Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.
Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.
There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.
Reviewers: chandlerc, hfinkel
Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66428
llvm-svn: 371284
Summary:
When inserting uses from outside the MemorySSA creation, we don't
normally need to rename uses, based on the assumption that there will be
no inserted Phis (if Def existed that required a Phi, that Phi already
exists). However, when dealing with unreachable blocks, MemorySSA will
optimize away Phis whose incoming blocks are unreachable, and these Phis end
up being re-added when inserting a Use.
There are two potential solutions here:
1. Analyze the inserted Phis and clean them up if they are unneeded
(current method for cleaning up trivial phis does not cover this)
2. Leave the Phi in place and rename uses, the same way as whe inserting
defs.
This patch use approach 2.
Resolves first test in PR42940.
Reviewers: george.burgess.iv
Subscribers: Prazek, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66033
llvm-svn: 369291
This patch applies only to the new pass manager.
Currently, when MSSA Analysis is available, and pass to each loop pass, it will be preserved by that loop pass.
Hence, mark the analysis preserved based on that condition, vs the current `EnableMSSALoopDependency`. This leaves the global flag to affect only the entry point in the loop pass manager (in FunctionToLoopPassAdaptor).
llvm-svn: 369181
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
Summary:
Hoisting/sinking instruction out of a loop isn't always beneficial. Hoisting an instruction from a cold block inside a loop body out of the loop could hurt performance. This change makes Loop ICM profile aware - it now checks block frequency to make sure hoisting/sinking anly moves instruction to colder block.
Test Plan:
ninja check
Reviewers: asbirlea, sanjoy, reames, nikic, hfinkel, vsk
Reviewed By: asbirlea
Subscribers: fhahn, vsk, davidxl, xbolva00, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65060
llvm-svn: 368526
For some targets the LICM pass can result in sub-optimal code in some
cases where it would be better not to run the pass, but it isn't
always possible to suppress the transformations heuristically.
Where the front-end has insight into such cases it is beneficial
to attach loop metadata to disable the pass - this change adds the
llvm.licm.disable metadata to enable that.
Differential Revision: https://reviews.llvm.org/D64557
llvm-svn: 368296
This makes the functions in Loads.h require a type to be specified
independently of the pointer Value so that when pointers have no structure
other than address-space, it can still do its job.
Most callers had an obvious memory operation handy to provide this type, but a
SROA and ArgumentPromotion were doing more complicated analysis. They get
updated to merge the properties of the various instructions they were
considering.
llvm-svn: 365468
Summary:
The getClobberingMemoryAccess API checks for clobbering accesses in a loop by walking the backedge. This may check if a memory access is being
clobbered by the loop in a previous iteration, depending how smart AA got over the course of the updates in MemorySSA (it does not occur when built from scratch).
If no clobbering access is found inside the loop, it will optimize to an access outside the loop. This however does not mean that access is safe to sink.
Given:
```
for i
load a[i]
store a[i]
```
The access corresponding to the load can be optimized to outside the loop, and the load can be hoisted. But it is incorrect to sink it.
In order to sink the load, we'd need to check no Def clobbers the Use in the same iteration. With this patch we currently restrict sinking to either
Defs not existing in the loop, or Defs preceding the load in the same block. An easy extension is to ensure the load (Use) post-dominates all Defs.
Caught by PR42294.
This issue also shed light on the converse problem: hoisting stores in this same scenario would be illegal. With this patch we restrict
hoisting of stores to the case when their corresponding Defs are dominating all Uses in the loop.
Reviewers: george.burgess.iv
Subscribers: jlebar, Prazek, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63582
llvm-svn: 363982
Summary:
The method `getLoopPassPreservedAnalyses` should not mark MemorySSA as
preserved, because it's being called in a lot of passes that do not
preserve MemorySSA.
Instead, mark the MemorySSA analysis as preserved by each pass that does
preserve it.
These changes only affect the new pass mananger.
Reviewers: chandlerc
Subscribers: mehdi_amini, jlebar, Prazek, george.burgess.iv, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62536
llvm-svn: 363091
When an outer loop gets deleted by a different pass, before LICM visits
it, we cannot clean up its sub-loops in AliasSetMap, because at the
point we receive the deleteAnalysisLoop callback for the outer loop, the loop
object is already invalid and we cannot access its sub-loops any longer.
Reviewers: asbirlea, sanjoy, chandlerc
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D61904
llvm-svn: 360704
This is a follow-up to r291037+r291258, which used null debug locations
to prevent jumpy line tables.
Using line 0 locations achieves the same effect, but works better for
crash attribution because it preserves the right inline scope.
Differential Revision: https://reviews.llvm.org/D60913
llvm-svn: 358791
Summary:
Make the flags in LICM + MemorySSA tuning options in the old and new
pass managers.
Subscribers: mehdi_amini, jlebar, Prazek, george.burgess.iv, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60490
llvm-svn: 358772
Summary:
Before this patch, if any Use existed in the loop, with a defining
access in the loop, we conservatively decide to not move the store.
What this approach was missing, is that ordered loads are not Uses, they're Defs
in MemorySSA. So, even when the clobbering walker does not find that
volatile load to interfere, we still cannot hoist a store past a
volatile load.
Resolves PR41140.
Reviewers: george.burgess.iv
Subscribers: sanjoy, jlebar, Prazek, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59564
llvm-svn: 356588
This patch fixes an issue where we would compute an unnecessarily small alignment during scalar promotion when no store is not to be guaranteed to execute, but we've proven load speculation safety. Since speculating a load requires proving the existing alignment is valid at the new location (see Loads.cpp), we can use the alignment fact from the load.
For non-atomics, this is a performance problem. For atomics, this is a correctness issue, though an *incredibly* rare one to see in practice. For atomics, we might not be able to lower an improperly aligned load or store (i.e. i32 align 1). If such an instruction makes it all the way to codegen, we *may* fail to codegen the operation, or we may simply generate a slow call to a library function. The part that makes this super hard to see in practice is that the memory location actually *is* well aligned, and instcombine knows that. So, to see a failure, you have to have a) hit the bug in LICM, b) somehow hit a depth limit in InstCombine/ValueTracking to avoid fixing the alignment, and c) then have generated an instruction which fails codegen rather than simply emitting a slow libcall. All around, pretty hard to hit.
Differential Revision: https://reviews.llvm.org/D58809
llvm-svn: 355217
Summary:
The original assumption for the insertDef method was that it would not
materialize Defs out of no-where, hence it will not insert phis needed
after inserting a Def.
However, when cloning an instruction (use case used in LICM), we do
materialize Defs "out of no-where". If the block receiving a Def has at
least one other Def, then no processing is needed. If the block just
received its first Def, we must check where Phi placement is needed.
The only new usage of insertDef is in LICM, hence the trigger for the bug.
But the original goal of the method also fails to apply for the move()
method. If we move a Def from the entry point of a diamond to either the
left or right blocks, then the merge block must add a phi.
While this usecase does not currently occur, or may be viewed as an
incorrect transformation, MSSA must behave corectly given the scenario.
Resolves PR40749 and PR40754.
Reviewers: george.burgess.iv
Subscribers: sanjoy, jlebar, Prazek, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58652
llvm-svn: 355040
Summary:
Unlimitted number of calls to getClobberingAccess can lead to high
compile times in pathological cases.
Switching EnableLicmCap flag from bool to int, and enabling to default 100.
(tested to be appropriate for current bechmarks)
We can revisit this value when enabling MemorySSA.
Reviewers: sanjoy, chandlerc, george.burgess.iv
Subscribers: jlebar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57968
llvm-svn: 353897
Summary:
If there is no clobbering access for a store inside the loop, that store
can only be hoisted if there are no interfearing loads.
A more general verification introduced here: there are no loads that are
not optimized to an access outside the loop.
Addresses PR40586.
Reviewers: george.burgess.iv
Subscribers: sanjoy, jlebar, Prazek, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57967
llvm-svn: 353734
Summary:
Experimentally we found that promotion to scalars carries less benefits
than sinking and hoisting in LICM. When using MemorySSA, we build an
AliasSetTracker on demand in order to reuse the current infrastructure.
We only build it if less than AccessCapForMSSAPromotion exist in the
loop, a cap that is by default set to 250. This value ensures there are
no runtime regressions, and there are small compile time gains for
pathological cases. A much lower value (20) was found to yield a single
regression in the llvm-test-suite and much higher benefits for compile
times. Conservatively we set the current cap to a high value, but we will
explore lowering it when MemorySSA is enabled by default.
Reviewers: sanjoy, chandlerc
Subscribers: nemanjai, jlebar, Prazek, george.burgess.iv, jfb, jsji, llvm-commits
Differential Revision: https://reviews.llvm.org/D56625
llvm-svn: 353339
This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57172
llvm-svn: 352911
Summary:
MemorySSA needs updating each time an instruction is moved.
LICM and control flow hoisting re-hoists instructions, thus needing another update when re-moving those instructions.
Pending cleanup: the MSSA update is duplicated, should be moved inside moveInstructionBefore.
Reviewers: jnspaulsson
Subscribers: sanjoy, jlebar, Prazek, george.burgess.iv, llvm-commits
Differential Revision: https://reviews.llvm.org/D57176
llvm-svn: 352092
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
Step 2 in using MemorySSA in LICM:
Use MemorySSA in LICM to do sinking and hoisting, all under "EnableMSSALoopDependency" flag.
Promotion is disabled.
Enable flag in LICM sink/hoist tests to test correctness of this change. Moved one test which
relied on promotion, in order to test all sinking tests.
Reviewers: sanjoy, davide, gberry, george.burgess.iv
Subscribers: llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D40375
llvm-svn: 350879
Current strategy of dropping `InstructionPrecedenceTracking` cache is to
invalidate the entire basic block whenever we change its contents. In fact,
`InstructionPrecedenceTracking` has 2 internal strictures: `OrderedInstructions`
that is needed to be invalidated whenever the contents changes, and the map
with first special instructions in block. This second map does not need an
update if we add/remove a non-special instuction because it cannot
affect the contents of this map.
This patch changes API of `InstructionPrecedenceTracking` so that it now
accounts for reasons under which we invalidate blocks. This should lead
to much less recalculations of the map and should save us some compile time
because in practice we don't typically add/remove special instructions.
Differential Revision: https://reviews.llvm.org/D54462
Reviewed By: efriedma
llvm-svn: 350694
In some cases the order that we hoist instructions in means that when rehoisting
(which uses the same order as hoisting) we can rehoist to a block A, then a
block B, then block A again. This currently causes an assertion failure as it
expects that when changing the hoist point it only ever moves to a block that
dominates the hoist point being moved from.
Fix this by moving the re-hoist point when it doesn't dominate the dominator of
hoisted instruction, or in other words when it wouldn't dominate the uses of
the instruction being rehoisted.
Differential Revision: https://reviews.llvm.org/D55266
llvm-svn: 350408
Summary:
The remaining code paths that ControlFlowHoisting introduced that were
not disabled, increased compile time by 3x for some benchmarks.
The time is spent in DominatorTree updates.
Reviewers: john.brawn, mkazantsev
Subscribers: sanjoy, jlebar, llvm-commits
Differential Revision: https://reviews.llvm.org/D55313
llvm-svn: 348345
This commit caused a large compile-time slowdown in some cases when NDEBUG is
off due to the dominator tree verification it added. Fix this by only doing
dominator tree and loop info verification when something has been hoisted.
Differential Revision: https://reviews.llvm.org/D52827
llvm-svn: 347889
This reverts commits r347776 and r347778.
The first one, r347776, caused significant compile time regressions
for certain input files, see PR39836 for details.
llvm-svn: 347867
This commit caused failures because it failed to correctly handle cases where
we hoist a phi, then hoist a use of that phi, then have to rehoist that use. We
need to make sure that we rehoist the use to _after_ the hoisted phi, which we
do by always rehoisting to the immediate dominator instead of just rehoisting
everything to the original preheader.
An option is also added to control whether control flow is hoisted, which is
off in this commit but will be turned on in a subsequent commit.
Differential Revision: https://reviews.llvm.org/D52827
llvm-svn: 347776
The general approach taken is to make note of loop invariant branches, then when
we see something conditional on that branch, such as a phi, we create a copy of
the branch and (empty versions of) its successors and hoist using that.
This has no impact by itself that I've been able to see, as LICM typically
doesn't see such phis as they will have been converted into selects by the time
LICM is run, but once we start doing phi-to-select conversion later it will be
important.
Differential Revision: https://reviews.llvm.org/D52827
llvm-svn: 347190
This patch relaxes overconservative checks on whether or not we could write
memory before we execute an instruction. This allows us to hoist guards out of
loops even if they are not in the header block.
Differential Revision: https://reviews.llvm.org/D50891
Reviewed By: fedor.sergeev
llvm-svn: 346643
LICM relies on variable `MustExecute` which is conservatively set to `false`
in all non-headers. It is used when we decide whether or not we want to hoist
an instruction or a guard.
For the guards, it might be too conservative to use this variable, we can
instead use a more precise logic from LoopSafetyInfo. Currently it is only NFC
because `IsMemoryNotModified` is also conservatively set to `false` for all
non-headers, and we cannot hoist guards from non-header blocks. However once we
give up using `IsMemoryNotModified` and use a smarter check instead, this will
allow us to hoist guards from all mustexecute non-header blocks.
Differential Revision: https://reviews.llvm.org/D50888
Reveiwed By: fedor.sergeev
llvm-svn: 346204
This patch makes LICM use `ICFLoopSafetyInfo` that is a smarter version
of LoopSafetyInfo that leverages power of Implicit Control Flow Tracking
to keep track of throwing instructions and give less pessimistic answers
to queries related to throws.
The ICFLoopSafetyInfo itself has been introduced in rL344601. This patch
enables it in LICM only.
Differential Revision: https://reviews.llvm.org/D50377
Reviewed By: apilipenko
llvm-svn: 346201
This patch factors out a function that makes all required updates
whenever an instruction gets erased.
Differential Revision: https://reviews.llvm.org/D54011
Reviewed By: apilipenko
llvm-svn: 345914