No intended behavior change.
EmitGCCInlineAsmStr() used to explicitly check for modifier 'l'
after handling block address and machine basic block operands.
This prevented passing a MachineOperand with 'l' modifier to
PrintAsmMemoryOperand(). Conceptually that seems kind of nice,
but in practice the overrides of PrintAsmMemoryOperand() in all (*)
AsmPrinter subclasses already reject modifiers they don't know about,
and none of them don't know about 'l'. So removing this doesn't have
a behavior difference, is less code, and it makes EmitGCCInlineAsmStr()
and EmitMSInlineAsmStr() more similar, to prepare for merging them later.
(Why not _add_ the branch to EmitMSInlineAsmStr() instead? Because that
always works with X86AsmPrinter I think, and
X86AsmPrinter::PrintAsmMemoryOperand() very decisively rejects the 'l'
modifier, so it's hard to motivate adding that branch.)
*: The one exception was AVRAsmPrinter, which had an llvm_unreachable instead
of returning true. So this commit changes that, so that the AVR target keeps
emitting an error instead of crashing when passing a mem operand with a :l
modifier to it. All the other targets already don't crash on this.
Differential Revision: https://reviews.llvm.org/D114216
- When an unconditional branch is expanded into an indirect branch, if
there is no scavenged register, an SGPR pair needs spilling to enable
the destination PC calculation. In addition, before jumping into the
destination, that clobbered SGPR pair need restoring.
- As SGPR cannot be spilled to or restored from memory directly, the
spilling/restoring of that SGPR pair reuses the regular SGPR spilling
support but without spilling it into memory. As that spilling and
restoring points are fully controlled, we only need to spill that SGPR
into the temporary VGPR, which needs spilling into its emergency slot.
- The target-specific hook is revised to take additional restore block,
where the restoring code is filled. After that, the relaxation will
place that restore block directly before the destination block and
insert an unconditional branch in any fall-through block into the
destination block.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D106449
This moves the registry higher in the LLVM library dependency stack.
Every client of the target registry needs to link against MC anyway to
actually use the target, so we might as well move this out of Support.
This allows us to ensure that Support doesn't have includes from MC/*.
Differential Revision: https://reviews.llvm.org/D111454
On some architectures such as Arm and X86 the encoding for a nop may
change depending on the subtarget in operation at the time of
encoding. This change replaces the per module MCSubtargetInfo retained
by the targets AsmBackend in favour of passing through the local
MCSubtargetInfo in operation at the time.
On Arm using the architectural NOP instruction can have a performance
benefit on some implementations.
For Arm I've deleted the copy of the AsmBackend's MCSubtargetInfo to
limit the chances of this causing problems in the future. I've not
done this for other targets such as X86 as there is more frequent use
of the MCSubtargetInfo and it looks to be for stable properties that
we would not expect to vary per function.
This change required threading STI through MCNopsFragment and
MCBoundaryAlignFragment.
I've attempted to take into account the in tree experimental backends.
Differential Revision: https://reviews.llvm.org/D45962
The current inconsistency confuse contributors which coding guidlines to follow.
It would be better to have it consistent using clang-format tool.
Reviewed By: mhjacobson
Differential Revision: https://reviews.llvm.org/D109270
AttributeList::hasAttribute() is confusing, use clearer methods like
hasParamAttr()/hasRetAttr().
Add hasRetAttr() since it was missing from AttributeList.
Emit references to '__do_global_ctors' and '__do_global_dtors' to allow
constructor/destructor routines to run.
Reviewed by: MaskRay
Differential Revision: https://reviews.llvm.org/D107133
Most other registers are allocatable and therefore cannot be used.
This issue was flagged by the machine verifier, because reading other
registers is considered reading from an undefined register.
Differential Revision: https://reviews.llvm.org/D96969
This patch fixes some issues with the RORB pseudo instruction.
- A minor issue in which the instructions were said to use the SREG,
which is not true.
- An issue with the BLD instruction, which did not have an output operand.
- A major issue in which invalid instructions were generated. The fix
also reduce RORB from 4 to 3 instructions, so it's also a small
optimization.
These issues were flagged by the machine verifier.
Differential Revision: https://reviews.llvm.org/D96957
This patch makes sure shift instructions such as this one:
%result = shl i32 %n, %amount
are expanded just before the IR to SelectionDAG conversion to a loop so
that calls to non-existing library functions such as __ashlsi3 are
avoided. The generated code is currently pretty bad but there's a lot of
room for improvement: the shift itself can be done in just four
instructions.
Differential Revision: https://reviews.llvm.org/D96677
There were some serious issues with atomic operations. This patch should
fix the biggest issues.
For details on the issue take a look at this Compiler Explorer sample:
https://godbolt.org/z/n3ndhn
Code:
void atomicadd(_Atomic char *val) {
*val += 5;
}
Output:
atomicadd:
movw r26, r24
ldi r24, 5 ; 'operand' register
in r0, 63
cli
ld r24, X ; load value
add r24, r26 ; value += X
st X, r24 ; store value back
out 63, r0
ret ; return the wrong value (in r24)
There are various problems with this.
- The value to add (5) is stored in r24. However, the value to add to
is loaded in the same register: r24.
- The `add` instruction adds half of the pointer to the loaded value,
instead of (attempting to) add the operand with value 5.
- The output value of the cmpxchg instruction (which is not used in
this code sample) is the new value with 5 added, not the old value.
The LangRef specifies that it has to be the old value, before the
operation.
This patch fixes the first two and leaves the third problem to be fixed
at a later date. I believe atomics were mostly broken before this patch,
with this patch they should become usable as long as you ignore the
output of the atomic operation. In particular it fixes the following
things:
- It sets the earlyclobber flag for the input ('$operand' operand) so
that the register allocator puts it in a different register than the
output value.
- It fixes a number of issues with the pseudo op expansion pass, for
example now it adds the $operand field instead of the pointer. This
fixes most machine instruction verifier issues (other flagged issues
are unrelated to atomics).
Differential Revision: https://reviews.llvm.org/D97127
In most cases, using R31R30 is fine because the call (which always
precedes ADJCALLSTACKDOWN) will clobber R31R30 anyway. However, in some
rare cases the register allocator might insert an instruction between
the call and the ADJCALLSTACKDOWN instruction and expect the register
pair to be live afterwards. I think this happens as a result of
rematerialization. Therefore, to fix this, the instruction needs to have
Defs set to R31R30.
Setting the Defs field does have the effect of making the instruction
look dead, which it certainly is not. This is fixed by setting
hasSideEffects to true.
Differential Revision: https://reviews.llvm.org/D97745
Previously, AVRTargetLowering::LowerCall attempted to keep stack stores
in order with chains. Perhaps this worked in the past, but it does not
work now: it appears that the SelectionDAG legalization phase removes
these chains. Therefore, I've removed these chains entirely to match
X86 (which, similar to AVR, also prefers to use push instructions over
stack-relative stores to set up a call frame). With this change, all the
stack stores are in a somewhat reasonable order.
Differential Revision: https://reviews.llvm.org/D97853
The r1 register should be cleared in prologue of ISR as it is used
as constant zero.
Reviewed By: dylanmckay
Differential Revision: https://reviews.llvm.org/D99467
When you try to define a new DEBUG_TYPE in a header file, DEBUG_TYPE
definition defined around the #includes in files include it could
result in redefinition warnings even compile errors.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D102594
This patch is a large number of small changes that should hopefully not
affect the generated machine code but are still important to get right
so that the machine verifier won't complain about them.
The llvm/test/CodeGen/AVR/pseudo/*.mir changes are also necessary
because without the liveins the used registers are considered undefined
by the machine verifier and it will complain about them.
Differential Revision: https://reviews.llvm.org/D97172
Some instructions (especially mov+pop instructions) were setting the
wrong operands. For example, the pop instruction had the register set as
a source operand while it is a destination operand (the value is loaded
into the register).
I have found these issues using the machine verifier and using manual
code inspection.
Differential Revision: https://reviews.llvm.org/D97159
The previous expansion used SBCI, which is incorrect because the NEGW
pseudo instruction accepts a DREGS operand (2xGPR8) and SBCI only allows
LD8 registers. One solution could be to correct the NEGW pseudo
instruction, but another solution is to use a different instruction
(sbc) that does accept a GPR8 register and therefore allows more freedom
to the register allocator.
The output now matches avr-gcc for the following code:
int foo(int n) {
return -n;
}
I've found this issue using the machine instruction verifier: it was
complaining about the wrong register class in NEGWRd.mir.
Differential Revision: https://reviews.llvm.org/D97131
These aliases are sometimes used in assembly code and make the code more
readable. They are supported by avr-gcc too.
Differential Revision: https://reviews.llvm.org/D96492
References to functions are in program memory and need a `pm()` fixup. This should fix trait objects for Rust on AVR.
Differential Revision: https://reviews.llvm.org/D87631
Patch by Alex Mikhalev.
As mentioned in TODO comment, casting double to float causes NaNs to change bits.
To avoid the change, this patch adds support for single-floating-point immediate value on MachineCode.
Patch by Yuta Saito.
Differential Revision: https://reviews.llvm.org/D77384
It was discussed a few years ago and agreed that it makes sense to
remove this assertion as other targets do not perform similar register
size checking in inline assembly constraint logic, so the check just
adds a needless barrier on AVR.
This patch removes the assertion and removes 'XFAIL' from two Generic
CodeGen tests for AVR as a result.
This patch factors out the part of printInstruction that gets the
mnemonic string for a given MCInst. This is intended to be used
subsequently for the instruction-mix remarks to display the final
mnemonic (D90040).
Unfortunately making `getMnemonic` available to the AsmPrinter
seems to require making it virtual. Not sure if there's a way around
that with the current layering of the AsmPrinters.
Reviewed By: Paul-C-Anagnostopoulos
Differential Revision: https://reviews.llvm.org/D90039
No longer rely on an external tool to build the llvm component layout.
Instead, leverage the existing `add_llvm_componentlibrary` cmake function and
introduce `add_llvm_component_group` to accurately describe component behavior.
These function store extra properties in the created targets. These properties
are processed once all components are defined to resolve library dependencies
and produce the header expected by llvm-config.
Differential Revision: https://reviews.llvm.org/D90848
These expansions were rather inefficient and were done with more code
than necessary. This change optimizes them to use expansions more
similar to GCC. The code size is the same (when optimizing for code
size) but somehow LLVM reorders blocks in a non-optimal way. Still, this
should be an improvement with a reduction in code size of around 0.12%
(when building compiler-rt).
Differential Revision: https://reviews.llvm.org/D86418
We were checking if the ConstantSDNode was null but then immediately dereferencing it afterward - fold these both into a single check. Use the APInt::ult() helper as well.
Found by clang static analyzer.
This patch fixes a corruption of the stack pointer and several registers in any AVR interrupt with non-empty stack frame. Previously, the callee-saved registers were popped before restoring the stack pointer, causing the pointer math to use the wrong base value while also corrupting the caller's register. This change fixes the code to restore the stack pointer last before exiting the interrupt service routine.
https://bugs.llvm.org/show_bug.cgi?id=47253
Reviewed By: dylanmckay
Differential Revision: https://reviews.llvm.org/D87735
Patch by Andrew Dona-Couch.
The versions that take 'unsigned' will be removed in the future.
I tried to use getOriginalAlign instead of getAlign in some
places. getAlign factors in the minimum alignment implied by
the offset in the pointer info. Since we're also passing the
pointer info we can use the original alignment.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D87592