Summary:
We can now manifest alignment information in load/store instructions if
the pointer is known to have a better alignment.
Reviewers: uenoku, sstefan1, lebedev.ri
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66567
llvm-svn: 369804
Started implementing the vector case and realized the scalar case hadn't handled the GEP producing a different type than the base correctly. It's entertaining seeing what slips through review when we're focused on the 'hard' parts. :(
Also adding an extra vector test as it happened to be in workspace and wasn't worth separating.
llvm-svn: 369795
This generalizes the isGEPKnownNonNull rule from ValueTracking to apply when we do not know if the base is non-null, and thus need to replace one condition with another.
The core notion is that since an inbounds GEP can only form null if the base pointer is null and the offset is zero. However, if the offset is non-zero, the the "inbounds" marker makes the result poison. Thus, we're free to ignore the case where the offset is non-zero. Similarly, there's no case under which a non-null base can result in a null result without generating poison.
Differential Revision: https://reviews.llvm.org/D66608
llvm-svn: 369789
Summary:
If the unique return value is a constant we now replace call uses with
that constant.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66551
llvm-svn: 369785
Summary:
If we have a loop in which the dereferenceability of a pointer decreases
we did slowly decrease it iteration by iteration, leading to a timeout.
With this patch we detect such circular reasoning and indicate a
fixpoint early.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66558
llvm-svn: 369784
Summary:
If we have a negative inbounds offset dereferenceabily "grows". However,
until we do not handle the overflow that can occur in the
dereferenceable bytes and the problem with loops, we simply do not grow
the state.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66557
llvm-svn: 369771
If the number of potentially returned values not change since the last
traversal we do not need to visit the returned values again. This works
as we only add values to the returned values set now.
Differential Revision: https://reviews.llvm.org/D66484
llvm-svn: 369770
Summary:
When we have new attributes and we end the fixpoint iteration because
the iteration limit is reached, we need to treat the new ones as if they
changed in the last iteration, as they might have.
This adds a test for which we should not derive anything regardless of
the iteration limit, e.g., if we abort there should not be any
attributes manifested in the IR.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66549
llvm-svn: 369768
Summary:
Keep aliasees alive if their alias is live, otherwise we end up with an
alias to a declaration, which is invalid. This can happen when the
aliasee is weak and non-prevailing.
This fix exposed the fact that we were then attempting to internalize
the weak symbol, which was not exported as it was not prevailing. We
should not internalize interposable symbols in general, unless this is
the prevailing copy, since it can lead to incorrect inlining and other
optimizations. Most of the changes in this patch are due to the
restructuring required to pass down the prevailing callback.
Finally, while implementing the test cases, I found that in the case of
a weak aliasee that is still marked not live because its alias isn't
live, after dropping the definition we incorrectly marked the
declaration with weak linkage when resolving prevailing symbols in the
module. This was due to some special case handling for symbols marked
WeakLinkage in the summary located before instead of after a subsequent
check for the symbol being a declaration. It turns out that we don't
actually need this special case handling any more (looking back at the
history, when that was added the code was structured quite differently)
- we will correctly mark with weak linkage further below when the
definition hasn't been dropped.
Fixes PR42542.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, steven_wu, dexonsmith, dang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66264
llvm-svn: 369766
We were computing the loop exit value, but not ensuring the addrec belonged to the loop whose exit value we were computing. I couldn't actually trip this; the test case shows the basic setup which *might* trip this, but none of the variations I've tried actually do.
llvm-svn: 369730
The alignment is calculated incorrectly, thus sometimes it doesn't generate aligned mov instructions, as shown by the example below:
```
// b.cc
typedef long long index;
extern "C" index g_tid;
extern "C" index g_num;
void add3(float* __restrict__ a, float* __restrict__ b, float* __restrict__ c) {
index n = 64*1024;
index m = 16*1024;
index k = 4*1024;
index tid = g_tid;
index num = g_num;
__builtin_assume_aligned(a, 32);
__builtin_assume_aligned(b, 32);
__builtin_assume_aligned(c, 32);
for (index i0=tid*k; i0<m; i0+=num*k)
for (index i1=0; i1<n*m; i1+=m)
for (index i2=0; i2<k; i2++)
c[i1+i0+i2] = b[i0+i2] + a[i1+i0+i2];
}
```
Compile with `clang b.cc -Ofast -march=skylake -mavx2 -S`
```
vmovaps -224(%rdi,%rbx,4), %ymm0
vmovups -192(%rdi,%rbx,4), %ymm1 # should be movaps
vmovups -160(%rdi,%rbx,4), %ymm2 # should be movaps
vmovups -128(%rdi,%rbx,4), %ymm3 # should be movaps
vaddps -224(%rsi,%rbx,4), %ymm0, %ymm0
vaddps -192(%rsi,%rbx,4), %ymm1, %ymm1
vaddps -160(%rsi,%rbx,4), %ymm2, %ymm2
vaddps -128(%rsi,%rbx,4), %ymm3, %ymm3
vmovaps %ymm0, -224(%rdx,%rbx,4)
vmovups %ymm1, -192(%rdx,%rbx,4) # should be movaps
vmovups %ymm2, -160(%rdx,%rbx,4) # should be movaps
vmovups %ymm3, -128(%rdx,%rbx,4) # should be movaps
```
Differential Revision: https://reviews.llvm.org/D66575
Patch by Dun Liang
llvm-svn: 369723
One problem with untagging memory in landing pads is that it only works
correctly if the function that catches the exception is instrumented.
If the function is uninstrumented, we have no opportunity to untag the
memory.
To address this, replace landing pad instrumentation with personality function
wrapping. Each function with an instrumented stack has its personality function
replaced with a wrapper provided by the runtime. Functions that did not have
a personality function to begin with also get wrappers if they may be unwound
past. As the unwinder calls personality functions during stack unwinding,
the original personality function is called and the function's stack frame is
untagged by the wrapper if the personality function instructs the unwinder
to keep unwinding. If unwinding stops at a landing pad, the function is
still responsible for untagging its stack frame if it resumes unwinding.
The old landing pad mechanism is preserved for compatibility with old runtimes.
Differential Revision: https://reviews.llvm.org/D66377
llvm-svn: 369721
I noticed another instance of the issue where references to aliases were
being replaced with aliasees, this time in InstCombine. In the instance that
I saw it turned out to be only a QoI issue (a symbol ended up being missing
from the symbol table due to the last reference to the alias being removed,
preventing HWASAN from symbolizing a global reference), but it could easily
have manifested as incorrect behaviour.
Since this is the third such issue encountered (previously: D65118, D65314)
it seems to be time to address this common error/QoI issue once and for all
and make the strip* family of functions not look through aliases.
Includes a test for the specific issue that I saw, but no doubt there are
other similar bugs fixed here.
As with D65118 this has been tested to make sure that the optimization isn't
load bearing. I built Clang, Chromium for Linux, Android and Windows as well
as the test-suite and there were no size regressions.
Differential Revision: https://reviews.llvm.org/D66606
llvm-svn: 369697
Summary: In D65402, I want to get DerefState from AADereferenceable but it was not allowed. This patch moves DerefState definition into Attributor.h and makes AADerefenceable inherit StateWrapper.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66585
llvm-svn: 369653
Currently we do not properly translate addresses with PHIs if LoadBB !=
LI->getParent(), because PHITranslateAddr expects a direct predecessor as argument,
because it considers all instructions outside of the current block to
not requiring translation.
The amount of cases that trigger this should be very low, as most single
predecessor blocks should be folded into their predecessor by GVN before
we actually start with value numbering. It is still not guaranteed to
happen, so we should do PHI translation along all edges between the
loads' block and the predecessor where we have to place a load.
There are a few test cases showing current limits of the PHI translation, which
could be improved later.
Reviewers: spatel, reames, efriedma, john.brawn
Reviewed By: efriedma
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65020
llvm-svn: 369570
An intermediate extend is used to widen the narrow operand to the width of
the other (wider) operand. At that point, we have the same logic as the
existing transform that was restricted to folds of equal width zext/sext.
This mostly solves PR42700:
https://bugs.llvm.org/show_bug.cgi?id=42700
llvm-svn: 369519
For an internal function, if all its call sites are dead, the body of the function is considered dead.
Reviewers: jdoerfert, uenoku
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D66155
llvm-svn: 369470
Summary:
StringMap is used for storing call target to frequency map for AutoFDO. However the iterating order of StringMap is non-deterministic, which leads to non-determinism in AutoFDO profile output. Now new API getSortedCallTargets and SortCallTargets are added for deterministic ordering and output.
Roundtrip test for text profile and binary profile is added.
Reviewers: wmi, davidxl, danielcdh
Subscribers: hiraditya, mgrang, llvm-commits, twoh
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66191
llvm-svn: 369440
1. Update function name and stale code comments.
2. Use variable names that are less ambiguous.
3. Move operand checks into the function as early exits.
llvm-svn: 369390
Summary:
When the line format is wrong, we may end up accessing out of bound
memory. eg: the test with invalide line will cause assert.
Assertion `idx < size()' failed
The fix is to report fatal when we found mismatched line format.
Reviewers: qcolombet, volkan
Reviewed By: qcolombet
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66444
llvm-svn: 369389
Before, we create the set of abstract attributes initially and then
dealt with the fact hat a lookup could fail, e.g., return a nullptr.
This patch will ensure we always return a valid object from a lookup,
allowing us not only to remove the nullptr checks but also to grow the
set of abstract attributes "in-flight" on-demand.
One can now start from those that have the best chance of improving
performance without the need to specify all they might depend on.
While this introduces some boilerplate, the usage of attributes is much
easier and cleaner now.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66276
llvm-svn: 369331
Summary:
This is analogous to D66128 but for AADereferenceable. We have the logic
concentrated in the floating value updateImpl and we use the combiner
helper classes for arguments and return values.
The regressions will go away with "on-demand" attribute creation.
Improvements are already visible in the existing tests.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66272
llvm-svn: 369329
Summary:
What D66126 did for AAAlign, this patch does for AANonNull. Agian, the
logic becomes more concise and localized. Again, returned poiners are
not annotated properly but that will not be an issue if this lands with
the "on-demand" generation of attributes. First improvements due to the
genericValueTraversal are already visible.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66128
llvm-svn: 369328
The clamp operator should not take the known of the given state as the
known is potentially based on assumed information. This also adds TODOs
to guide improvements.
llvm-svn: 369327
We can avoid repetitive calls getSameOpcode() for already known tree elements by keeping MainOp and AltOp in TreeEntry.
Differential Revision: https://reviews.llvm.org/D64700
llvm-svn: 369315
Summary:
Simplify the API using Optional<> and address comments in
https://reviews.llvm.org/D66165
Reviewers: vitalybuka
Subscribers: hiraditya, llvm-commits, ostannard, pcc
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66317
llvm-svn: 369300
This reverts commit cedd0d9a6e.
Re-apply the original commit but make sure the variables are initialized
(even if they are not used) so UBSan is not complaining.
llvm-svn: 369294
Summary:
When inserting uses from outside the MemorySSA creation, we don't
normally need to rename uses, based on the assumption that there will be
no inserted Phis (if Def existed that required a Phi, that Phi already
exists). However, when dealing with unreachable blocks, MemorySSA will
optimize away Phis whose incoming blocks are unreachable, and these Phis end
up being re-added when inserting a Use.
There are two potential solutions here:
1. Analyze the inserted Phis and clean them up if they are unneeded
(current method for cleaning up trivial phis does not cover this)
2. Leave the Phi in place and rename uses, the same way as whe inserting
defs.
This patch use approach 2.
Resolves first test in PR42940.
Reviewers: george.burgess.iv
Subscribers: Prazek, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66033
llvm-svn: 369291
This patch applies only to the new pass manager.
Currently, when MSSA Analysis is available, and pass to each loop pass, it will be preserved by that loop pass.
Hence, mark the analysis preserved based on that condition, vs the current `EnableMSSALoopDependency`. This leaves the global flag to affect only the entry point in the loop pass manager (in FunctionToLoopPassAdaptor).
llvm-svn: 369181
This reverts commit 5dbb90bfe1.
As noted in the post-commit thread for r367891, this can create
a multiply that is lowered to a libcall that may not exist.
We need to improve the backend decomposition for integer multiply
before trying to re-land this (if it's still worthwhile after
doing the backend work).
llvm-svn: 369174
By partially resolving returned calls we did not record that they were
not fully resolved which caused odd behavior down the line. We could
also end up with some, but not all, returned values of the callee in the
returned values map of the caller, another odd behavior we want to
avoid.
llvm-svn: 369160
As a preparation to "on-demand" abstract attribute generation we need
implementations for all attributes (as they can be queried and then
created on-demand where we now fail to find one).
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66129
llvm-svn: 369155
Push LR register before calling __gnu_mcount_nc as it expects the value of LR register to be the top value of
the stack on ARM32.
Differential Revision: https://reviews.llvm.org/D65019
llvm-svn: 369147
Summary:
This is the first commit aiming to structure the attribute deduction.
The base idea is that we have default propagation patterns as listed
below on top of which we can add specific, e.g., context sensitive,
logic.
Deduction patterns used in this patch:
- argument states are determined from call site argument states,
see AAAlignArgument and AAArgumentFromCallSiteArguments.
- call site argument states are determined as if they were floating
values, see AAAlignCallSiteArgument and AAAlignFloating.
- floating value states are determined by traversing the def-use chain
and combining the states determined for the leaves, see
AAAlignFloating and genericValueTraversal.
- call site return states are determined from function return states,
see AAAlignCallSiteReturned and AACallSiteReturnedFromReturned.
- function return states are determined from returned value states,
see AAAlignReturned and AAReturnedFromReturnedValues.
Through this strategy all logic for alignment is concentrated in the
AAAlignFloating::updateImpl method.
Note: This commit works on its own but is part of a larger change that
involves "on-demand" creation of abstract attributes that will
participate in the fixpoint iteration. Without this part, we sometimes
do not have an AAAlign abstract attribute to query, loosing information
we determined before. All tests have appropriate FIXMEs and the
information will be recovered once we added all parts.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66126
llvm-svn: 369144
Until we have call site specific liveness and/or value information there
is no need to do call site specific deduction. Though, we need the
symbols in follow up patches that make Attributor::getAAFor return a
reference.
llvm-svn: 369143
Summary:
This patch should not change the behavior except that the added
initialize methods might indicate an optimistic fixpoint earlier. The
code movement is done to keep the attribute definitions in a single
block where it makes sense. No functional changes intended there.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66258
llvm-svn: 369142
This pattern may arise more frequently with an enhancement to SLP vectorization suggested in PR42755:
https://bugs.llvm.org/show_bug.cgi?id=42755
...but we should handle this pattern to make things easier for the backend either way.
For all in-tree targets that I looked at, codegen for typical vector sizes looks better when we change
to a vector select, so this is safe to do without a cost model (in other words, as a target-independent
canonicalization).
For example, if the condition of the select is a scalar, we end up with something like this on x86:
vpcmpgtd %xmm0, %xmm1, %xmm0
vpextrb $12, %xmm0, %eax
testb $1, %al
jne LBB0_2
## %bb.1:
vmovaps %xmm3, %xmm2
LBB0_2:
vmovaps %xmm2, %xmm0
Rather than the splat-condition variant:
vpcmpgtd %xmm0, %xmm1, %xmm0
vpshufd $255, %xmm0, %xmm0 ## xmm0 = xmm0[3,3,3,3]
vblendvps %xmm0, %xmm2, %xmm3, %xmm0
Differential Revision: https://reviews.llvm.org/D66095
llvm-svn: 369140
Summary:
The scheduler's dependence graph gets the use-def dependencies by accessing the operands of the instructions in a bundle. However, buildTree_rec() may change the order of the operands in TreeEntry, and the scheduler is currently not aware of this. This is not causing any functional issues currently, because reordering is restricted to the operands of a single instruction. Once we support operand reordering across multiple TreeEntries, as shown here: http://www.llvm.org/devmtg/2019-04/slides/Poster-Porpodas-Supernode_SLP.pdf , the scheduler will need to get the correct operands from TreeEntry and not from the individual instructions.
In short, this patch:
- Connects the scheduler's bundle with the corresponding TreeEntry. It introduces new TE and Lane fields in ScheduleData.
- Moves the location where the operands of the TreeEntry are initialized. This used to take place in newTreeEntry() setting one operand at a time, but is now moved pre-order just before the recursion of buildTree_rec(). This is required because the scheduler needs to access both operands of the TreeEntry in tryScheduleBundle().
- Updates the scheduler to access the instruction operands through the TreeEntry operands instead of accessing the instruction operands directly.
Reviewers: ABataev, RKSimon, dtemirbulatov, Ayal, dorit, hfinkel
Reviewed By: ABataev
Subscribers: hiraditya, llvm-commits, lebedev.ri, rcorcs
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62432
llvm-svn: 369131
Summary:
This is continuation of D63829 / https://bugs.llvm.org/show_bug.cgi?id=42399
I thought naive pattern would solve my issue, but nope, it involved truncation,
thus more folds needed.. This isn't really the fold i'm interested in,
i need trunc-of-lshr, but i'we decided to start with `shl` because it's simpler.
In this case, no extra legality checks are needed:
https://rise4fun.com/Alive/CAb
We should be careful about not increasing instruction count,
since we need to produce `zext` because `and` is done in wider type.
Reviewers: spatel, nikic, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66057
llvm-svn: 369117
cppcheck + MSVC analyzer both over zealously warn that we might dereference a null Bundle pointer - add an assertion to check for null to silence the warning, plus its a good idea to check that we succeeded in finding a schedule bundle anyway....
llvm-svn: 369094
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
assume_safety implies that loads under "if's" can be safely executed
speculatively (unguarded, unmasked). However this assumption holds only for the
original user "if's", not those introduced by the compiler, such as the
fold-tail "if" that guards us from loading beyond the original loop trip-count.
Currently the combination of fold-tail and assume-safety pragmas results in
ignoring the fold-tail predicate that guards the loads, generating unmasked
loads. This patch fixes this behavior.
Differential Revision: https://reviews.llvm.org/D66106
Reviewers: Ayal, hsaito, fhahn
llvm-svn: 368973
Summary:
Fixes https://bugs.llvm.org/show_bug.cgi?id=36578 and https://bugs.llvm.org/show_bug.cgi?id=36296.
Supersedes: https://reviews.llvm.org/D55966
One of the fundamental transformation that CoroSplit pass performs before splitting the coroutine is to find which values need to survive between suspend and resume and provide a slot for them in the coroutine frame to spill and restore the value as needed.
Coroutine frame becomes available once the storage for it was allocated and that point is marked in the pre-split coroutine with a llvm.coro.begin intrinsic.
FE normally puts all of the user-authored code that would be accessing those values after llvm.coro.begin, however, sometimes instructions accessing those values would end up prior to coro.begin. For example, writing out a value of the parameter into the alloca done by the FE or instructions that are added by the optimization passes such as SROA when it rewrites allocas.
Prior to this change, CoroSplit pass would try to move instructions that may end up accessing the values in the coroutine frame after CoroBegin. However it would run into problems (report_fatal_error) if some of the values would be used both in the allocation function (for example allocator is passed as a parameter to a coroutine) and in the use-authored body of the coroutine.
To handle this case and to simplify the instruction moving logic, this change removes all of the instruction moving. Instead, we only change the uses of the spilled values that are dominated by coro.begin and leave other instructions intact.
Before:
```
%var = alloca i32
%1 = getelementptr .. %var; ; will move this one after coro.begin
%f = call i8* @llvm.coro.begin(
```
After:
```
%var = alloca i32
%1 = getelementptr .. %var; stays put
%f = call i8* @llvm.coro.begin(
```
If we discover that there is a potential write into an alloca, prior to coro.begin we would copy its value from the alloca into the spill slot in the coroutine frame.
Before:
```
%var = alloca i32
store .. %var ; will move this one after coro.begin
%f = call i8* @llvm.coro.begin(
```
After:
```
%var = alloca i32
store .. %var ;stays put
%f = call i8* @llvm.coro.begin(
%tmp = load %var
store %tmp, %spill.slot.for.var
```
Note: This change does not handle array allocas as that is something that C++ FE does not produce, but, it can be added in the future if need arises
Reviewers: llvm-commits, modocache, ben-clayton, tks2103, rjmccall
Reviewed By: modocache
Subscribers: bartdesmet
Differential Revision: https://reviews.llvm.org/D66230
llvm-svn: 368949
Summary:
Instead of constantly keeping track of the nonnull status with the
dereferenceable information we can simply query the nonnull attribute
whenever we need the information (debug + manifest).
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66113
llvm-svn: 368924
Summary:
As one of the first attributes, and one of the complex ones,
AAReturnedValues was not using liveness but we filtered the result after
the fact. This change adds liveness usage during the creation. The
algorithm is also improved and shorter.
The new algorithm will collect returned values over time using the
generic facilities that work with liveness already, e.g.,
genericValueTraversal which does not look at dead PHI node predecessors.
A test to show how this leads to better results is included.
Note: Unresolved calls and resolved calls are now tracked explicitly.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66120
llvm-svn: 368922
Summary:
If the associated context instruction is assumed dead we do not need to
update or manifest the state.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66116
llvm-svn: 368921
Summary:
The next attempt to clean up the Attributor interface before we grow it
further.
Before, we used a combination of two values (associated + anchor) and an
argument number (or -1) to determine a location. This was very fragile.
The new system uses exclusively IR positions and we restrict the
generation of IR positions to special constructor methods that verify
internal constraints we have. This will catch misuse early.
The auto-conversion, e.g., in getAAFor, is now performed through the
SubsumingPositionIterator. This iterator takes an IR position and allows
to visit all IR positions that "subsume" the given one, e.g., function
attributes "subsume" argument attributes of that function. For a
detailed breakdown see the class comment of SubsumingPositionIterator.
This patch also introduces the IRPosition::getAttrs() to extract IR
attributes at a certain position. The method knows how to look up in
different positions that are equivalent, e.g., the argument position for
call site arguments. We also introduce three new positions kinds such
that we have all IR positions where attributes can be placed and one for
"floating" values.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65977
llvm-svn: 368919
We already supported rewriting loop exit values for multiple exit loops, but if any of the loop exits were not computable, we gave up on all loop exit values. This patch generalizes the existing code to handle individual computable loop exits where possible.
As discussed in the review, this is a starting point for figuring out a better API. The code is a bit ugly, but getting it in lets us test as we go.
Differential Revision: https://reviews.llvm.org/D65544
llvm-svn: 368898
I'm planning on handling intrinsics that will benefit from checking
the address space enums. Don't bother moving the address collection
for now, since those won't need th enums.
llvm-svn: 368895
Summary:
We can't speculate around indirect branches: indirectbr and invoke. The
callbr instruction needs to be included here.
Reviewers: nickdesaulniers, manojgupta, chandlerc
Reviewed By: chandlerc
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66200
llvm-svn: 368873
This is the compiler-flag equivalent of the Predicate pragma
(https://reviews.llvm.org/D65197), to direct the vectorizer to fold the
remainder-loop into the main-loop using predication.
Differential Revision: https://reviews.llvm.org/D66108
Reviewers: Ayal, hsaito, fhahn, SjoerdMeije
llvm-svn: 368801
The support for swifterror allocas should work in all lowerings.
The support for swifterror arguments only really works in a lowering
with prototypes where you can ensure that the prototype also has a
swifterror argument; I'm not really sure how it could possibly be
made to work in the switch lowering.
llvm-svn: 368795
A quick contrast of this ABI with the currently-implemented ABI:
- Allocation is implicitly managed by the lowering passes, which is fine
for frontends that are fine with assuming that allocation cannot fail.
This assumption is necessary to implement dynamic allocas anyway.
- The lowering attempts to fit the coroutine frame into an opaque,
statically-sized buffer before falling back on allocation; the same
buffer must be provided to every resume point. A buffer must be at
least pointer-sized.
- The resume and destroy functions have been combined; the continuation
function takes a parameter indicating whether it has succeeded.
- Conversely, every suspend point begins its own continuation function.
- The continuation function pointer is directly returned to the caller
instead of being stored in the frame. The continuation can therefore
directly destroy the frame when exiting the coroutine instead of having
to leave it in a defunct state.
- Other values can be returned directly to the caller instead of going
through a promise allocation. The frontend provides a "prototype"
function declaration from which the type, calling convention, and
attributes of the continuation functions are taken.
- On the caller side, the frontend can generate natural IR that directly
uses the continuation functions as long as it prevents IPO with the
coroutine until lowering has happened. In combination with the point
above, the frontend is almost totally in charge of the ABI of the
coroutine.
- Unique-yield coroutines are given some special treatment.
llvm-svn: 368788
Summary:
Given a pattern like:
```
%old_cmp1 = icmp slt i32 %x, C2
%old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
%old_x_offseted = add i32 %x, C1
%old_cmp0 = icmp ult i32 %old_x_offseted, C0
%r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
```
it can be rewritten as more canonical pattern:
```
%new_cmp1 = icmp slt i32 %x, -C1
%new_cmp2 = icmp sge i32 %x, C0-C1
%new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
%r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
```
Iff `-C1 s<= C2 s<= C0-C1`
Also, `ULT` predicate can also be `UGE`; or `UGT` iff `C0 != -1` (+invert result)
Also, `SLT` predicate can also be `SGE`; or `SGT` iff `C2 != INT_MAX` (+invert result)
If `C1 == 0`, then all 3 instructions must be one-use; else at most either `%old_cmp1` or `%old_x_offseted` can have extra uses.
NOTE: if we could reuse `%old_cmp1` as one of the comparisons we'll have to build, this could be less limiting.
So there are two icmp's, each one with 3 predicate variants, so there are 9 fold variants:
| | ULT | UGE | UGT |
| SLT | https://rise4fun.com/Alive/yIJ | https://rise4fun.com/Alive/5BfN | https://rise4fun.com/Alive/INH |
| SGE | https://rise4fun.com/Alive/hd8 | https://rise4fun.com/Alive/Abk | https://rise4fun.com/Alive/PlzS |
| SGT | https://rise4fun.com/Alive/VYG | https://rise4fun.com/Alive/oMY | https://rise4fun.com/Alive/KrzC |
{F9730206}
This fold was brought up in https://reviews.llvm.org/D65148#1603922 by @dmgreen, and is needed to unblock that patch.
This patch requires D65530.
Reviewers: spatel, nikic, xbolva00, dmgreen
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits, dmgreen
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65765
llvm-svn: 368687
Summary:
This is rather unconventional..
As the comment there says, we don't have much folds for xor-of-icmps,
we try to turn them into an and-of-icmps, for which we have plenty of folds.
But if the ICmp we need to invert is not single-use - we give up.
As discussed in https://reviews.llvm.org/D65148#1603922,
we may have a non-canonical CLAMP pattern, with bit match and
select-of-threshold that we'll potentially clamp.
As it can be seen in `canonicalize-clamp-with-select-of-constant-threshold-pattern.ll`,
out of all 8 variations of the pattern, only two are **not** canonicalized into
the variant with and+icmp instead of bit math.
The reason is because the ICmp we need to invert is not single-use - we give up.
We indeed can't perform this fold at will, the general rule is that
we should not increase instruction count in InstCombine,
But we wouldn't end up increasing instruction count if we can adapt every other
user to the inverted value. This way the `not` we create **will** get folded,
and in the end the instruction count did not increase.
For that, of course, we need to look at the users of a Value,
which is again rather unconventional for InstCombine :S
Thus i'm proposing to be a little bit more insistive in `foldXorOfICmps()`.
The alternatives would be to not create that `not`, but add duplicate code to
manually invert all users; or to add some even less general combine to handle
some more specific pattern[s].
Reviewers: spatel, nikic, RKSimon, craig.topper
Reviewed By: spatel
Subscribers: hiraditya, jdoerfert, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65530
llvm-svn: 368685
Summary:
This commit fixed a race condition from multi-threaded thinLTO backends that causes non-deterministic memory corruption for a data structure used only by AutoFDO with compact binary profile.
GUIDToFuncNameMap, a static data member of type DenseMap in FunctionSamples is used as a per-module mapping from function name MD5 to name string when input AutoFDO profile is in compact binary format. However with ThinLTO, we can have parallel backends modifying and accessing the class static map concurrently. The fix is to make GUIDToFuncNameMap a member of SampleProfileLoader instead of a file static data.
Reviewers: wmi, davidxl, danielcdh
Subscribers: mehdi_amini, inglorion, hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65848
llvm-svn: 368596
Instead of matching value and then blindly casting to BinaryOperator
just to get the opcode, just match instruction and do no cast.
Fixes https://bugs.llvm.org/show_bug.cgi?id=42962
llvm-svn: 368554
Summary:
Hoisting/sinking instruction out of a loop isn't always beneficial. Hoisting an instruction from a cold block inside a loop body out of the loop could hurt performance. This change makes Loop ICM profile aware - it now checks block frequency to make sure hoisting/sinking anly moves instruction to colder block.
Test Plan:
ninja check
Reviewers: asbirlea, sanjoy, reames, nikic, hfinkel, vsk
Reviewed By: asbirlea
Subscribers: fhahn, vsk, davidxl, xbolva00, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65060
llvm-svn: 368526
If one of the values being shifted is a constant, since the new shift
amount is known-constant, the new shift will end up being constant-folded
so, we don't need that one-use restriction then.
llvm-svn: 368519
That one-use restriction is not needed for correctness - we have already
ensured that one of the shifts will go away, so we know we won't increase
the instruction count. So there is no need for that restriction.
llvm-svn: 368518
This is an extension of a transform that tries to produce positive floating-point
constants to improve canonicalization (and hopefully lead to more reassociation
and CSE).
The original patches were:
D4904
D5363 (rL221721)
But as the test diffs show, these were limited to basic patterns by walking from
an instruction to its single user rather than recursively moving up the def-use
sequence. No fast-math is required here because we're only rearranging implicit
FP negations in intermediate ops.
A motivating bug is:
https://bugs.llvm.org/show_bug.cgi?id=32939
Differential Revision: https://reviews.llvm.org/D65954
llvm-svn: 368512
The default behavior of Clang's indirect function call checker will replace
the address of each CFI-checked function in the output file's symbol table
with the address of a jump table entry which will pass CFI checks. We refer
to this as making the jump table `canonical`. This property allows code that
was not compiled with ``-fsanitize=cfi-icall`` to take a CFI-valid address
of a function, but it comes with a couple of caveats that are especially
relevant for users of cross-DSO CFI:
- There is a performance and code size overhead associated with each
exported function, because each such function must have an associated
jump table entry, which must be emitted even in the common case where the
function is never address-taken anywhere in the program, and must be used
even for direct calls between DSOs, in addition to the PLT overhead.
- There is no good way to take a CFI-valid address of a function written in
assembly or a language not supported by Clang. The reason is that the code
generator would need to insert a jump table in order to form a CFI-valid
address for assembly functions, but there is no way in general for the
code generator to determine the language of the function. This may be
possible with LTO in the intra-DSO case, but in the cross-DSO case the only
information available is the function declaration. One possible solution
is to add a C wrapper for each assembly function, but these wrappers can
present a significant maintenance burden for heavy users of assembly in
addition to adding runtime overhead.
For these reasons, we provide the option of making the jump table non-canonical
with the flag ``-fno-sanitize-cfi-canonical-jump-tables``. When the jump
table is made non-canonical, symbol table entries point directly to the
function body. Any instances of a function's address being taken in C will
be replaced with a jump table address.
This scheme does have its own caveats, however. It does end up breaking
function address equality more aggressively than the default behavior,
especially in cross-DSO mode which normally preserves function address
equality entirely.
Furthermore, it is occasionally necessary for code not compiled with
``-fsanitize=cfi-icall`` to take a function address that is valid
for CFI. For example, this is necessary when a function's address
is taken by assembly code and then called by CFI-checking C code. The
``__attribute__((cfi_jump_table_canonical))`` attribute may be used to make
the jump table entry of a specific function canonical so that the external
code will end up taking a address for the function that will pass CFI checks.
Fixes PR41972.
Differential Revision: https://reviews.llvm.org/D65629
llvm-svn: 368495
Refactor `LibCallSimplifier::optimizeExp2()` to use the new
`emitBinaryFloatFnCall()` version that fetches the function name from TLI.
llvm-svn: 368457
Summary:
Make sure that we report that changes has been made
by InstSimplify also in situations when only trivially
dead instructions has been removed. If for example a call
is removed the call graph must be updated.
Bug seem to have been introduced by llvm-svn r367173
(commit 02b9e45a7e), since the code in question
was rewritten in that commit.
Reviewers: spatel, chandlerc, foad
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65973
llvm-svn: 368401
GlobalAlias and GlobalIFunc ought to be treated the same by the IR
linker, so we can generalize the code to be in terms of their common
base class GlobalIndirectSymbol.
Differential Revision: https://reviews.llvm.org/D55046
llvm-svn: 368357
For some targets the LICM pass can result in sub-optimal code in some
cases where it would be better not to run the pass, but it isn't
always possible to suppress the transformations heuristically.
Where the front-end has insight into such cases it is beneficial
to attach loop metadata to disable the pass - this change adds the
llvm.licm.disable metadata to enable that.
Differential Revision: https://reviews.llvm.org/D64557
llvm-svn: 368296
Summary:
The ever growing switch required Attribute::AttrKind values but they
might not be available for all abstract attributes we deduce. With the
new method we track statistics at the abstract attribute level. The
provided macros simplify the usage and make the messages uniform.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65732
llvm-svn: 368227
Summary:
The wrapper reduces boilerplate code and also provide a nice way to
determine the state type used by an abstract attributes statically via
AAType::StateType.
This was already discussed as part of the review of D65711.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65786
llvm-svn: 368224
If we know everything is live there is no need to query for liveness.
Indicating a pessimistic fixpoint will cause the state to be "invalid"
which will cause the Attributor to not return the AAIsDead on request,
which will prevent us from querying isAssumedDead().
llvm-svn: 368223
Summary:
So far, whenever one wants to look at returned values, one had to deal
with the AAReturnedValues and potentially with the AAIsDead attribute.
In the same spirit as other checkForAllXXX methods, we add this
functionality now to the Attributor. By adopting the use sites we got
better results when return instructions were dead.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65733
llvm-svn: 368222
If we know the trip count, we should make sure the interleave factor won't cause the vectorized loop to exceed it.
Improves one of the cases from PR42674
Differential Revision: https://reviews.llvm.org/D65896
llvm-svn: 368215
Summary:
In SimplifySelectsFeedingBinaryOp, propagate fast math flags from the
outer op into both arms of the new select, to take advantage of
simplifications that require fast math flags.
Reviewers: mcberg2017, majnemer, spatel, arsenm, xbolva00
Subscribers: wdng, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65658
llvm-svn: 368175
This was initially committed in r368059 but got reverted in r368084
because there was a faulty logic in how the shift amounts type mismatch
was being handled (it simply wasn't).
I've added an explicit bailout before we SimplifyAddInst() - i don't think
it's designed in general to handle differently-typed values, even though
the actual problem only comes from ConstantExpr's.
I have also changed the common type deduction, to not just blindly
look past zext, but try to do that so that in the end types match.
Differential Revision: https://reviews.llvm.org/D65380
llvm-svn: 368141
Globals are instrumented by adding a pointer tag to their symbol values
and emitting metadata into a special section that allows the runtime to tag
their memory when the library is loaded.
Due to order of initialization issues explained in more detail in the comments,
shadow initialization cannot happen during regular global initialization.
Instead, the location of the global section is marked using an ELF note,
and we require libc support for calling a function provided by the HWASAN
runtime when libraries are loaded and unloaded.
Based on ideas discussed with @evgeny777 in D56672.
Differential Revision: https://reviews.llvm.org/D65770
llvm-svn: 368102
Summary:
This change gives Emscripten the ability to use more than one constructor
priorities that runs before ASan. By convention, constructor priorites 0-100
are reserved for use by the system. ASan on Emscripten now uses priority 50,
leaving plenty of room for use by Emscripten before and after ASan.
This change is done in response to:
https://github.com/emscripten-core/emscripten/pull/9076#discussion_r310323723
Reviewers: kripken, tlively, aheejin
Reviewed By: tlively
Subscribers: cfe-commits, dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D65684
llvm-svn: 368101
This reverts r368059 (git commit 0f95710976)
This caused Clang to assert while self-hosting and compiling
SystemZInstrInfo.cpp. Reduction is running.
llvm-svn: 368084
Commit r368064 was necessary after r367953 (D65712) broke the module
build. That happened, apparently, because the template class IRAttribute
defined in the header had a virtual method defined in the corresponding
source file (IRAttribute::manifest). To unbreak the situation this patch
introduces a helper function IRAttributeManifest::manifestAttrs which
is used to implement IRAttribute::manifest in the header. The deifnition
of the helper function is still in the source file.
Patch by jdoerfert (Johannes Doerfert)
Differential Revision: https://reviews.llvm.org/D65821
llvm-svn: 368076
Summary:
Currently `reassociateShiftAmtsOfTwoSameDirectionShifts()` only handles
two shifts one after another. If the shifts are `shl`, we still can
easily perform the fold, with no extra legality checks:
https://rise4fun.com/Alive/OQbM
If we have right-shift however, we won't be able to make it
any simpler than it already is.
After this the only thing missing here is constant-folding: (`NewShAmt >= bitwidth(X)`)
* If it's a logical shift, then constant-fold to `0` (not `undef`)
* If it's a `ashr`, then a splat of original signbit
https://rise4fun.com/Alive/E1Khttps://rise4fun.com/Alive/i0V
Reviewers: spatel, nikic, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65380
llvm-svn: 368059
D62198 introduced an option to relax the checks for
hasOnlyUniformBranches. This commit turns the option on by default, for
better code generation in some cases in AMDGPU.
Differential Revision: https://reviews.llvm.org/D63198
Change-Id: I9cbff002a1e74d3b7eb96b4192dc8129936d537d
llvm-svn: 368042
Summary:
Similar to `Attributor::checkForAllCallSites`, we now provide such
functionality for instructions of a certain opcode through
`Attributor::checkForAllInstructions` and the convenient wrapper
`Attributor::checkForAllCallLikeInstructions`. This cleans up code,
avoids duplication, and simplifies the usage of liveness information.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65731
llvm-svn: 367961
Summary:
Certain properties, e.g., an AttrKind, are not shared among all abstract
attributes. This patch extracts the functionality into a helper struct.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65712
llvm-svn: 367953
To remove boilerplate, mostly passing through values to the
AbstractAttriubute base class, we extract the state into an IRPosition
helper. There is no function change intended but the IRPosition struct
will provide more functionality down the line.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65711
llvm-svn: 367952
Summary:
The new scheme is similar to the pass manager and dyn_cast scheme where
we identify classes by the address of a static member. This is better
than the old scheme in which we had to "invent" new Attributor enums if
there was no corresponding one.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65710
llvm-svn: 367951
Summary:
Instead of storing the reference to the InformationCache we now pass it
whenever it might be needed.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65709
llvm-svn: 367950
A function is "no-return" if we never reach a return instruction, either
because there are none or the ones that exist are dead.
Test have been adjusted:
- either noreturn was added, or
- noreturn was avoided by modifying the code.
The new noreturn_{sync,async} test make sure we do handle invoke
instructions with a noreturn (and potentially nowunwind) callee
correctly, even in the presence of potential asynchronous exceptions.
llvm-svn: 367948
When we remove instructions cached references could still be live. This
patch avoids removing invoke instructions that are replaced by calls and
instead keeps them around but in a dead block.
llvm-svn: 367933
Similar to other places where we transform invokes to calls we need to
be careful if the handler (=personality) can catch asynchronous
exceptions as they are not modeled as part of nounwind.
This is tested with D59978.
llvm-svn: 367931
This appears to slightly help patterns similar to what's
shown in PR42874:
https://bugs.llvm.org/show_bug.cgi?id=42874
...but not in the way requested.
That fix will require some later IR and/or backend pass to
decompose multiply/shifts into something more optimal per
target. Those transforms already exist in some basic forms,
but probably need enhancing to catch more cases.
https://rise4fun.com/Alive/Qzv2
llvm-svn: 367891
Summary:
This contains various fixes:
- Explicitly determine and return the next noreturn instruction.
- If an invoke calls a noreturn function which is not nounwind we
keep the unwind destination live. This also means we require an
invoke. Though we can still add the unreachable to the normal
destination block.
- Check if the return instructions are dead after we look for calls
to avoid triggering an optimistic fixpoint in the presence of
assumed liveness information.
- Make the interface work with "const" pointers.
- Some simplifications
While additional tests are included, full coverage is achieved only with
D59978.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65701
llvm-svn: 367791
When a fixpoint is indicated the change status is known due to the
fixpoint kind. This simplifies a common code pattern by making the
connection explicit.
llvm-svn: 367790
Summary:
If the DerefBytesState (and thereby the DerefState) is invalid, we
reached a fixpoint for the whole DerefState as we will not
manifest/provide information then.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65586
llvm-svn: 367789
Currently, when a GVN or CSE optimization happens,
the llvm.preserve.access.index metadata is dropped.
This caused a problem for BPF AbstructMemberOffset phase
as it relies on the metadata (debuginfo types).
This patch added proper hooks in lib/Transforms to
preserve !preserve.access.index metadata. A test
case is added to ensure metadata is preserved under CSE.
Differential Revision: https://reviews.llvm.org/D65700
llvm-svn: 367769
Modifying other AbstractAttributes to use Liveness AA and skip dead instructions.
Reviewers: jdoerfert, uenoku
Subscribers: hiraditya, llvm-commits
Differential revision: https://reviews.llvm.org/D65243
llvm-svn: 367725
Summary:
Since the for loop iterates over BB's predecessors, the branch conditions found must have BB as one of the successors.
For an unconditional branch the successor must be BB, added `assert`.
For a conditional branch, one of the two successors must be BB, simplify `else if` to `else` and `assert`.
Sink common instructions outside the if/else block.
Reviewers: sanjoy.google
Subscribers: jlebar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65596
llvm-svn: 367699
As discussed in PR42696:
https://bugs.llvm.org/show_bug.cgi?id=42696
...but won't help that case yet.
We have an odd situation where a select operand equivalence fold was
implemented in InstSimplify when it could have been done more generally
in InstCombine if we allow dropping of {nsw,nuw,exact} from a binop operand.
Here's an example:
https://rise4fun.com/Alive/Xplr
%cmp = icmp eq i32 %x, 2147483647
%add = add nsw i32 %x, 1
%sel = select i1 %cmp, i32 -2147483648, i32 %add
=>
%sel = add i32 %x, 1
I've left the InstSimplify code in place for now, but my guess is that we'd
prefer to remove that as a follow-up to save on code duplication and
compile-time.
Differential Revision: https://reviews.llvm.org/D65576
llvm-svn: 367695
This patch adds support to the WholeProgramDevirt pass to perform
index-based WPD, which is invoked from ThinLTO during the thin link.
The ThinLTO backend (WPD import phase) behaves the same regardless of
whether the WPD decisions were made with the index-based or (the
existing) IR-based analysis.
Depends on D54815.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, arphaman, dang, llvm-commits
Differential Revision: https://reviews.llvm.org/D55153
llvm-svn: 367679
This patch adds an ability to disable profile based peeling
causing the peeling of all iterations and as a result prohibits
further unroll/peeling attempts on that loop.
The motivation to get an ability to separate peeling usage in
pipeline where in the first part we peel only separate iterations if needed
and later in pipeline we apply the full peeling which will prohibit further peeling.
Reviewers: reames, fhahn
Reviewed By: reames
Subscribers: hiraditya, zzheng, dmgreen, llvm-commits
Differential Revision: https://reviews.llvm.org/D64983
llvm-svn: 367668
Current peeling cost model can decide to peel off not all iterations
but only some of them to eliminate conditions on phi. At the same time
if any peeling happens the door for further unroll/peel optimizations on that
loop closes because the part of the code thinks that if peeling happened
it is profile based peeling and all iterations are peeled off.
To resolve this inconsistency the patch provides the flag which states whether
the full peeling basing on profile is enabled or not and peeling cost model
is able to modify this field like it does not PeelCount.
In a separate patch I will introduce an option to allow/disallow peeling basing
on profile.
To avoid infinite loop peeling the patch tracks the total number of peeled iteration
through llvm.loop.peeled.count loop metadata.
Reviewers: reames, fhahn
Reviewed By: reames
Subscribers: hiraditya, zzheng, dmgreen, llvm-commits
Differential Revision: https://reviews.llvm.org/D64972
llvm-svn: 367647
Added code to truncate or shrink offsets so that we can continue
base pointer search if size has changed along the way.
Differential Revision: https://reviews.llvm.org/D65612
llvm-svn: 367646
The previous change to fix crash in the vectorizer introduced
performance regressions. The condition to preserve pointer
address space during the search is too tight, we only need to
match the size.
Differential Revision: https://reviews.llvm.org/D65600
llvm-svn: 367624
Summary:
DominatorTree is invalid after SimplifyCFG because of a missed `Changed = true` when simplifying a branch condition and removing an edge.
Resolves PR42272.
Reviewers: zhizhouy, manojgupta
Subscribers: jlebar, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65490
llvm-svn: 367596
Summary:
LoopSimplify is preserved in the legacy pass manager, but not in the new pass manager.
Update LoopSimplify to preserve MemorySSA conditionally when the analysis is available (same behavior as the legacy pass manager).
Reviewers: chandlerc
Subscribers: mehdi_amini, jlebar, Prazek, george.burgess.iv, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65418
llvm-svn: 367594
This allows folding of the scalar epilogue loop (the tail) into the main
vectorised loop body when the loop is annotated with a "vector predicate"
metadata hint. To fold the tail, instructions need to be predicated (masked),
enabling/disabling lanes for the remainder iterations.
Differential Revision: https://reviews.llvm.org/D65197
llvm-svn: 367592
User of AAReturnedValues need to know if HasOverdefinedReturnedCalls
changed from false to true as it will impact the result of the return
value traversal (calls are not ignored anymore).
This will be tested with the tests in D59978.
llvm-svn: 367581
Summary:
While there is always a `Value::replaceAllUsesWith()`,
sometimes the replacement needs to be conditional.
I have only cleaned a few cases where `replaceUsesWithIf()`
could be used, to both add test coverage,
and show that it is actually useful.
Reviewers: jdoerfert, spatel, RKSimon, craig.topper
Reviewed By: jdoerfert
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, aheejin, george.burgess.iv, asbirlea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65528
llvm-svn: 367548
Summary:
Sometimes we need to swap true-val and false-val of a `SelectInst`.
Having a function for that is nicer than hand-writing it each time.
Reviewers: spatel, RKSimon, craig.topper, jdoerfert
Reviewed By: jdoerfert
Subscribers: jdoerfert, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65520
llvm-svn: 367547
This is a prepatory patch for future work on support exit value rewriting in loops with a mixture of computable and non-computable exit counts. The intention is to be "mostly NFC" - i.e. not enable any interesting new transforms - but in practice, there are some small output changes.
The test differences are caused by cases wherewhere getSCEVAtScope can simplify a single entry phi without needing any knowledge of the loop.
llvm-svn: 367485
Reverse the canonicalization of fneg relative to fmul/fdiv. That makes it
easier to implement the transforms (and possibly other fneg transforms) in
1 place because we can always start the pattern match from fneg (either the
legacy binop or the new unop).
There's a secondary practical benefit seen in PR21914 and PR42681:
https://bugs.llvm.org/show_bug.cgi?id=21914https://bugs.llvm.org/show_bug.cgi?id=42681
...hoisting fneg rather than sinking seems to play nicer with LICM in IR
(although this change may expose analysis holes in the other direction).
1. The instcombine test changes show the expected neutral IR diffs from
reversing the order.
2. The reassociation tests show that we were missing an optimization
opportunity to fold away fneg-of-fneg. My reading of IEEE-754 says
that all of these transforms are allowed (regardless of binop/unop
fneg version) because:
"For all other operations [besides copy/abs/negate/copysign], this
standard does not specify the sign bit of a NaN result."
In all of these transforms, we always have some other binop
(fadd/fsub/fmul/fdiv), so we are free to flip the sign bit of a
potential intermediate NaN operand.
(If that interpretation is wrong, then we must already have a bug in
the existing transforms?)
3. The clang tests shouldn't exist as-is, but that's effectively a
revert of rL367149 (the test broke with an extension of the
pre-existing fneg canonicalization in rL367146).
Differential Revision: https://reviews.llvm.org/D65399
llvm-svn: 367447
When vectorizer strips pointers it can eventually end up with
pointers of two different sizes, then SCEV will crash.
Differential Revision: https://reviews.llvm.org/D65480
llvm-svn: 367443
We have some code marks instructions with struct operands as overdefined,
but if the instruction is a call to a function with tracked arguments,
this breaks the assumption that the lattice values of all call sites
are not overdefined and will be replaced by a constant.
This also re-adds the assertion from D65222, with additionally skipping
non-callsite uses. This patch should address the cases reported in which
the assertion fired.
Fixes PR42738.
Reviewers: efriedma, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D65439
llvm-svn: 367430
Summary:
While `-div-rem-pairs` pass can decompose rem in div+rem pair when div-rem pair
is unsupported by target, nothing performs the opposite fold.
We can't do that in InstCombine or DAGCombine since neither of those has access to TTI.
So it makes most sense to teach `-div-rem-pairs` about it.
If we matched rem in expanded form, we know we will be able to place div-rem pair
next to each other so we won't regress the situation.
Also, we shouldn't decompose rem if we matched already-decomposed form.
This is surprisingly straight-forward otherwise.
The original patch was committed in rL367288 but was reverted in rL367289
because it exposed pre-existing RAUW issues in internal data structures
of the pass; those now have been addressed in a previous patch.
https://bugs.llvm.org/show_bug.cgi?id=42673
Reviewers: spatel, RKSimon, efriedma, ZaMaZaN4iK, bogner
Reviewed By: bogner
Subscribers: bogner, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65298
llvm-svn: 367419
Summary:
`DivRemPairs` internally creates two maps:
* {sign, divident, divisor} -> div instruction
* {sign, divident, divisor} -> rem instruction
Then it iterates over rem map, and looks if there is an entry
in div map with the same key. Then depending on some internal logic
it may RAUW rem instruction with something else.
But if that rem instruction is an input to other div/rem,
then it was used as a key in these maps, so the old value (used in key)
is now dandling, because RAUW didn't update those maps.
And we can't even RAUW map keys in general, there's `ValueMap`,
but we don't have a single `Value` as key...
The bug was discovered via D65298, and the test there exists.
Now, i'm not sure how to expose this issue in trunk.
The bug is clearly there if i change the map keys to be `AssertingVH`/`PoisoningVH`,
but i guess this didn't miscompiled anything thus far?
I really don't think this is benin without that patch.
The fix is actually rather straight-forward - instead of trying to somehow
shoe-horn `ValueMap` here (doesn't fit, key isn't just `Value`), or writing a new
`ValueMap` with key being a struct of `Value`s, we can just have an intermediate
data structure - a vector, each entry containing matching `Div, Rem` pair,
and pre-filling it before doing any modifications.
This way we won't need to query map after doing RAUW, so no bug is possible.
Reviewers: spatel, bogner, RKSimon, craig.topper
Reviewed By: spatel
Subscribers: hiraditya, hans, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65451
llvm-svn: 367417
LoopInfo can be easily preserved by passing it to the functions that
modify the CFG (SplitCriticalEdge and MergeBlockIntoPredecessor.
SplitCriticalEdge also preserves LoopSimplify and LCSSA form when when passing in
LoopInfo. The test case shows that we preserve LoopSimplify and
LoopInfo. Adding addPreservedID(LCSSAID) did not preserve LCSSA for some
reason.
Also I am not sure if it is possible to preserve those in the new pass
manager, as they aren't analysis passes.
Reviewers: reames, hfinkel, davide, jdoerfert
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D65137
llvm-svn: 367332