Prior to this patch, it skipped the instruction defining VNI when checking if the tainted lanes are used.
In the given example, VRGATHER is an illegal instruction because its DstReg overlaps with SrcReg.
Therefore we need to check the defining instruction as well when there is an earlyclobber constraint.
Reviewed By: qcolombet
Differential Revision: https://reviews.llvm.org/D105684
The coalescer does not check if register uses are available
at the point of rematerialization. If it attempts to rematerialize
an instruction with such uses it can end up with use without a def.
LiveRangeEdit does such check during rematerialization, so just
call LiveRangeEdit::allUsesAvailableAt() to avoid the problem.
Differential Revision: https://reviews.llvm.org/D106396
Currently we are resolving lane/subregister conflict by visiting
instructions sequentially in current block to see whether there is any
use of the tainted lanes. To save compile time, we are not doing further
check in successor blocks. This sounds reasonable without subgregister liveness.
But since we have added subregister liveness tracking capability to
register coalescer, we can easily determine whether we have subregister
liveness conflict by checking subranges. This would help coalescing more
COPYs for target that enables subregister liveness tracking.
Reviewed by: arsenm, qcolombet
Differential Revision: https://reviews.llvm.org/D104509
This is a cleanup patch -- we're now able to support all flavours of
variable location in instruction referencing mode. This patch updates
various tests for debug instructions to be broader: numerous code paths
try to ignore debug isntructions, and they now have to ignore the
additional DBG_PHI and DBG_INSTR_REFs that we can generate.
A small amount of rework happens for LiveDebugVariables: as we don't need
to track live intervals through regalloc any more, we can get away with
unlinking debug instructions before regalloc, then re-inserting them after.
Note that this isn't (yet) true of DBG_VALUE_LISTs, they still have to go
through live interval tracking.
In SelectionDAG, add a helper lambda that emits half-formed DBG_INSTR_REFs
for arguments in instr-ref mode, DBG_VALUE otherwise. This is one of the
final locations where DBG_VALUEs are emitted for vreg arguments.
X86InstrInfo now un-sets the debug instr number on SUB instructions that
get mutated into CMP instructions. As the instruction no longer computes a
subtraction, we can't use it for variable locations.
Differential Revision: https://reviews.llvm.org/D88898
Fixes a minor bug when trying to iterate through use operands when
updating debug use operands.
Extends a test to include above.
Differential Revision: https://reviews.llvm.org/D104576
Was reverted in 0507fc2ffc, in phi-coalesce-subreg.mir I'd explicitly named
some passes to run instead of specifying a range. As a result some
two-address-instrs weren't correctly rewritten and the verifier got upset.
Original commit message:
[DebugInstrRef][2/3] Track PHI values through register coalescing
In the instruction referencing variable location model, we store variable
locations that point at PHIs in MachineFunction during register allocation.
Unfortunately, register coalescing can substantially change the locations
of registers, and so that PHI-variable-location side table needs
maintenence during the pass.
This patch builds an index from the side table, and whenever a vreg gets
coalesced into another vreg, update the index to record the new vreg that
the PHI happens in. It also accepts a limited range of subregister
coalescing, for example merging a subregister into a larger class.
Differential Revision: https://reviews.llvm.org/D86813
In the instruction referencing variable location model, we store variable
locations that point at PHIs in MachineFunction during register
allocation. Unfortunately, register coalescing can substantially change
the locations of registers, and so that PHI-variable-location side table
needs maintenence during the pass.
This patch builds an index from the side table, and whenever a vreg gets
coalesced into another vreg, update the index to record the new vreg that
the PHI happens in. It also accepts a limited range of subregister
coalescing, for example merging a subregister into a larger class.
Differential Revision: https://reviews.llvm.org/D86813
Pseudo probe are currently given a slot index like other regular instructions. This affects register pressure and lifetime weight computation because of enlarged lifetime length with pseudo probe instructions. As a consequence, program could get different code generated w/ and w/o pseudo probes. I'm closing the gap by excluding pseudo probes from stack index and downstream register allocation related passes.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D100334
This patch adds handling for DBG_VALUE_LIST in the MIR-passes (after
finalize-isel), excluding the debug liveness passes and DWARF emission. This
most significantly affects MachineSink, which now needs to consider all used
registers of a debug value when sinking, but for most passes this change is
simply replacing getDebugOperand(0) with an iteration over all debug operands.
Differential Revision: https://reviews.llvm.org/D92578
This was only adding undef to the use if the copy itself had a
subregister index. It did not consider the subrange liveness if the
use had a subreg index to begin with.
If we had a pair of copies inside a loop which introduced new liveness
to a subregister which was undef before the loop, we would have a
dummy phi-only segment remaining across the loop body. Later, this
false segment would confuse RenameIndependentSubregs causing it to
introduce IMPLICIT_DEFs with broken value numbering.
It seems always adding the lanes to ShrinkMask is OK, so any
conditions should be purely a compile time filter.
Undef subranges are not present in the live range values, except when
they cross block boundaries. In this situation, a identity copy is
inside a loop, and one of the lanes is undefined. It only appears
alive inside the loop due to the copy. Once the copy was erased, it
would leave behind a segment inside the loop body with no
corresponding def anywhere in the program.
When RenameIndependentSubregs processed this dummy interval, it would
introduce a "Multiple connected components in live interval" verifier
error when IMPLICIT_DEFs were added to the other two blocks. I believe
there is a missing verifier check for this type of dummy interval.
I have found additional cases from the same fundamental problem in
other areas I haven't managed to fix yet (e.g. the commented out
prune_subrange_phi_value_* cases).
When extending the subranges, the reaching-def may be an undefs. When
extending such kind of subrange, it will try to search for the reaching
def first. If the reaching def is an undef and we did not provide 'Undefs',
The findReachingDefs() will fail with message:
"Use of $noreg does not have a corresponding definition on every path:
LLVM ERROR: Use not jointly dominated by defs."
So we computeSubRangeUndefs() and pass the result to extendToIndices().
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D87744
This patch removes redundant IMPLICIT_DEF for subregs which was leading to
incorrect register initialization on joining in some cases.
Reviewed by: qcolombet
Differential revision: https://reviews.llvm.org/D82258
Also renamed the fields to follow style guidelines.
Accessors help with readability - weight mutation, in particular,
is easier to follow this way.
Differential Revision: https://reviews.llvm.org/D87725
Before this instruction supported output values, it fit fairly
naturally as a terminator. However, being a terminator while also
supporting outputs causes some trouble, as the physreg->vreg COPY
operations cannot be in the same block.
Modeling it as a non-terminator allows it to be handled the same way
as invoke is handled already.
Most of the changes here were created by auditing all the existing
users of MachineBasicBlock::isEHPad() and
MachineBasicBlock::hasEHPadSuccessor(), and adding calls to
isInlineAsmBrIndirectTarget or mayHaveInlineAsmBr, as appropriate.
Reviewed By: nickdesaulniers, void
Differential Revision: https://reviews.llvm.org/D79794
Following on from this RFC[0] from a while back, this is the first patch towards
implementing variadic debug values.
This patch specifically adds a set of functions to MachineInstr for performing
operations specific to debug values, and replacing uses of the more general
functions where appropriate. The most prevalent of these is replacing
getOperand(0) with getDebugOperand(0) for debug-value-specific code, as the
operands corresponding to values will no longer be at index 0, but index 2 and
upwards: getDebugOperand(x) == getOperand(x+2). Similar replacements have been
added for the other operands, along with some helper functions to replace
oft-repeated code and operate on a variable number of value operands.
[0] http://lists.llvm.org/pipermail/llvm-dev/2020-February/139376.html<Paste>
Differential Revision: https://reviews.llvm.org/D81852
When we rematerialize a value as part of the coalescing, we may
widen the register class of the destination register.
When this happens, updateRegDefUses may create additional subranges
to account for the wider register class.
The created subranges are empty and if they are not defined by
the rematerialized instruction we clean them up.
However, if they are defined by the rematerialized instruction but
unused, we failed to flag them as dead definition and would leave
them as empty live-range.
This is wrong because empty live-ranges don't interfere with anything,
thus if we don't fix them, we would fail to account that the
rematerialized instruction clobbers some lanes.
E.g., let us consider the following pseudo code:
def.lane_low64:reg128 = ldimm
newdef:reg32 = COPY def.lane_low64_low32
When rematerialization happens for newdef, we end up with:
newdef.lane_low64:reg128 = ldimm
= use newdef.lane_low64_low32
Let's look at the live interval of newdef.
Before rematerialization, we would get:
newdef [defIdx, useIdx:0) 0@defIdx
Right after updateRegDefUses, newdef register class is widen to reg128
and the subrange definitions will be augmented to fill the subreg that
is used at the definition point, here lane_low64.
The resulting live interval would be:
newdef [newDefIdx, useIdx:0) 0@newDefIdx
* lane_low64_high32 EMPTY
* lane_low64_low32 [newDefIdx, useIdx:0)
Before this patch this would be the final status of the live interval.
Therefore we miss that lane_low64_high32 is actually live on the
definition point of newdef.
With this patch, after rematerializing, we check all the added subranges
and for the ones that are defined but empty, we flag them as dead def.
Thus, in that case, newdef would look like this:
newdef [newDefIdx, useIdx:0) 0@newDefIdx
* lane_low64_high32 [newDefIdx, newDefIdxDead) ; <-- instead of EMPTY
* lane_low64_low32 [newDefIdx, useIdx:0)
This fixes https://www.llvm.org/PR46154
Summary:
In the the given example, a stack slot pointer is merged
between a setjmp and longjmp. This pointer is spilled,
so it does not get correctly restored, addinga undefined
behaviour where it shouldn't.
Change-Id: I60ec010844f2a24ce01ceccf12eb5eba5ab94abb
Reviewers: eli.friedman, thanm, efriedma
Reviewed By: efriedma
Subscribers: MatzeB, qcolombet, tpr, rnk, efriedma, hiraditya, llvm-commits, chill
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77767
Register live ranges may have had gaps that after coalescing should be
removed. This is done by adding a new segment to the range, and merging
it with neighboring segments. When doing so, do not assume that each
subrange of the register ended at the same index. If a subrange ended
earlier, adding this segment could make the live range invalid.
Instead, if the subrange is not live at the start of the segment,
extend it first.
* Context *
During register coalescing, we use rematerialization when coalescing is not
possible. That means we may rematerialize a super register when only a smaller
register is actually used.
E.g.,
0B v1 = ldimm 0xFF
1B v2 = COPY v1.low8bits
2B = v2
=>
0B v1 = ldimm 0xFF
1B v2 = ldimm 0xFF
2B = v2.low8bits
Where xB are the slot indexes.
Here v2 grew from a 8-bit register to a 16-bit register.
When that happens and subregister liveness is enabled, we create subranges for
the newly created value.
E.g., before remat, the live range of v2 looked like:
main range: [1r, 2r)
(Reads v2 is defined at index 1 slot register and used before the slot register
of index 2)
After remat, it should look like:
main range: [1r, 2r)
low 8 bits: [1r, 2r)
high 8 bits: [1r, 1d) <-- dead def
I.e., the unsused lanes of v2 should be marked as dead definition.
* The Problem *
Prior to this patch, the live-ranges from the previous exampel, would have the
full live-range for all subranges:
main range: [1r, 2r)
low 8 bits: [1r, 2r)
high 8 bits: [1r, 2r) <-- too long
* The Fix *
Technically, the code that this patch changes is not wrong:
When we create the subranges for the newly rematerialized value, we create only
one subrange for the whole bit mask.
In other words, at this point v2 live-range looks like this:
main range: [1r, 2r)
low & high: [1r, 2r)
Then, it gets wrong when we call LiveInterval::refineSubRanges on low 8 bits:
main range: [1r, 2r)
low 8 bits: [1r, 2r)
high 8 bits: [1r, 2r) <-- too long
Ideally, we would like LiveInterval::refineSubRanges to be able to do the right
thing and mark the dead lanes as such. However, this is not possible, because by
the time we update / refine the live ranges, the IR hasn't been updated yet,
therefore we actually don't have enough information to do the right thing.
Another option to fix the problem would have been to call
LiveIntervals::shrinkToUses after the IR is updated. This is not desirable as
this may have a noticeable impact on compile time.
Instead, what this patch does is when we create the subranges for the
rematerialized value, we explicitly create one subrange for the lanes that were
used before rematerialization and one for the lanes that were not used. The used
one inherits the live range of the main range and the unused one is just created
empty. The existing rematerialization code then detects that the unused one are
not live and it correctly sets dead def intervals for them.
https://llvm.org/PR41372
This is a re-land of D56151 / r364515 with a completely new implementation.
Once MIR code leaves SSA form and the liveness of a vreg is considered,
DBG_VALUE insts are able to refer to non-live vregs, because their
debug-uses do not contribute to liveness. This non-liveness becomes
problematic for optimizations like register coalescing, as they can't
``see'' the debug uses in the liveness analyses.
As a result registers get coalesced regardless of debug uses, and that can
lead to invalid variable locations containing unexpected values. In the
added test case, the first vreg operand of ADD32rr is merged with various
copies of the vreg (great for performance), but a DBG_VALUE of the
unmodified operand is blindly updated to the modified operand. This changes
what value the variable will appear to have in a debugger.
Fix this by changing any DBG_VALUE whose operand will be resurrected by
register coalescing to be a $noreg DBG_VALUE, i.e. give the variable no
location. This is an overapproximation as some coalesced locations are safe
(others are not) -- an extra domination analysis would be required to work
out which, and it would be better if we just don't generate non-live
DBG_VALUEs.
Differential Revision: https://reviews.llvm.org/D64630
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
During register coalescing, we update the live-intervals on-the-fly.
To do that we are in this strange mode where the live-intervals can
be slightly out-of-sync (more precisely they are forward looking)
compared to what the IR actually represents.
This happens because the register coalescer only updates the IR when
it is done with updating the live-intervals and it has to do it this
way because updating the IR on-the-fly would actually clobber some
information on how the live-ranges that are being updated look like.
This is problematic for updates that rely on the IR to accurately
represents the state of the live-ranges. Right now, we have only
one of those: stripValuesNotDefiningMask.
To reconcile this need of out-of-sync IR, this patch introduces a
new argument to LiveInterval::refineSubRanges that allows the code
doing the live range updates to reason about how the code should
look like after the coalescer will have rewritten the registers.
Essentially this captures how a subregister index with be offseted
to match its position in a new register class.
E.g., let say we want to merge:
V1.sub1:<2 x s32> = COPY V2.sub3:<4 x s32>
We do that by choosing a class where sub1:<2 x s32> and sub3:<4 x s32>
overlap, i.e., by choosing a class where we can find "offset + 1 == 3".
Put differently we align V2's sub3 with V1's sub1:
V2: sub0 sub1 sub2 sub3
V1: <offset> sub0 sub1
This offset will look like a composed subregidx in the the class:
V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32>
=> V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32>
Now if we didn't rewrite the uses and def of V1, all the checks for V1
need to account for this offset to match what the live intervals intend
to capture.
Prior to this patch, we would fail to recognize the uses and def of V1
and would end up with machine verifier errors: No live segment at def.
This could lead to miscompile as we would drop some live-ranges and
thus, miss some interferences.
For this problem to trigger, we need to reach stripValuesNotDefiningMask
while having a mismatch between the IR and the live-ranges (i.e.,
we have to apply a subreg offset to the IR.)
This requires the following three conditions:
1. An update of overlapping subreg lanes: e.g., dsub0 == <ssub0, ssub1>
2. An update with Tuple registers with a possibility to coalesce the
subreg index: e.g., v1.dsub_1 == v2.dsub_3
3. Subreg liveness enabled.
looking at the IR to decide what is alive and what is not, i.e., calling
stripValuesNotDefiningMask.
coalescer maintains for the live-ranges information.
None of the targets that currently use subreg liveness (i.e., the targets
that fulfill #3, Hexagon, AMDGPU, PowerPC, and SystemZ IIRC) expose #1 and
and #2, so this patch also artificial enables subreg liveness for ARM,
so that a nice test case can be attached.
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
Although removeCopyByCommutingDef deals with full copies, it is still
possible to copy undef lanes and thus, we wouldn't have any a value
number for these lanes.
This fixes PR40215.
llvm-svn: 365256
Once MIR code leaves SSA form and the liveness of a vreg is considered,
DBG_VALUE insts are able to refer to non-live vregs, because their
debug-uses do not contribute to liveness. This non-liveness becomes
problematic for optimizations like register coalescing, as they can't
``see'' the debug uses in the liveness analyses.
As a result registers get coalesced regardless of debug uses, and that can
lead to invalid variable locations containing unexpected values. In the
added test case, the first vreg operand of ADD32rr is merged with various
copies of the vreg (great for performance), but a DBG_VALUE of the
unmodified operand is blindly updated to the modified operand. This changes
what value the variable will appear to have in a debugger.
Fix this by changing any DBG_VALUE whose operand will be resurrected by
register coalescing to be a $noreg DBG_VALUE, i.e. give the variable no
location. This is an overapproximation as some coalesced locations are
safe (others are not) -- an extra domination analysis would be required to
work out which, and it would be better if we just don't generate non-live
DBG_VALUEs.
This fixes PR40010.
Differential Revision: https://reviews.llvm.org/D56151
llvm-svn: 364515
Summary:
Fixes a warning produced from scan-build (llvm.org/reports/scan-build/),
further warnings found by annotation isMoveInstr [[nodiscard]].
isMoveInstr potentially does not assign to its parameters, so if they
were uninitialized, they will potentially stay uninitialized. It seems
most call sites pass references to uninitialized values, then use them
without checking the return value.
Reviewers: wmi
Reviewed By: wmi
Subscribers: MatzeB, qcolombet, hiraditya, tpr, llvm-commits, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62109
llvm-svn: 362265
Register coalescer fails for the test in the patch with the assertion in
JoinVals::ConflictResolution `DefMI != nullptr'. It attempts to join
live intervals for two adjacent instructions and erase the copy:
%2:vreg_256 = COPY %1
%3:vreg_256 = COPY killed %1
The LI needs to be adjusted to kill subrange for the erased instruction
and extend the subrange of the original def. That was done for the main
interval only but not for the subrange. As a result subrange had a VNI
pointing to the erased slot resulting in the above failure.
Differential Revision: https://reviews.llvm.org/D62162
llvm-svn: 361293
When splitting a subrange we end up with two different subranges covering
two different, non overlapping, lanes.
As part of this splitting the VNIs of the original live-range need
to be dispatched to the subranges according to which lanes they are
actually defining.
Prior to this patch we were assuming that all values were defining
all lanes. This was wrong as demonstrated by llvm.org/PR40835.
Differential Revision: https://reviews.llvm.org/D59731
llvm-svn: 357032