The existing code didn't add all necessary successors, which resulted in
disjoint basic blocks. These would end up not being legalized which, in the
best case, caused a fallback only in assert builds.
Here's an example:
https://godbolt.org/z/ndx15Enfj
We also end up getting weird codegen here as well.
Refactoring the code here allows us to correctly attach all successors. With
this patch, the above example gives correct codegen at -O0 with and without
asserts.
Also autogen the testcase to show that we add all the successors now.
Differential Revision: https://reviews.llvm.org/D113437
This was using MachineFunction::createExternalSymbolName() before, which seems
reasonable, but in fact this is freed before the asm emitter which tries to access
the function name string. Switching it to use the string returned by the attribute
seems to fix the problem.
As described on D111049, we're trying to remove the <string> dependency from error handling and replace uses of report_fatal_error(const std::string&) with the Twine() variant which can be forward declared.
This is a port of the feature that allows the StackProtector pass to omit
checking code for stack canary checks, and rely on SelectionDAG to do it at a
later stage. The reasoning behind this seems to be to prevent the IR checking
instructions from hindering tail-call optimizations during codegen.
Here we allow GlobalISel to also use that scheme. Doing so requires that we
do some analysis using some factored-out code to determine where to generate
code for the epilogs.
Not every case is handled in this patch since we don't have support for all
targets that exercise different stack protector schemes.
Differential Revision: https://reviews.llvm.org/D98200
This reverts commit d95cd81141.
The selector sometimes leaves unreachable blocks unselected because it uses a
postorder traversal for the block ordering.
With the trap intrinsics now being emitted, these blocks are no longer empty and
the unselected G_INTRINSIC instructions survive past selection. To fix this,
keep track of which blocks are selected and later delete any blocks that weren't
selected.
We were previously just ignoring unreachable, but targets like Darwin want to
keep unreachable instructions as traps.
Differential Revision: https://reviews.llvm.org/D110603
To avoid using the AST when emitting diagnostics, split the "dontcall"
attribute into "dontcall-warn" and "dontcall-error", and also add the
frontend attribute value as the LLVM attribute value. This gives us all
the information to report diagnostics we need from within the IR (aside
from access to the original source).
One downside is we directly use LLVM's demangler rather than using the
existing Clang diagnostic pretty printing of symbols.
Previous revisions didn't properly declare the new dependencies.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D110364
To avoid using the AST when emitting diagnostics, split the "dontcall"
attribute into "dontcall-warn" and "dontcall-error", and also add the
frontend attribute value as the LLVM attribute value. This gives us all
the information to report diagnostics we need from within the IR (aside
from access to the original source).
One downside is we directly use LLVM's demangler rather than using the
existing Clang diagnostic pretty printing of symbols.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D110364
When using instructions which have a MetadataAsValue argument
(e.g. some target-specific intrinsics) MD canonicalization strips
internal MDNodes with a single ConstantAsMetadata child. That
prevented IRTranslator from the proper translation of such a calls.
getMetadata() currently uses a weird API where it populates a
structure passed to it, and optionally merges into it. Instead,
we can return the AAMDNodes and provide a separate merge() API.
This makes usages more compact.
Differential Revision: https://reviews.llvm.org/D109852
Follow up to suggestions in D109103 via hans:
I think UnreachableDefault (or UnreachableFallthrough) would be a
better name now, since it doesn't just omit the range check, it also
omits the last bit test.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D109455
Otherwise we end up with an extra conditional jump, following by an
unconditional jump off the end of a function. ie.
bb.0:
BT32rr ..
JCC_1 %bb.4 ...
bb.1:
BT32rr ..
JCC_1 %bb.2 ...
JMP_1 %bb.3
bb.2:
...
bb.3.unreachable:
bb.4:
...
Should be equivalent to:
bb.0:
BT32rr ..
JCC_1 %bb.4 ...
JMP_1 %bb.2
bb.1:
bb.2:
...
bb.3.unreachable:
bb.4:
...
This can occur since at the higher level IR (Instruction) SwitchInsts
are required to have BBs for default destinations, even when it can be
deduced that such BBs are unreachable.
For most programs, this isn't an issue, just wasted instructions since the
unreachable has been statically proven.
The x86_64 Linux kernel when built with CONFIG_LTO_CLANG_THIN=y fails to
boot though once D106056 is re-applied. D106056 makes it more likely
that correlation-propagation (CVP) can deduce that the default case of
SwitchInsts are unreachable. The x86_64 kernel uses a binary post
processor called objtool, which emits this warning:
vmlinux.o: warning: objtool: cfg80211_edmg_chandef_valid()+0x169: can't
find jump dest instruction at .text.cfg80211_edmg_chandef_valid+0x17b
I haven't debugged precisely why this causes a failure at boot time, but
fixing this very obvious jump off the end of the function fixes the
warning and boot problem.
Link: https://bugs.llvm.org/show_bug.cgi?id=50080
Fixes: https://github.com/ClangBuiltLinux/linux/issues/679
Fixes: https://github.com/ClangBuiltLinux/linux/issues/1440
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D109103
Please refer to
https://lists.llvm.org/pipermail/llvm-dev/2021-September/152440.html
(and that whole thread.)
TLDR: the original patch had no prior RFC, yet it had some changes that
really need a proper RFC discussion. It won't be productive to discuss
such an RFC, once it's actually posted, while said patch is already
committed, because that introduces bias towards already-committed stuff,
and the tree is potentially in broken state meanwhile.
While the end result of discussion may lead back to the current design,
it may also not lead to the current design.
Therefore i take it upon myself
to revert the tree back to last known good state.
This reverts commit 4c4093e6e3.
This reverts commit 0a2b1ba33a.
This reverts commit d9873711cb.
This reverts commit 791006fb8c.
This reverts commit c22b64ef66.
This reverts commit 72ebcd3198.
This reverts commit 5fa6039a5f.
This reverts commit 9efda541bf.
This reverts commit 94d3ff09cf.
Add support for the GNU C style __attribute__((error(""))) and
__attribute__((warning(""))). These attributes are meant to be put on
declarations of functions whom should not be called.
They are frequently used to provide compile time diagnostics similar to
_Static_assert, but which may rely on non-ICE conditions (ie. relying on
compiler optimizations). This is also similar to diagnose_if function
attribute, but can diagnose after optimizations have been run.
While users may instead simply call undefined functions in such cases to
get a linkage failure from the linker, these provide a much more
ergonomic and actionable diagnostic to users and do so at compile time
rather than at link time. Users instead may be able use inline asm .err
directives.
These are used throughout the Linux kernel in its implementation of
BUILD_BUG and BUILD_BUG_ON macros. These macros generally cannot be
converted to use _Static_assert because many of the parameters are not
ICEs. The Linux kernel still needs to be modified to make use of these
when building with Clang; I have a patch that does so I will send once
this feature is landed.
To do so, we create a new IR level Function attribute, "dontcall" (both
error and warning boil down to one IR Fn Attr). Then, similar to calls
to inline asm, we attach a !srcloc Metadata node to call sites of such
attributed callees.
The backend diagnoses these during instruction selection, while we still
know that a call is a call (vs say a JMP that's a tail call) in an arch
agnostic manner.
The frontend then reconstructs the SourceLocation from that Metadata,
and determines whether to emit an error or warning based on the callee's
attribute.
Link: https://bugs.llvm.org/show_bug.cgi?id=16428
Link: https://github.com/ClangBuiltLinux/linux/issues/1173
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D106030
Translate the `@llvm.lround.*` family to G_LROUND via
`IRTranslator::translateSimpleIntrinsic`.
Differential Revision: https://reviews.llvm.org/D108418
Translate the `@llvm.isnan` intrinsic to G_ISNAN when we see it.
This is pretty much the same as the associated SelectionDAGBuilder code. Main
difference is that we don't expand it here. It makes more sense to do that
during legalization in GlobalISel. GlobalISel will just legalize the generated
illegal types.
Differential Revision: https://reviews.llvm.org/D108226
This patch prevents GlobalISel from optimizing out redundant branch
instructions when compiling without optimizations.
The motivating example is code like the following common pattern in
Swift, where users expect to be able to set a breakpoint on the early
exit:
public func f(b: Bool) {
guard b else {
return // I would like to set a breakpoint here.
}
...
}
The patch modifies two places in GlobalISEL: The first one is in
IRTranslator.cpp where the removal of redundant branches is made
conditional on the optimization level. The second one is in
AArch64InstructionSelector.cpp where an -O0 *only* optimization is
being removed.
Disabling these optimizations increases code size at -O0 by
~8%. However, doing so improves debuggability, and debug builds are
the primary reason why developers compile without optimizations. We
thus concluded that this is the right trade-off.
rdar://79515454
This tenatively reapplies the patch without modifications, the LLDB
test that has blocked this from landing previously has since been
modified to hopefully no longer be sensitive to this change.
Differential Revision: https://reviews.llvm.org/D105238
This patch prevents GlobalISel from optimizing out redundant branch
instructions when compiling without optimizations.
The motivating example is code like the following common pattern in
Swift, where users expect to be able to set a breakpoint on the early
exit:
public func f(b: Bool) {
guard b else {
return // I would like to set a breakpoint here.
}
...
}
The patch modifies two places in GlobalISEL: The first one is in
IRTranslator.cpp where the removal of redundant branches is made
conditional on the optimization level. The second one is in
AArch64InstructionSelector.cpp where an -O0 *only* optimization is
being removed.
Disabling these optimizations increases code size at -O0 by
~8%. However, doing so improves debuggability, and debug builds are
the primary reason why developers compile without optimizations. We
thus concluded that this is the right trade-off.
rdar://79515454
Differential Revision: https://reviews.llvm.org/D105238
In `IRTranslator::translateGetElementPtr`, when we run into a vector gep with
some scalar operands, we try to normalize those operands using
`buildSplatVector`.
This is fine except for when the getelementptr has a <1 x N> type. In that case
it is treated as a scalar. If we run into one of these then every call to
```
// With VectorWidth = 1
LLT::fixed_vector(VectorWidth, PtrTy)
```
will assert.
Here's an example (equivalent to the added testcase):
https://godbolt.org/z/hGsTnMYdW
To get around this, this patch adds a variable, `WantSplatVector`, which
is true when our vector type ought to actually be represented using a vector.
When it's false, we'll translate as a scalar. This checks if `VectorWidth > 1`.
This fixes this bug:
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=35496
Differential Revision: https://reviews.llvm.org/D105316
GlobalISel is relying on regular MachineMemOperands to track all of
the memory properties of accesses. Just the raw byte size is
insufficent to disambiguate all situations. For example, if we need to
split an unaligned extending load, we need to know the number of bits
in the original source value and can't infer it from the result
type. This is also a problem for extending vector loads.
This does decrease the maximum representable size from the full
uint64_t bytes to a maximum of 16-bits. No in tree testcases hit this,
other than places using UINT64_MAX for unknown sizes. This may be an
issue for G_MEMCPY and co., although they can just use unknown size
for large static sizes. This also has potential for backend abuse by
relying on the type when it really shouldn't be relevant after
selection.
This does not include the necessary MIR printer/parser changes to
represent this.
This patch relands https://reviews.llvm.org/D104454, but fixes some failing
builds on Mac OS which apparently has a different definition for size_t,
that caused 'ambiguous operator overload' for the implicit conversion
of TypeSize to a scalar value.
This reverts commit b732e6c9a8.
To reflect that the size may be scalable, a TypeSize is returned
instead of an unsigned. In places where the result is used,
it currently relies on an implicit cast of TypeSize -> uint64_t,
which asserts that the type is not scalable.
This patch is NFC for fixed-width vectors.
Reviewed By: aemerson
Differential Revision: https://reviews.llvm.org/D104454
This also adds new interfaces for the fixed- and scalable case:
* LLT::fixed_vector
* LLT::scalable_vector
The strategy for migrating to the new interfaces was as follows:
* If the new LLT is a (modified) clone of another LLT, taking the
same number of elements, then use LLT::vector(OtherTy.getElementCount())
or if the number of elements is halfed/doubled, it uses .divideCoefficientBy(2)
or operator*. That is because there is no reason to specifically restrict
the types to 'fixed_vector'.
* If the algorithm works on the number of elements (as unsigned), then
just use fixed_vector. This will need to be fixed up in the future when
modifying the algorithm to also work for scalable vectors, and will need
then need additional tests to confirm the behaviour works the same for
scalable vectors.
* If the test used the '/*Scalable=*/true` flag of LLT::vector, then
this is replaced by LLT::scalable_vector.
Reviewed By: aemerson
Differential Revision: https://reviews.llvm.org/D104451
Currently, variadic dbg.values (i.e. those using a DIArgList as part of
their location) are not handled properly by FastISel or GlobalISel, and
will produce invalid DBG_VALUE instructions if they encounter them. This
patch fixes this issue by emitting undef DBG_VALUE instructions for
variadic dbg.values, so that no incorrect instruction is produced and
any prior variable location is terminated.
This is simply a quick-fix to prevent errors; a correct implementation
should come later for these ISel pipelines to ensure that we do not drop
debug information unnecessarily.
Differential Revision: https://reviews.llvm.org/D102500
I've taken the following steps to add unwinding support from inline assembly:
1) Add a new `unwind` "attribute" (like `sideeffect`) to the asm syntax:
```
invoke void asm sideeffect unwind "call thrower", "~{dirflag},~{fpsr},~{flags}"()
to label %exit unwind label %uexit
```
2.) Add Bitcode writing/reading support + LLVM-IR parsing.
3.) Emit EHLabels around inline assembly lowering (SelectionDAGBuilder + GlobalISel) when `InlineAsm::canThrow` is enabled.
4.) Tweak InstCombineCalls/InlineFunction pass to not mark inline assembly "calls" as nounwind.
5.) Add clang support by introducing a new clobber: "unwind", which lower to the `canThrow` being enabled.
6.) Don't allow unwinding callbr.
Reviewed By: Amanieu
Differential Revision: https://reviews.llvm.org/D95745
For contiguous ranges we drop the last bit-test case but in doing so we skip
adding the new MBB PHI edges to the list of replacement PHI edges, and as a
result we incorrectly omit them in the G_PHI in finishPendingPhis().
Was found when bootstrapping clang with -O3 and GlobalISel enabled on Apple Silicon.
A ConstantAggregateZero may be created from a scalable vector type.
However, it still assumed fixed number of elements when queried for
them. This patch changes ConstantAggregateZero to correctly report its
element count.
This change fixes a couple of issues. Firstly, it fixes a crash in
Constant::getUniqueValue when called on a scalable-vector
zeroinitializer constant.
Secondly, it fixes a latent bug in GlobalISel's IRTranslator in which
translating a scalable-vector zeroinitializer would hit the assertion in
ConstantAggregateZero::getNumElements when casting to a FixedVectorType,
rather than reporting an error more gracefully. This is currently
hypothetical as the IRTranslator has deeper issues preventing the use of
scalable vector types.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D102082
This is a compile time optimization. DILocation:get() is expensive to call, and
we were calling it to create a line zero debug loc for *every* instruction we
translated. We only really need to do this just before we build constants in the
entry block, so I moved this code there. This reduces the LLVM -O0 codegen time
of sqlite3 IR by around 0.7% instructions executed and by about ~2% in CPU time.
We can probably do better with a more involved change, since the reason we need
to create one for each new constant is because we're using the debug scope and
inlined-at loc. If we just use a single instruction's scope and drop the
inlined-at, we can just cache these and have them be free.