Added TTI queries for the cost of a VP Memory operation, and added Opcode,
DataType and Alignment to the hasActiveVectorLength() interface.
Reviewed By: Roland Froese
Differential Revision: https://reviews.llvm.org/D109416
Reduce code duplication for commutative pattern matching
and fix a miscompile.
We can't safely propagate an undef element in this transform:
https://alive2.llvm.org/ce/z/s5xy55
getForArgument is missing support for atomic memory transfer
intrinsics. In terms of accessed locations they behave like regular
memory transfer intrinsics and we already support them as such in
getForSource/getForDest.
This adjusts all the MVE and CDE intrinsics now that v2i1 is a legal
type, to use a <2 x i1> as opposed to emulating the predicate with a
<4 x i1>. The v4i1 workarounds have been removed leaving the natural
v2i1 types, notably in vctp64 which now generates a v2i1 type.
AutoUpgrade code has been added to upgrade old IR, which needs to
convert the old v4i1 to a v2i1 be converting it back and forth to an
integer with arm.mve.v2i and arm.mve.i2v intrinsics. These should be
optimized away in the final assembly.
Differential Revision: https://reviews.llvm.org/D114455
DSE has some extra logic to determine the write location of library
calls like str*cpy and str*cat. This patch moves the logic to a new
MemoryLocation:getForDest variant, which takes a call and TLI.
This patch should be NFC, because no other places take advantage of the
new helper yet.
Suggested by @reames post-commit 7eec832def.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D114872
Fixes verification failure reported at:
https://reviews.llvm.org/rGc9f9be0381d1
The issue is that getSCEVAtScope() might compute a result without
inserting it in the ValuesAtScopes map in degenerate cases,
specifically if the ValuesAtScopes entry is invalidated during the
calculation. Arguably we should still insert the result if no
existing placeholder is found, but for now just tweak the logic
to only update ValuesAtScopesUsers if ValuesAtScopes is updated.
strcpy/strcat/strncat access memory starting from the passed in
pointers. Construct memory locations for their args using getAfter.
Discussed in D114872.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D114969
The size argument of strncpy can be used as bound for the size of
its pointer arguments.
strncpy is guaranteed to write N bytes and reads up to N bytes.
Reviewed By: xbolva00
Differential Revision: https://reviews.llvm.org/D114871
We needed a stricter version of m_Not for D114462, but I wasn't
sure if that was going to be required anywhere else, so I didn't bother
to make that reusable.
It turns out we have one more existing simplification that needs
this (currently miscompiles):
https://alive2.llvm.org/ce/z/9-nTKi
And there's at least one more fold in that family that we could add.
Differential Revision: https://reviews.llvm.org/D114882
The size argument for memset_chk is an upper bound for the size of the
pointer argument. memset_chk may write less than the specified length,
if it exceeds the specified max size and aborts.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D114870
Track which SCEVs are used as ExactNotTaken counts in
BackedgeTakenInfo structures, so we can directly determine which
loops need to be invalidated, rather than iterating over all BECounts.
This gives a small compile-time improvement on average, but the
motivation here is more to ensure there are no degenerate cases,
if the number of backedge taken counts is large.
Differential Revision: https://reviews.llvm.org/D114784
https://alive2.llvm.org/ce/z/4PaPDy
There's a related fold where the inner 'or' is replaced by 'and',
but that needs to be more careful about matching a 'not'.
Reduce duplication for handling the top-level commuted operands.
There are several other folds that should be moved in here, but
we need to make sure there's good test coverage.
ValuesAtScopes maps a SCEV and a Loop to another SCEV. While we
invalidate entries if the left-hand SCEV is invalidated, we
currently don't do this for the right-hand SCEV. Fix this by
tracking users in a reverse map and using it for invalidation.
This is conceptually the same change as D114738, but using the
reverse map to avoid performance issues.
Differential Revision: https://reviews.llvm.org/D114788
Fix assertion failure reported on D113349 by removing the assert.
While the produced expression should be equivalent, it may not
be strictly the same, e.g. due to lazy nowrap flag updates. Similar
to what the main createSCEV() code does, simply retain the old
value map entry if one already exists.
With the recently introduced tracking as well as D113349, we can
greatly simplify forgetSymbolicName(). In fact, we can simply
replace it with forgetMemoizedResults().
What forgetSymbolicName() used to do is to walk the IR use-def
chain to find all SCEVs that mention the SymbolicName. However,
thanks to use tracking, we can now determine the relevant SCEVs
in a more direct way. D113349 is needed to also clear out the
actual IR to SCEV mapping in ValueExprMap.
Differential Revision: https://reviews.llvm.org/D114263
After backedge taken counts have been calculated, we want to
invalidate all addrecs and dependent expressions in the loop,
because we might compute better results with the newly available
backedge taken counts. Previously this was done with a forgetLoop()
style use-def walk. With recent improvements to SCEV invalidation,
we can instead directly invalidate any SCEVs using addrecs in this
loop. This requires a great deal less subtlety to avoid invalidating
more than necessary, and in particular gets rid of the hack from
D113349. The change is similar to D114263 in spirit.
Relative to the previous landing attempt, this introduces an additional
flag on forgetMemoizedResults() to not remove SCEVUnknown phis from
the value map. The invalidation after BECount calculation wants to
leave these alone and skips them in its own use-def walk, but we can
still end up invalidating them via forgetMemoizedResults() if there
is another IR value with the same SCEV. This is intended as a temporary
workaround only, and the need for this should go away once the
getBackedgeTakenInfo() invalidation is refactored in the spirit of
D114263.
-----
This adds validation for consistency of ValueExprMap and
ExprValueMap, and fixes identified issues:
* Addrec construction directly wrote to ValueExprMap in a few places,
without updating ExprValueMap. Add a helper to ensures they stay
consistent. The adjustment in forgetSymbolicName() explicitly
drops the old value from the map, so that we don't rely on it
being overwritten.
* forgetMemoizedResultsImpl() was dropping the SCEV from
ExprValueMap, but not dropping the corresponding entries from
ValueExprMap.
Differential Revision: https://reviews.llvm.org/D113349
Relative to the previous landing attempt, this makes
insertValueToMap() resilient against the value already being
present in the map -- previously I only checked this for the
createSimpleAffineAddRec() case, but the same issue can also
occur for the general createNodeForPHI(). In both cases, the
addrec may be constructed and added to the map in a recursive
query trying to create said addrec. In this case, this happens
due to the invalidation when the BE count is computed, which
ends up clearing out the symbolic name as well.
-----
This adds validation for consistency of ValueExprMap and
ExprValueMap, and fixes identified issues:
* Addrec construction directly wrote to ValueExprMap in a few places,
without updating ExprValueMap. Add a helper to ensures they stay
consistent. The adjustment in forgetSymbolicName() explicitly
drops the old value from the map, so that we don't rely on it
being overwritten.
* forgetMemoizedResultsImpl() was dropping the SCEV from
ExprValueMap, but not dropping the corresponding entries from
ValueExprMap.
Differential Revision: https://reviews.llvm.org/D113349
Accum is guaranteed to be defined outside L (via Loop::isLoopInvariant
checks above). I think that should guarantee that the more powerful
ScalarEvolution::isLoopInvariant also determines that the value is loop
invariant.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D114634
The supplied test case, reduced from real world code, crashes with a
'Invalid size request on a scalable vector.' error.
Since it's similar in spirit to an existing LAA test, rename the file to
generalize it to both.
Differential Revision: https://reviews.llvm.org/D114155
(~a & b) ^ (a | b) --> a
This is the swapped and/or (Demorgan?) sibling fold for
the fold added with D114462 ( 892648b18a ).
This case is easier to specify because we are returning
a root value, not a 'not':
https://alive2.llvm.org/ce/z/SRzj4f
(a & b) ^ (~a | b) --> ~a
I was looking for a shortcut to reduce some of the complex logic
folds that are currently up for review (D113216
and others in that stack), and I found this missing from
instcombine/instsimplify.
There is a trade-off in putting it into instsimplify: because
we can't create new values here, we need a strict 'not' op (no
undef elements). Otherwise, the fold is not valid:
https://alive2.llvm.org/ce/z/k_AGGj
If this was in instcombine instead, we could create the proper
'not'. But having the fold here benefits other passes like GVN
that use instsimplify as an analysis.
There is a related fold where 'and' and 'or' are swapped, and
that is planned as a follow-up commit.
Differential Revision: https://reviews.llvm.org/D114462
This adds validation for consistency of ValueExprMap and
ExprValueMap, and fixes identified issues:
* Addrec construction directly wrote to ValueExprMap in a few places,
without updating ExprValueMap. Add a helper to ensures they stay
consistent. The adjustment in forgetSymbolicName() explicitly
drops the old value from the map, so that we don't rely on it
being overwritten.
* forgetMemoizedResultsImpl() was dropping the SCEV from
ExprValueMap, but not dropping the corresponding entries from
ValueExprMap.
Differential Revision: https://reviews.llvm.org/D113349
Update the reference publication for the SyncDependenceAnalysis and Divergence Analysis. Fix phrasing, formatting. Add comments on reducible loop limitation.
Reviewed By: sameerds
Differential Revision: https://reviews.llvm.org/D114146
This adds and uses look-up tables for non-loop branch probabilities, which have
have probabilities directly encoded into the tables for the different condition
codes. Compared to having this logic inlined in different functions, as it used
to be the case, I think this is compacter and thus also easier to check/cross
reference. This also adds a test for pointer heuristics that was missing.
Differential Revision: https://reviews.llvm.org/D114009