counts given by another
vector register; VSHLC (in which the bits shifted out of each active
vector lane are shifted in to the next active lane); and also VMOVL,
which is enough like an immediate shift that it didn't fit too badly
in this category.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62672
llvm-svn: 363696
Summary:
These form a small family of their own, to go with the floating-point
VMINNM/VMAXNM instructions added in a previous commit.
They introduce the first of many special cases in the mnemonic
recognition code, because VMIN with the E suffix used by the VPT
predication system needs to avoid being interpreted as the nonexistent
instruction 'VMI' with an ordinary 'NE' condition suffix.
Reviewers: dmgreen, samparker, SjoerdMeijer, t.p.northover
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62671
llvm-svn: 363695
Summary:
Their names began with a mishmash of `MVE_`, `t2` and no prefix at
all. Now they all start with `MVE_`, which seems like a reasonable
choice on the grounds that (a) NEON is the thing they're most at risk
of being confused with, and (b) MVE implies Thumb-2, so a prefix
indicating MVE is strictly more specific than one indicating Thumb-2.
Reviewers: ostannard, SjoerdMeijer, dmgreen
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63492
llvm-svn: 363690