r371901 was overeager and widenScalarDst() and the like in the legalizer
attempt to increment the insert point given in order to add new instructions
after the currently legalizing inst. In cases where the insertion point is not
exactly the current instruction, then callers need to de-compensate for the
behaviour by decrementing the insertion iterator before calling them. It's not
a nice state of affairs, for now just undo the problematic parts of the change.
llvm-svn: 372050
For some reason we sometimes insert new instructions one instruction before
the first non-PHI when legalizing. This can result in having non-PHI
instructions before PHIs, which mean that PHI elimination doesn't catch them.
Differential Revision: https://reviews.llvm.org/D67570
llvm-svn: 371901
Unlike SelectionDAG, treat this as a normally legalizable operation.
In SelectionDAG this is supposed to only ever formed if it's legal,
but I've found that to be restricting. For AMDGPU this is contextually
legal depending on whether denormal flushing is allowed in the use
function.
Technically we currently treat the denormal mode as a subtarget
feature, so custom lowering could be avoided. However I consider this
to be a defect, and this should be contextually dependent on the
controllable rounding mode of the parent function.
llvm-svn: 371800
This testcase is invalid, and caught by the verifier. For the verifier
to catch it, the live interval computation needs to complete. Remove
the assert so the verifier catches this, which is less confusing.
In this testcase there is an undefined use of a subregister, and lanes
which aren't used or defined. An equivalent testcase with the
super-register shrunk to have no untouched lanes already hit this
verifier error.
llvm-svn: 371792
This was relying on the SGPR usable for the carry out clobber to also
be used for the input. There was no carry out on gfx9. With no carry
out clobber to worry about, so the literal can just be directly used
with a VOP2 add.
llvm-svn: 371791
Current implementation of estimating divisions loses precision since it
estimates reciprocal first and does multiplication. This patch is to re-order
arithmetic operations in the last iteration in DAGCombiner to improve the
accuracy.
Reviewed By: Sanjay Patel, Jinsong Ji
Differential Revision: https://reviews.llvm.org/D66050
llvm-svn: 371713
Summary:
After hoisting and merging m0 initializations schedule them as early as
possible in the MBB. This helps the scheduler avoid hazards in some
cases.
Reviewers: rampitec, arsenm
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67450
llvm-svn: 371671
If there are multiple dead defs of the same virtual register, these
are required to be split into multiple virtual registers with separate
live intervals to avoid a verifier error.
llvm-svn: 371640
Summary:
This catches malformed mir files which specify alignment as log2 instead of pow2.
See https://reviews.llvm.org/D65945 for reference,
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: MatzeB, qcolombet, dschuff, arsenm, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, s.egerton, pzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67433
llvm-svn: 371608
The scalar f64 patterns don't work yet because they fail on multiple
results from the unused implicit def of scc in the result bit
operation.
llvm-svn: 371542
f64 doesn't work yet because tablegen currently doesn't handlde
REG_SEQUENCE.
This does regress some multi use VALU fneg cases since now the
immediate remains in an SGPR, and more moves are used for legalizing
the xor. This is a SIFixSGPRCopies deficiency.
llvm-svn: 371540
There's still a lot more to do, but this handles decomposing due to
alignment. I've gotten it to the point where nothing crashes or
infinite loops the legalizer.
llvm-svn: 371533
Handle it the same way as G_BUILD_VECTOR_TRUNC. Arguably only
G_BUILD_VECTOR_TRUNC should be legal for this, but G_BUILD_VECTOR will
probably be more convenient in most cases.
llvm-svn: 371440
This enables GlobalISel to handle various intrinsics. The custom node
pattern will be ignored, and the intrinsic will work. This will also
allow SelectionDAG to directly select the intrinsics, but as they are
all custom lowered to the nodes, this ends up leaving dead code in the
table.
Eventually either GlobalISel should add the equivalent of custom nodes
equivalent, or intrinsics should be directly used. These each have
different tradeoffs.
There are a few more to handle, but these are easy to handle
ones. Some others fail for other reasons.
llvm-svn: 371432
Unfortunately MnemonicAlias defines a "Predicates" field just like an
instruction or pattern, with a somewhat different interpretation.
This ends up overriding the intended Predicates set by
PredicateControl on the pseudoinstruction defintions with an empty
list. This allowed incorrectly selecting instructions that should have
been rejected due to the SubtargetPredicate from patterns on the
instruction definition.
This does remove the divergent predicate from the 64-bit shift
patterns, which were already not used for the 32-bit shift, so I'm not
sure what the point was. This also removes a second, redundant copy of
the 64-bit divergent patterns.
llvm-svn: 371427
Treat this as legal on gfx9 since it can use S_PACK_* instructions for
this.
This isn't used by anything yet. The same will probably apply to
16-bit G_BUILD_VECTOR without the trunc.
llvm-svn: 371423