Commit Graph

2083 Commits

Author SHA1 Message Date
Ties Stuij 0fbb17458a [ARM] Implement setjmp BTI placement for PACBTI-M
This patch intends to guard indirect branches performed by longjmp
by inserting BTI instructions after calls to setjmp.

Calls with 'returns-twice' are lowered to a new pseudo-instruction
named t2CALL_BTI that is later expanded to a bundle of {tBL,t2BTI}.

This patch is part of a series that adds support for the PACBTI-M extension of
the Armv8.1-M architecture, as detailed here:

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8-1-m-pointer-authentication-and-branch-target-identification-extension

The PACBTI-M specification can be found in the Armv8-M Architecture Reference
Manual:

https://developer.arm.com/documentation/ddi0553/latest

The following people contributed to this patch:

- Alexandros Lamprineas
- Ties Stuij

Reviewed By: labrinea

Differential Revision: https://reviews.llvm.org/D112427
2021-12-06 11:07:10 +00:00
David Green 255ad73424 [ARM] Make MVE v2i1 predicates legal
MVE can treat v16i1, v8i1, v4i1 and v2i1 as different views onto the
same 16bit VPR.P0 register, with v2i1 holding two 8 bit values for the
two halves. This was never treated as a legal type in llvm in the past
as there are not many 64bit instructions and no 64bit compares. There
are a few instructions that could use it though, notably a VSELECT (as
it can handle any size using the underlying v16i8 VPSEL), AND/OR/XOR for
similar reasons, some gathers/scatter and long multiplies and VCTP64
instructions.

This patch goes through and makes v2i1 a legal type, handling all the
cases that fall out of that. It also makes VSELECT legal for v2i64 as a
side benefit. A lot of the codegen changes as a result - usually in way
that is a little better or a little worse, but still expensive. Costs
can change a little too in the process, again in a way that expensive
things remain expensive. A lot of the tests that changed are mainly to
ensure correctness - the code can hopefully be improved in the future
where it comes up in practice.

The intrinsics currently remain using the v4i1 they previously did to
emulate a v2i1. This will be changed in a followup patch but this one
was already large enough.

Differential Revision: https://reviews.llvm.org/D114449
2021-12-03 14:05:41 +00:00
David Green 9e8a71caf0 [DAG] Create fptosi.sat from clamped fptosi
This adds a fold in DAGCombine to create fptosi_sat from sequences for
smin(smax(fptosi(x))) nodes, where the min/max saturate the output of
the fp convert to a specific bitwidth (say INT_MIN and INT_MAX). Because
it is dealing with smin(/smax) in DAG they may currently be ISD::SMIN,
ISD::SETCC/ISD::SELECT, ISD::VSELECT or ISD::SELECT_CC nodes which need
to be handled similarly.

A shouldConvertFpToSat method was added to control when converting may
be profitable. The original fptosi will have a less strict semantics
than the fptosisat, with less values that need to produce defined
behaviour.

This especially helps on ARM/AArch64 where the vcvt instructions
naturally saturate the result.

Differential Revision: https://reviews.llvm.org/D111976
2021-11-30 15:29:14 +00:00
Hans Wennborg a87782c34d Revert "[DAG] Create fptosi.sat from clamped fptosi"
It causes builds to fail with this assert:

llvm/include/llvm/ADT/APInt.h:990:
bool llvm::APInt::operator==(const llvm::APInt &) const:
Assertion `BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"' failed.

See comment on the code review.

> This adds a fold in DAGCombine to create fptosi_sat from sequences for
> smin(smax(fptosi(x))) nodes, where the min/max saturate the output of
> the fp convert to a specific bitwidth (say INT_MIN and INT_MAX). Because
> it is dealing with smin(/smax) in DAG they may currently be ISD::SMIN,
> ISD::SETCC/ISD::SELECT, ISD::VSELECT or ISD::SELECT_CC nodes which need
> to be handled similarly.
>
> A shouldConvertFpToSat method was added to control when converting may
> be profitable. The original fptosi will have a less strict semantics
> than the fptosisat, with less values that need to produce defined
> behaviour.
>
> This especially helps on ARM/AArch64 where the vcvt instructions
> naturally saturate the result.
>
> Differential Revision: https://reviews.llvm.org/D111976

This reverts commit 52ff3b0093.
2021-11-30 15:36:56 +01:00
David Green 52ff3b0093 [DAG] Create fptosi.sat from clamped fptosi
This adds a fold in DAGCombine to create fptosi_sat from sequences for
smin(smax(fptosi(x))) nodes, where the min/max saturate the output of
the fp convert to a specific bitwidth (say INT_MIN and INT_MAX). Because
it is dealing with smin(/smax) in DAG they may currently be ISD::SMIN,
ISD::SETCC/ISD::SELECT, ISD::VSELECT or ISD::SELECT_CC nodes which need
to be handled similarly.

A shouldConvertFpToSat method was added to control when converting may
be profitable. The original fptosi will have a less strict semantics
than the fptosisat, with less values that need to produce defined
behaviour.

This especially helps on ARM/AArch64 where the vcvt instructions
naturally saturate the result.

Differential Revision: https://reviews.llvm.org/D111976
2021-11-30 11:05:32 +00:00
David Green 7d5d063c77 [ARM] Fold away unnecessary CSET/CMPZ
Codegen from expanded vector operations can end up with unnecessary
CMPZ/CSINC, of the form:
  CSXYZ A, B, C1 (CMPZ (CSINC 0, 0, C2, D), 0)

These can be converted to remove the CMPZ and CSINC, depending on the
condition.
  if C1==NE -> CSXYZ A, B, C2, D
  if C1==EQ -> CSXYZ A, B, NOT(C2), D

Differential Revision: https://reviews.llvm.org/D114013
2021-11-27 19:07:16 +00:00
Kazu Hirata 562356d6e3 [Target] Use range-based for loops (NFC) 2021-11-26 08:23:01 -08:00
David Green c76d6dd192 [ARM] Generate VCTP from SETCC
This converts a vector SETCC([0,1,2,..], splat(n), ult) to vctp n, which
can be fewer instructions and prevent the need for constant pool loads.

Differential Revision: https://reviews.llvm.org/D114177
2021-11-26 10:57:14 +00:00
Simon Pilgrim 63b1e58f07 [DAG] SimplifyDemandedBits - simplify rotl/rotr to shl/srl (REAPPLIED)
If we only demand bits from one half of a rotation pattern, see if we can simplify to a logical shift.

For the ARM/AArch64 rev16/32 patterns, I had to drop a fold to prevent srl(bswap()) -> rotr(bswap) -> srl(bswap) infinite loops. I've replaced this with an isel PatFrag which should do the same task.

Reapplied with fix for AArch64 rev patterns to matching the ARM fix.

https://alive2.llvm.org/ce/z/iroxki (rol -> shl by amt iff demanded bits has at least as many trailing zeros as the shift amount)
https://alive2.llvm.org/ce/z/4ez_U- (ror -> shl by revamt iff demanded bits has at least as many trailing zeros as the reverse shift amount)
https://alive2.llvm.org/ce/z/cD7dR- (ror -> lshr by amt iff demanded bits has at least as many leading zeros as the shift amount)
https://alive2.llvm.org/ce/z/_XGHtQ (rol -> lshr by revamt iff demanded bits has at least as many leading zeros as the reverse shift amount)

Differential Revision: https://reviews.llvm.org/D114354
2021-11-25 11:14:15 +00:00
Benjamin Kramer d32787230d Revert "[DAG] SimplifyDemandedBits - simplify rotl/rotr to shl/srl"
This reverts commit 3cf4a2c620.

It makes llc hang on the following test case.
```
target datalayout = "e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"
target triple = "aarch64-unknown-linux-gnu"

define dso_local void @_PyUnicode_EncodeUTF16() local_unnamed_addr #0 {
entry:
  br label %while.body117.i

while.body117.i:                                  ; preds = %cleanup149.i, %entry
  %out.6269.i = phi i16* [ undef, %cleanup149.i ], [ undef, %entry ]
  %0 = load i16, i16* undef, align 2
  %1 = icmp eq i16 undef, -10240
  br i1 %1, label %fail.i, label %cleanup149.i

cleanup149.i:                                     ; preds = %while.body117.i
  %or130.i = call i16 @llvm.bswap.i16(i16 %0) #2
  store i16 %or130.i, i16* %out.6269.i, align 2
  br label %while.body117.i

fail.i:                                           ; preds = %while.body117.i
  ret void
}

; Function Attrs: nofree nosync nounwind readnone speculatable willreturn
declare i16 @llvm.bswap.i16(i16) #1

attributes #0 = { "target-features"="+neon,+v8a" }
attributes #1 = { nofree nosync nounwind readnone speculatable willreturn }
attributes #2 = { mustprogress nofree norecurse nosync nounwind readnone uwtable willreturn "frame-pointer"="non-leaf" "min-legal-vector-width"="0" "no-trapping-math"="true" "stack-protector-buffer-size"="8" "target-cpu"="generic" "target-features"="+neon,+v8a" }
```
2021-11-24 14:42:54 +01:00
Simon Pilgrim 3cf4a2c620 [DAG] SimplifyDemandedBits - simplify rotl/rotr to shl/srl
If we only demand bits from one half of a rotation pattern, see if we can simplify to a logical shift.

For the ARM rev16 patterns, I had to drop a fold to prevent srl(bswap()) -> rotr(bswap) -> srl(bswap) infinite loops. I've replaced this with an isel PatFrag which should do the same task.

https://alive2.llvm.org/ce/z/iroxki (rol -> shl by amt iff demanded bits has at least as many trailing zeros as the shift amount)
https://alive2.llvm.org/ce/z/4ez_U- (ror -> shl by revamt iff demanded bits has at least as many trailing zeros as the reverse shift amount)
https://alive2.llvm.org/ce/z/cD7dR- (ror -> lshr by amt iff demanded bits has at least as many leading zeros as the shift amount)
https://alive2.llvm.org/ce/z/_XGHtQ (rol -> lshr by revamt iff demanded bits has at least as many leading zeros as the reverse shift amount)

Differential Revision: https://reviews.llvm.org/D114354
2021-11-24 11:28:35 +00:00
David Green 581f837355 [ARM] Fold (fadd x, (vselect c, y, -1.0)) into (vselect c, (fadd x, y), x)
This is similar to D113574, but as a DAG combine, not tablegen patterns.
Doing the fold as a DAG combine allows the fadd to be folded with a
fmul, finally producing a predicated vfma. It performs the same fold of
fadd(x, vselect(p, y, -0.0)) to vselect p, (fadd x, y), x) using -0.0 as
the identity value of a fadd.

Differential Revision: https://reviews.llvm.org/D113584
2021-11-24 10:41:00 +00:00
Kazu Hirata d45cb1d7ea [llvm] Use range-based for loops (NFC) 2021-11-23 08:54:48 -08:00
Zarko Todorovski 5b8bbbecfa [NFC][llvm] Inclusive language: reword and remove uses of sanity in llvm/lib/Target
Reworded removed code comments that contain `sanity check` and `sanity
test`.
2021-11-17 21:59:00 -05:00
Kazu Hirata efa896e5f7 [Target] Use SDNode::uses (NFC) 2021-11-12 21:23:04 -08:00
Ard Biesheuvel 2caf85ad7a [ARM] implement LOAD_STACK_GUARD for remaining targets
Currently, LOAD_STACK_GUARD on ARM is only implemented for Mach-O targets, and
other targets rely on the generic support which may result in spilling of the
stack canary value or address, or may cause it to be kept in a callee save
register across function calls, which means they essentially get spilled as
well, only by the callee when it wants to free up this register.

So let's implement LOAD_STACK GUARD for other targets as well. This ensures
that the load of the stack canary is rematerialized fully in the epilogue.

This code was split off from

  D112768: [ARM] implement support for TLS register based stack protector

for which it is a prerequisite.

Reviewed By: nickdesaulniers

Differential Revision: https://reviews.llvm.org/D112811
2021-11-08 22:59:15 +01:00
Kazu Hirata 41ef3187e0 [ARM, X86] Use MachineBasicBlock::{predecessors,successors} (NFC) 2021-11-07 09:53:16 -08:00
Craig Topper 04c184bba7 [TargetLowering] Simplify the interface of expandABS. NFC
Instead of returning a bool to indicate success and a separate
SDValue, return the SDValue and have the callers check if it is
null.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D112331
2021-10-22 10:22:23 -07:00
Andrew Savonichev dc8a41de34 [ARM] Simplify address calculation for NEON load/store
The patch attempts to optimize a sequence of SIMD loads from the same
base pointer:

    %0 = gep float*, float* base, i32 4
    %1 = bitcast float* %0 to <4 x float>*
    %2 = load <4 x float>, <4 x float>* %1
    ...
    %n1 = gep float*, float* base, i32 N
    %n2 = bitcast float* %n1 to <4 x float>*
    %n3 = load <4 x float>, <4 x float>* %n2

For AArch64 the compiler generates a sequence of LDR Qt, [Xn, #16].
However, 32-bit NEON VLD1/VST1 lack the [Wn, #imm] addressing mode, so
the address is computed before every ld/st instruction:

    add r2, r0, #32
    add r0, r0, #16
    vld1.32 {d18, d19}, [r2]
    vld1.32 {d22, d23}, [r0]

This can be improved by computing address for the first load, and then
using a post-indexed form of VLD1/VST1 to load the rest:

    add r0, r0, #16
    vld1.32 {d18, d19}, [r0]!
    vld1.32 {d22, d23}, [r0]

In order to do that, the patch adds more patterns to DAGCombine:

  - (load (add ptr inc1)) and (add ptr inc2) are now folded if inc1
    and inc2 are constants.

  - (or ptr inc) is now recognized as a pointer increment if ptr is
    sufficiently aligned.

In addition to that, we now search for all possible base updates and
then pick the best one.

Differential Revision: https://reviews.llvm.org/D108988
2021-10-14 15:23:10 +03:00
David Green 860b4479dc [ARM] Be more explicit about disabling CombineBaseUpdate for MVE.
This shouldn't be called for non-neon targets at the moment in either
case, but it is good to be expliit about the CombineBaseUpdate being a
NEON function, not expecting to be run under MVE.
2021-10-11 21:51:45 +01:00
Itay Bookstein 40ec1c0f16 [IR][NFC] Rename getBaseObject to getAliaseeObject
To better reflect the meaning of the now-disambiguated {GlobalValue,
GlobalAlias}::getBaseObject after breaking off GlobalIFunc::getResolverFunction
(D109792), the function is renamed to getAliaseeObject.
2021-10-06 19:33:10 -07:00
Pengxuan Zheng b0045f5595 [ARM] Fix a bug in finding a pair of extracts to create VMOVRRD
D100244 missed a check on the ResNo of the extract's operand 0 when finding a
pair of extracts to combine into a VMOVRRD (extract(x, n); extract(x, n+1) ->
VMOVRRD(extract x, n/2)). As a result, it can incorrectly pair an extract(x, n)
with another extract(x:3, n+1) for example. This patch fixes the bug by adding
the proper check on ResNo.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D111188
2021-10-06 10:03:32 -07:00
Jay Foad a9bceb2b05 [APInt] Stop using soft-deprecated constructors and methods in llvm. NFC.
Stop using APInt constructors and methods that were soft-deprecated in
D109483. This fixes all the uses I found in llvm, except for the APInt
unit tests which should still test the deprecated methods.

Differential Revision: https://reviews.llvm.org/D110807
2021-10-04 08:57:44 +01:00
Kazu Hirata c1e32b3fc0 [Target] Migrate from getNumArgOperands to arg_size (NFC)
Note that getNumArgOperands is considered a legacy name.  See
llvm/include/llvm/IR/InstrTypes.h for details.
2021-10-02 12:06:29 -07:00
David Green f9aa8623fe [ARM] Add more MVE intrinsics to sink splats to
This adds a few more unpredicated intrinsics to sink splats to, in order
to create more qr instruction variants. Notably this includes
saddsat/uaddsat but also some of the unpredicated mve intrinsics.

Differential Revision: https://reviews.llvm.org/D110333
2021-09-30 14:41:23 +01:00
David Green 3f90df22f1 [ARM] MVE reverse shuffles.
The vectorizer can sometimes make reverse shuffles from indices that
count down. In MVE, we don't have a 128bit rev instruction, but we can
select this to a VREV64 with some lane movs to swap the two halfs.

Ideally this would use VMOVD's, but only gets as far as VMOVS's at the
moment.

Differential Revision: https://reviews.llvm.org/D69510
2021-09-20 13:48:01 +01:00
David Green cb5e3f7959 [ARM] Prevent large integer VQDMULH pattern crashes
Put a limit on the size of constant integers we test when looking for
VQDMULH, to prevent it from crashing from values more than 64bits.
2021-09-18 18:47:02 +01:00
David Green a2332d5332 [ARM] Prevent continuous folding of SUBC
Under some situations under Thumb1, we could be stuck in an infinite
loop recombining the same instruction. This puts a limit on that, not
combining SUBC with SUBE repeatedly.
2021-09-15 11:23:32 +01:00
Craig Topper 9af8f1b18e [SelectionDAG] Add isZero/isAllOnes methods to ConstantSDNode.
Soft deprecrate isNullValue/isAllOnesValue and update in tree
callers. This matches the changes to the APInt interface from
D109483.

Reviewed By: lattner

Differential Revision: https://reviews.llvm.org/D109535
2021-09-09 13:28:30 -07:00
Chris Lattner d51da74889 [CodeGen] Use DAG.getAllOnesConstant where possible to simplify code. NFC. 2021-09-09 10:22:51 -07:00
Chris Lattner 735f46715d [APInt] Normalize naming on keep constructors / predicate methods.
This renames the primary methods for creating a zero value to `getZero`
instead of `getNullValue` and renames predicates like `isAllOnesValue`
to simply `isAllOnes`.  This achieves two things:

1) This starts standardizing predicates across the LLVM codebase,
   following (in this case) ConstantInt.  The word "Value" doesn't
   convey anything of merit, and is missing in some of the other things.

2) Calling an integer "null" doesn't make any sense.  The original sin
   here is mine and I've regretted it for years.  This moves us to calling
   it "zero" instead, which is correct!

APInt is widely used and I don't think anyone is keen to take massive source
breakage on anything so core, at least not all in one go.  As such, this
doesn't actually delete any entrypoints, it "soft deprecates" them with a
comment.

Included in this patch are changes to a bunch of the codebase, but there are
more.  We should normalize SelectionDAG and other APIs as well, which would
make the API change more mechanical.

Differential Revision: https://reviews.llvm.org/D109483
2021-09-09 09:50:24 -07:00
Ben Shi 63ca9371c7 [ARM] Implement target hook function to decide folding (mul (add x, c1), c2)
Prevent the folding in DAGCombine if it leads to worse code.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D109124
2021-09-07 15:42:43 +08:00
David Green f37e132263 [ARM] Add VFP lowering for fptosi.sat
This extends D107865 to the VFP insructions, lowering llvm.fptosi.sat
and llvm.fptoui.sat to VCVT instructions that inherently perform the
saturate.

Differential Revision: https://reviews.llvm.org/D107866
2021-09-03 18:11:08 +01:00
David Green 9cb8f4d1ad [ARM] Add a tail-predication loop predicate register
The semantics of tail predication loops means that the value of LR as an
instruction is executed determines the predicate. In other words:

mov r3, #3
DLSTP lr, r3        // Start tail predication, lr==3
VADD.s32 q0, q1, q2 // Lanes 0,1 and 2 are updated in q0.
mov lr, #1
VADD.s32 q0, q1, q2 // Only first lane is updated.

This means that the value of lr cannot be spilled and re-used in tail
predication regions without potentially altering the behaviour of the
program. More lanes than required could be stored, for example, and in
the case of a gather those lanes might not have been setup, leading to
alignment exceptions.

This patch adds a new lr predicate operand to MVE instructions in order
to keep a reference to the lr that they use as a tail predicate. It will
usually hold the zeroreg meaning not predicated, being set to the LR phi
value in the MVETPAndVPTOptimisationsPass. This will prevent it from
being spilled anywhere that it needs to be used.

A lot of tests needed updating.

Differential Revision: https://reviews.llvm.org/D107638
2021-09-02 13:42:58 +01:00
David Green 49476a4d66 [ARM] Add MVE lowering for fptosi.sat
This adds lowering of the llvm.fptosi.sat and llvm.fptoui.sat intinsics,
selecting a VCVT instruction which under MVE will inherently perform the
saturate.

Differential Revision: https://reviews.llvm.org/D107865
2021-09-01 22:38:47 +01:00
Nick Desaulniers 5c91b98c5d [ARMISelLowering] avoid emitting libcalls to __mulodi4()
__has_builtin(__builtin_mul_overflow) returns true for 32b ARM targets,
but Clang is deferring to compiler RT when encountering `long long`
types. This breaks sanitizer builds of the Linux kernel that are using
__builtin_mul_overflow with these types for these targets.

If the semantics of __has_builtin mean "the compiler resolves these,
always" then we shouldn't conditionally emit a libcall.

This will still need to be worked around in the Linux kernel in order to
continue to support allmodconfig builds of the Linux kernel for this
target with older releases of clang.

Link: https://bugs.llvm.org/show_bug.cgi?id=28629
Link: https://github.com/ClangBuiltLinux/linux/issues/1438

Reviewed By: rengolin

Differential Revision: https://reviews.llvm.org/D108842
2021-08-27 15:14:47 -07:00
David Green 605489d593 [ARM] Fix VQDMULH fold for scalar smin
Add a variant of mve-vqdmulh tests that uses min/max intrinsics
directly, including a scalar test that shows it misbehaving for min
intrinsics and a fix for the combine to prevent it from misbehaving.
2021-08-21 16:33:18 +01:00
Arthur Eubanks 46cf82532c [NFC] Replace Function handling of attributes with less confusing calls
To avoid magic constants and confusing indexes.
2021-08-17 21:05:40 -07:00
David Green 9236dea255 [ARM] Create MQQPR and MQQQQPR register classes
Similar to the MQPR register class as the MVE equivalent to QPR, this
adds MQQPR and MQQQQPR register classes for the MVE equivalents of QQPR
and QQQQPR registers. The MVE MQPR seemed have worked out quite well,
and adding MQQPR and MQQQQPR allows us to a little more accurately
specify the number of registers, calculating register pressure limits a
little better.

Differential Revision: https://reviews.llvm.org/D107463
2021-08-16 22:58:12 +01:00
Simon Pilgrim d6fe8d37c6 [DAG] Fold concat_vectors(concat_vectors(x,y),concat_vectors(a,b)) -> concat_vectors(x,y,a,b)
Follow-up to D107068, attempt to fold nested concat_vectors/undefs, as long as both the vector and inner subvector types are legal.

This exposed the same issue in ARM's MVE LowerCONCAT_VECTORS_i1 (raised as PR51365) and AArch64's performConcatVectorsCombine which both assumed concat_vectors only took 2 subvector operands.

Differential Revision: https://reviews.llvm.org/D107597
2021-08-16 16:06:54 +01:00
Arthur Eubanks 92ce6db9ee [NFC] Rename AttributeList::hasFnAttribute() -> hasFnAttr()
This is more consistent with similar methods.
2021-08-13 11:09:18 -07:00
David Green ae9a346ef8 [ARM] Fix DAG combine loop in reduction distribution
Given a constant operand, the MVE and DAGCombine combines could fight,
each redistributing in the opposite order. Add a guard to the MVE
vecreduce distribution to prevent that.
2021-08-12 16:37:39 +01:00
Simon Pilgrim dbce6a8d9d [ARM] Fold insert_subvector to concat_vectors
D107068 fixed the same problem on aarch64 but the arm variant wasn't exposed in existing test coverage.

I've copied the arm64-neon-copy tests (and stripped the intrinsic test from it) for testing on arm neon builds as well.
2021-08-06 11:21:31 +01:00
David Green 15a1d7e839 [ARM] Switch order of creating VADDV and VMLAV.
It can be beneficial to attempt to try the larger VMLAV patterns before
VADDV, in case both may match the same code.
2021-07-31 16:28:52 +01:00
David Green 69cdadddec [ARM] Distribute reductions based on ascending load offset
This distributes reductions based on the relative offset of loads, if
one is found from their operands. Given chains of reductions this will
then sort them in ascending load order, which in turn can help simple
prefetches latch on to increasing strides more easily.

Differential Revision: https://reviews.llvm.org/D106569
2021-07-30 19:50:07 +01:00
David Green 532d05b714 [ARM] Attempt to distribute reductions
This adds a combine for adds of reductions, distributing them so that
they occur sequentially to enable better use of accumulating VADDVA
instructions. It combines:
  add(X, add(vecreduce(Y), vecreduce(Z))) ->
    add(add(X, vecreduce(Y)), vecreduce(Z))
and
  add(add(A, reduce(B)), add(C, reduce(D))) ->
    add(add(add(A, C), reduce(B)), reduce(D))

These together distribute the add's so that more reductions can be
selected to VADDVA.

Differential Revision: https://reviews.llvm.org/D106532
2021-07-30 14:48:31 +01:00
David Green 4b56306762 [ARM] Turn vecreduce_add(add(x, y)) into vecreduce(x) + vecreduce(y)
Under MVE we can use VADDV/VADDVA's to perform integer add reductions,
so it can be beneficial to use more reductions than summing subvectors
and reducing once. Especially for VMLAV/VMLAVA the mul can be
incorporated into the reduction, producing less instructions.

Some of the test cases currently get larger due to extra integer adds,
but will be improved in a followup patch.

Differential Revision: https://reviews.llvm.org/D106531
2021-07-30 10:10:41 +01:00
David Green ba42f6a4b5 [ARM] Pass SelectionDAG to methods that dont require DCI. NFC
In these methods DCI is never used, only the DAG from it. Pass the DAG
directly, cleaning up the code a little.
2021-07-21 22:11:09 +01:00
David Green 5561ad8b36 [ARM] Remove PromotedBitwiseVT for NEON types
This removes the promotion of NEON AND, OR and XOR nodes to v2i32/v4i32,
treating them the same as the AArch64 and MVE backends where we just add
the relevant patterns for each legal type. This prevents a lot of
bitcasts from being added to the DAG, which have the potential to make
optimizations more difficult. It does mean adding extra patterns, and
some codegen can change due to the types now being legal, not promoted.

Differential Revision: https://reviews.llvm.org/D105588
2021-07-19 16:36:33 +01:00
David Green eb1e95dbdf [ARM] Extend more reductions during lowering
This relaxes the VMLAV and VADDV reduction recognition code to handle
smaller than legal types, extending them as needed. That was already
handled for some reductions, this extends it to more types in a more
generic way. If a smaller than legal value is found it is extended to
the legal type as needed.

Differential Revision: https://reviews.llvm.org/D106051
2021-07-19 08:58:03 +01:00