Unfortunately sinking recipes for first-order recurrences relies on
the original position of recipes. So if a recipes needs to be sunk after
an optimized induction, it needs to stay in the original position, until
sinking is done. This is causing PR52460.
To fix the crash, keep the recipes in the original position until
sink-after is done.
Post-commit follow-up to c45045bfd0 to address PR52460.
This reverts commit 7cd273c339.
Several patches with tests fixes have been applied:
0cada82f0a "[Test] Remove incorrect test in GVN"
97cb13615d "[Test] Separate IndVars test into AArch64 and X86 parts"
985cc490f1 "[Test] Remove separated test in IndVars",
and test failures caused by 5ec2386 should be resolved now.
Previously, InstCombine detected a pair of llvm.stacksave/stackrestore
instructions that are adjacent modulo debug instructions in order to
eliminate the llvm.stackrestore. This precludes situations where
intervening instructions (e.g. loads) preclude the llvm.stacksave and
llvm.stackrestore from becoming adjacent. This commit extends the logic
and allows for eliminating the llvm.stackrestore when the range of
instructions between them does not include any alloca or side-effect
causing instructions.
Signed-off-by: Itay Bookstein <itay.bookstein@nextsilicon.com>
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D113105
Hoist the instruction classification logic outside the loop
in preparation for reuse in a future commit.
Signed-off-by: Itay Bookstein <itay.bookstein@nextsilicon.com>
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D113464
This patch uses the abstract attributor introduced in D111054 to get the
assumption values instead of the `hasAssumption` function. This also
calls it so assumption information should propagate throug the device
where applicabile.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D111445
This patch introduces a new abstract attributor instance that propagates
assumption information from functions. Conceptually, if a function is
only called by functions that have certain assumptions, then we can
apply the same assumptions to that function. This problem is similar to
calculating the dominator set, but the assumptions are merged instead of
nodes.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D111054
add tracing for loads and stores.
The primary goal is to have more options for data-flow-guided fuzzing,
i.e. use data flow insights to perform better mutations or more agressive corpus expansion.
But the feature is general puspose, could be used for other things too.
Pipe the flag though clang and clang driver, same as for the other SanitizerCoverage flags.
While at it, change some plain arrays into std::array.
Tests: clang flags test, LLVM IR test, compiler-rt executable test.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D113447
The implementation for and/or is the same, apart from the choice
of exactIntersectWith() vs exactUnionWith(). Extract a common
function to make future extension easier.
Rather than testing for many specific combinations of predicates
and values, compute the exact icmp regions for both comparisons
and check whether they union/intersect exactly. If they do,
construct the equivalent icmp for the new range. Assuming that the
existing code handled all possible cases, this should be NFC.
Differential Revision: https://reviews.llvm.org/D113367
To be more consistent with other pass struct names.
There are still more passes that don't end with "Pass", but these are the important ones.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D112935
Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op1)
I'm not sure if this is really an improvement in IR because
we probably have better recognition/analysis for min/max,
but this lines up with the fold we do for the icmp+select
idiom and removes another diff from D98152.
This is similar to the previous fold in the code that was
added with:
83c2fb9f66baa6a85130https://alive2.llvm.org/ce/z/5MrVB9
Changes VPReplicateRecipe to extract the last lane from an unconditional,
uniform store instruction. collectLoopUniforms will also add stores to
the list of uniform instructions where Legal->isUniformMemOp is true.
setCostBasedWideningDecision now sets the widening decision for
all uniform memory ops to Scalarize, where previously GatherScatter
may have been chosen for scalable stores.
This fixes an assert ("Cannot yet scalarize uniform stores") in
setCostBasedWideningDecision when we have a loop containing a
uniform i1 store and a scalable VF, which we cannot create a scatter for.
Reviewed By: sdesmalen, david-arm, fhahn
Differential Revision: https://reviews.llvm.org/D112725
(Cond & C) | (~bitcast(Cond) & D) --> bitcast (select Cond, (bc C), (bc D))
This is part of fixing:
https://llvm.org/PR34047
That report shows a case where a bitcast is sitting between the select condition
candidate and its 'not' value due to current cast canonicalization rules.
There's a bitcast type restriction that might be violated in existing matching,
but I still need to investigate if that is possible -
Alive2 shows we can only do this transform safely when the bitcast is from
narrow to wide vector elements (otherwise poison could leak into elements
that were safe in the original code):
https://alive2.llvm.org/ce/z/Hf66qh
Differential Revision: https://reviews.llvm.org/D113035
attempts
Prevent the selection of IVs that have a SCEV containing an undef. Also
prevent salvaging attempts for values for which a SCEV could not be
created by ScalarEvolution and have only SCEVUknown.
Reviewed by: Orlando
Differential Revision: https://reviews.llvm.org/D111810
Without this patch, passingValueIsAlwaysUndefined will iterate over all
instructions from I to the end of the basic block, even if the use is
outside the block.
This patch adds an early bail out, if the use instruction is outside I's
BB. This can greatly reduce compile-time in cases where very large basic
blocks are involved, with a large number of PHI nodes and incoming
values.
Note that the refactoring makes the handling of the case where I is a
phi and Use is in PHI more explicit as well: for phi nodes, we can also
directly bail out. In the existing code, we would iterate until we reach
the end and return false.
Based on an earlier patch by Matt Wala.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D113293
This reapplies patch db289340c8.
The test failures on build with expensive checks caused by the patch happened due
to the fact that we sorted loop Phis in replaceCongruentIVs using llvm::sort,
which shuffles the given container if the expensive checks are enabled,
so equivalent Phis in the sorted vector had different mutual order from run
to run. replaceCongruentIVs tries to replace narrow Phis with truncations
of wide ones. In some test cases there were several Phis with the same
width, so if their order differs from run to run, the narrow Phis would
be replaced with a different Phi, depending on the shuffling result.
The patch ae14fae0ff fixed this issue by
replacing llvm::sort with llvm::stable_sort.
This patch adds a function to verify general properties of VPlans. The
first check makes sure that all phi-like recipes are at the beginning of
a block, with no other recipes in between.
Note that this currently may not hold for VPBlendRecipes at the moment,
as other recipes may be inserted before the VPBlendRecipe during mask
creation.
Note that this patch depends on D111300 and D111301, which fix code that
breaks the checked invariant.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D111302
This is a fix for test failures on expensive checks build caused by db289340c8.
With LLVM_ENABLE_EXPENSIVE_CHECKS enabled the llvm::sort shuffles the given container.
However, the sort is only called when the TTI is passed to replaceCongruentIVs.
In the mentioned patch we pass it TTI, so the sort happens. But due to shuffling
equivalent Phis may appear in different order from run to run.
With the stable_sort instead of sort this is impossible - the order of sorted Phis
is preserved.
that don't use the inline asm marker
This patch makes the changes to the ARC middle-end passes that are
needed to handle operand bundle "clang.arc.attachedcall" on targets that
don't use the inline asm marker for the retainRV/autoreleaseRV
handshake (e.g., x86-64).
Note that anyone who wants to use the operand bundle on their target has
to teach their backend to handle the operand bundle. The x86-64 backend
already knows about the operand bundle (see
https://reviews.llvm.org/D94597).
Differential Revision: https://reviews.llvm.org/D111334
This is in preparation for only invalidating analyses on changed
functions.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D113303
instruction the key points to is deleted
Use weak value handles for both the key and the value. The entry is
invalid if either value handle is null.
This fixes an assertion failure in BasicAAResult::alias that is caused
by UnderlyingObjCPtrCache returning a wrong value.
I don't have a test case for this patch that fails reliably.
rdar://83984790
- CUDA cannot associate memory space with pointer types. Even though Clang could add extra attributes to specify the address space explicitly on a pointer type, it breaks the portability between Clang and NVCC.
- This change proposes to assume the address space from a pointer from the assumption built upon target-specific address space predicates, such as `__isGlobal` from CUDA. E.g.,
```
foo(float *p) {
__builtin_assume(__isGlobal(p));
// From there, we could assume p is a global pointer instead of a
// generic one.
}
```
This makes the code portable without introducing the implementation-specific features.
Note that NVCC starts to support __builtin_assume from version 11.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D112041
InstCombine converts range tests of the form (X > C1 && X < C2) or
(X < C1 || X > C2) into checks of the form (X + C3 < C4) or
(X + C3 > C4). It is possible to express all range tests in either
of these forms (with different choices of constants), but currently
neither of them is considered canonical. We may have equivalent
range tests using either ult or ugt.
This proposes to canonicalize all range tests to use ult. An
alternative would be to canonicalize to either ult or ugt depending
on the specific constants involved -- e.g. in practice we currently
generate ult for && style ranges and ugt for || style ranges when
going through the insertRangeTest() helper. In fact, the "clamp like"
fold was relying on this, which is why I had to tweak it to not
assume whether inversion is needed based on just the predicate.
Proof: https://alive2.llvm.org/ce/z/_SP_rQ
Differential Revision: https://reviews.llvm.org/D113366
All phi-like recipes should be at the beginning of a VPBasicBlock with
no other recipes in between. Ensure that the recurrence-splicing recipe
is not added between phi-like recipes, but after them.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D111301
When targeting a specific CPU with scalable vectorization, the knowledge
of that particular CPU's vscale value can be used to tune the cost-model
and make the cost per lane less pessimistic.
If the target implements 'TTI.getVScaleForTuning()', the cost-per-lane
is calculated as:
Cost / (VScaleForTuning * VF.KnownMinLanes)
Otherwise, it assumes a value of 1 meaning that the behavior
is unchanged and calculated as:
Cost / VF.KnownMinLanes
Reviewed By: kmclaughlin, david-arm
Differential Revision: https://reviews.llvm.org/D113209
Extended value is known to be inside range smaller than full one.
Prevent SCCP to mark such value as overdefined.
Fixes PR52253
Differential Revision: https://reviews.llvm.org/D112721
The common use case for calling createStepForVF is currently something
like:
Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
and it makes more sense to reduce overall lines of code and change the
function to let it create the constant instead. With my patch this
becomes:
Value *Step = createStepForVF(Builder, Ty, VF, UF);
and the ConstantInt is created instead createStepForVF. A side-effect of
this is that the code in createStepForVF is also becomes simpler.
As part of this patch I've also replaced some calls to getRuntimeVF
with calls to createStepForVF, i.e.
getRuntimeVF(Builder, Count->getType(), VFactor * UFactor) ->
createStepForVF(Builder, Count->getType(), VFactor, UFactor)
because this feels semantically better.
Differential Revision: https://reviews.llvm.org/D113122
In IndVarSimplify after simplifying and extending loop IVs we call 'replaceCongruentIVs'.
This function optionally takes a TTI argument to be able to replace narrow IVs uses
with truncates of the widest one.
For some reason the TTI wasn't passed to the function, so it couldn't perform such
transform.
This patch fixes it.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D113024
At the moment in LoopVectorizationCostModel::selectEpilogueVectorizationFactor
we bail out if the main vector loop uses a scalable VF. This patch adds
support for generating epilogue vector loops using a fixed-width VF when the
main vector loop uses a scalable VF.
I've changed LoopVectorizationCostModel::selectEpilogueVectorizationFactor
so that we convert the scalable VF into a fixed-width VF and do profitability
checks on that instead. In addition, since the scalable and fixed-width VFs
live in different VPlans that means I had to change the calls to
LVP.hasPlanWithVFs so that we only pass in the fixed-width VF.
New tests added here:
Transforms/LoopVectorize/AArch64/sve-epilog-vect.ll
Differential Revision: https://reviews.llvm.org/D109432
For some optimizations on comparisons it's necessary that the
union/intersect is exact and not a superset. Add methods that
return Optional<ConstantRange> only if the result is exact.
For the sake of simplicity this is implemented by comparing
the subset and superset approximations for now, but it should be
possible to do this more directly, as unionWith() and intersectWith()
already distinguish the cases where the result is imprecise for the
preferred range type functionality.
Add a variant of getEquivalentICmp() that produces an optional
offset. This allows us to create an equivalent icmp for all ranges.
Use this in the with.overflow folding code, which was doing this
adjustment separately -- this clarifies that the fold will indeed
always apply.
The public API for this functionality is forgetValue(). There was
only one call from LoopVectorize, which was directly next to a
forgetValue() call and as such redundant.
umax(X, Op1) - Op1 --> usub.sat(X, Op1)
https://alive2.llvm.org/ce/z/HpcGiJ
This happens in 2 or more steps with an icmp-select idiom
instead of an intrinsic. This is another step towards
canonicalization of the min/max intrinsics. See:
D98152
There is a combine in instcombine to transform a saturated add/sub into
a saddsat/ssubsat, currently handling inputs which are both sign
extended (https://alive2.llvm.org/ce/z/68qpTn). This can generalize to,
for example ashr of at least the bitwidth (https://alive2.llvm.org/ce/z/4TFyX-
and https://alive2.llvm.org/ce/z/qDWzFs for example). Which means it
generalizes further to "the number of sign bits", needing to be enough
to truncate to the size of the saturate. (An example using `or` for
instance: https://alive2.llvm.org/ce/z/EI_h_A).
So this patch makes use of ComputeNumSignBits (with the newly added
ComputeMinSignedBits) in matchSAddSubSat to generalize the fold to any
inputs with enough sign bits known, truncating the inputs to the new
size of the saturate.
Differential Revision: https://reviews.llvm.org/D112298
This introduces a new ComputeMinSignedBits method for ValueTracking that
returns the BitWidth - SignBits + 1 from ComputeSignBits, and represents
the minimum bit size for the value as a signed integer. Similar to the
existing APInt::getMinSignedBits method, this can make some of the
reasoning around ComputeSignBits more natural.
See https://reviews.llvm.org/D112298
Added and implemented -asan-use-stack-safety flag, which control if ASan would use the Stack Safety results to emit less code for operations which are marked as 'safe' by the static analysis.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D112098
This relaxes the one-use requirement on the rotation transform specifically for the case where we know we're zexting an IV of the loop. This allows us to discover trip count information in SCEV, which seems worth a single extra loop invariant truncate. Honestly, I'd prefer if SCEV could just compute the trip count directly (e.g. D109457), but this unblocks practical benefit.
Function specialisation was running at all optimisation levels (if enabled on
the command line, it is not on by default). That was an oversight and not
something we want to do. Function specialisation duplicates functions when it
triggers, so the backend is processing more functions/instructions resulting in
compile-time increases, which seems more appropriate with -O3 and inline with
GCC. Please note that since function specialisation is not enabled by default,
this didn't require updating any pass manager tests.
Differential Revision: https://reviews.llvm.org/D112129
Coroutines have weird semantics that don't quite match normal LLVM functions,
so trying to infer even simple attributes based on thier contents can go wrong.
The added test has poison lanes due to the vector shuffle. This can
cause an infinite loop of combines in instcombine where it folds
xor(ashr, -1) -> select (icmp slt 0), -1, 0 -> sext (icmp slt 0) -> xor(ashr, -1).
We usually prevent this by checking that the xor constant is not -1,
but with vectors some of the lanes may be -1, some may be poison. So
this changes the way we detect that from "!C1->isAllOnesValue()" to
"!match(C1, m_AllOnes())", which is more able to detect that some of the
lanes are poison.
Fixes PR52397
Not sure these are correct. I think I missed a case when porting this from the original SCEV change to the IndVar changes. I may end up reapplying this later with a comment about how this is correct, but in case the current bad feeling turns out to be true, I'm removing from tree while investigating further.
We already make sure to properly clear analyses for deleted functions.
This makes investigating some future potential compile time improvements easier.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D113032
This change looks for cases where we can prove that an exit test of a loop can be performed in a narrower bitwidth, and that by doing so we can replace a loop-varying extend with a loop-invariant truncate.
The motivation here is that doing this unblocks the trip count analysis for narrow IVs involved in extended compare exit tests. It also has the nice side effect of simply making the code faster, even if we gain no other benefit from the improved analysis ability.
I've noted a few places this could be extended, but I think this stands reasonable on it's own as well.
Differential Revision: https://reviews.llvm.org/D112262
The recipe produces exactly one VPValue and can inherit directly from
it. This is in line with other recipes and avoids having to use
getVPSingleValue.
In D71220 a pattern was added to replace shuffle's insertelement operand
if inserted scalar is not demanded. The pattern was added only for
the case where the shuffle's mask size is equal to element's vector size.
However, that condition is not required because the pattern does not
change the shuffle vector size.
This patch extends the pattern to also include cases where shuffle's mask
size is not equal to element's vector size.
Differential Revision: https://reviews.llvm.org/D112318
If we assume SPMD-mode during the fixpoint iteration we have to execute
the kernel in SPMD-mode. If we change our mind during manifest there is
the chance of a mismatch between the simplification, e.g., of
`__kmpc_is_spmd_exec_mode` calls, and the execution mode. This problem
was introduced in D109438.
This patch is compromise to resolve the problem purely in OpenMP-opt
while trying to keep the benefits of D109438 around. This might not
always work, see `get_hardware_num_threads_in_block_fold` but it often
does. At the same time we do keep value specialization and execution
mode in sync.
Proper solutions to this problem should be considered. I believe a new
execution mode is the easiest way forward (Singleton-SPMD).
Alternatively, SPMD-mode execution can be used with a way to provide a
new thread_limit (here 1) to the runtime. This is more general and could
be useful if we see `num_threads` clauses or workshared loops with small
trip counts in the kernel. In either proposal we need to disable the
guarding for the kernel (which was the motivation for D109438).
Reviewed By: jhuber6
Differential Revision: https://reviews.llvm.org/D112894
Before we had aligned barriers the `__kmpc_barrier_simple_spmd` was
OK to be used in the custom state machine. Now that SPMD barriers are
assumed to be aligned we need to use a "generic" barrier in places
that are not aligned.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D112893
Global symbols cannot have any name so we need to sanitize the string
first. Also remove an assertion that is not actually necessary nor
true in general.
Reviewed By: ggeorgakoudis
Differential Revision: https://reviews.llvm.org/D112892
Added support for peeling loops with exits that are followed either by an
unreachable-terminated block or block that has a terminatnig deoptimize call.
All blocks in the sequence must have an unique successor, maybe except
for the last one.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D110922
Header "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" is currently
included twice. This commit removes the duplicate 'include' line.
Previous commit 693eedb138
seems to have mistakenly added the duplicate 'include'.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D112979
The tests diffs are logically equivalent, and so this is
generally NFC, but this makes the code match the code
comment.
It should also be more efficient. If we choose the 'not'
operand (rather than the 'not' instruction) as the select
condition, then we don't have to invert the select
condition/operands as a subsequent transform.
The scalarizer pass seems to be inserting instructions in-between PHI nodes or debug intrinsics that end up staying at the end of the pass, resulting in malformed IR and violating assumptions.
This patch adds a check to make sure the `extractelement` instructions that it adds are correctly placed after all PHI nodes and debug intrinsics.
Patch by vettoreldaniele.
Reviewed By: bjope
Differential Revision: https://reviews.llvm.org/D112472
This patch updates VPReductionRecipe::execute so that the fast-math
flags associated with the underlying instruction of the VPRecipe are
propagated through to the reductions which are created.
Differential Revision: https://reviews.llvm.org/D112548
Similar to 54e969cffd (and with cosmetic updates to hopefully
make that easier to read), this fold has been around since early
in LLVM history.
Intermediate folds have been added subsequently, so extra uses
are required to exercise this code.
The test example actually shows an unintended consequence with
extra uses - we end up with an extra instruction compared to what
we started with. But this at least makes scalar/vector consistent.
General proof:
https://alive2.llvm.org/ce/z/tmuBza
Previously we only applied it to the first one, which could allow
subsequent global tags to exceed the valid number of bits.
Reviewed By: hctim
Differential Revision: https://reviews.llvm.org/D112853
This fold was added long ago (part of fixing PR4216),
and it matched scalars only. Intermediate folds have
been added subsequently, so extra uses are required
to exercise this code.
General proof:
https://alive2.llvm.org/ce/z/G6BBhB
One of the specific tests:
https://alive2.llvm.org/ce/z/t0JhEB
We never expect the runtime VF to be negative so we should use
the uitofp instruction instead of sitofp.
Differential revision: https://reviews.llvm.org/D112610
Now that the reasoning was added to ConstantRange in D90924,
this replicates IndVars variant of this transform (D111836)
in a pass that uses value range reasoning for the transform.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D112895
As noted in https://reviews.llvm.org/D90924#inline-1076197
apparently this is a pretty common pattern,
let's not repeat it yet again, but have it in a common place.
There may be some more places where it could be used,
but these are the most obvious ones.
This patch adds support to remove stores that write the same value
as earlier memesets.
It uses isOverwrite to check that a memset completely overwrites a later
store. The candidate store must store the same bytewise value as the
byte stored by the memset.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D112321
Adds the following switches:
1. --sample-profile-inline-replay-fallback/--cgscc-inline-replay-fallback: controls what the replay advisor does for inline sites that are not present in the replay. Options are:
1. Original: defers to original advisor
2. AlwaysInline: inline all sites not in replay
3. NeverInline: inline no sites not in replay
2. --sample-profile-inline-replay-format/--cgscc-inline-replay-format: controls what format should be generated to match against the replay remarks. Options are:
1. Line
2. LineColumn
3. LineDiscriminator
4. LineColumnDiscriminator
Adds support for negative inlining decisions. These are denoted by "will not be inlined into" as compared to the positive "inlined into" in the remarks.
All of these together with the previous `--sample-profile-inline-replay-scope/--cgscc-inline-replay-scope` allow tweaking in how to apply replay. In my testing, I'm using:
1. --sample-profile-inline-replay-scope/--cgscc-inline-replay-scope = Function to only replay on a function
2. --sample-profile-inline-replay-fallback/--cgscc-inline-replay-fallback = NeverInline since I'm feeding in only positive remarks to the replay system
3. --sample-profile-inline-replay-format/--cgscc-inline-replay-format = Line since I'm generating the remarks from DWARF information from GCC which can conflict quite heavily in column number compared to Clang
An alternative configuration could be to do Function, AlwaysInline, Line fallback with negative remarks which closer matches the final call-sites. Note that this can lead to unbounded inlining if a negative remark doesn't match/exist for one reason or another.
Updated various tests to cover the new switches and negative remarks
Testing:
ninja check-all
Reviewed By: wenlei, mtrofin
Differential Revision: https://reviews.llvm.org/D112040
Replay in sample profiling needs to be asked on candidates that may not have counts or below the threshold. If replay is in effect for a function make sure these are captured and also imported during thinLTO.
Testing:
ninja check-all
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D112033
createReplacementInstr was a trivial wrapper around
ConstantExpr::getAsInstruction, which also inserted the new instruction
into a basic block. Implement this directly in getAsInstruction by
adding an InsertBefore parameter and change all callers to use it. NFC.
A follow-up patch will remove createReplacementInstr.
Differential Revision: https://reviews.llvm.org/D112791
The sequence of instructions `xor (ashr X, BW-1), C` (or with a truncation
`xor (trunc (ashr X, BW-1)), C)` takes a value, produces all zeros or all
ones and with it optionally inverts a constant depending on whether the
original input was positive or negative. This is the same as checking if
the value is positive, and selecting between the constant and ~constant.
https://alive2.llvm.org/ce/z/NJ85qY
This is a fairly general version of a fold that helps pull saturating
arithmetic into a canonical form.
Differential Revision: https://reviews.llvm.org/D109151
Fixes non-determinisctic order of XOR instructions created after
5a7a458306. The order of call argument evaluation is not
defined, so create one Value before the call.
Move the section collecting `AlwaysPreserved` up before any
`maybeInternalize` is called. Otherwise, functions in `AlwaysPreserved` (in this case, `__stack_chk_fail`)
are not preserved.
Reviewed By: MaskRay, tejohnson
Differential Revision: https://reviews.llvm.org/D112684
This patch updates recipe creation to ensure all
VPWidenIntOrFpInductionRecipes are in the header block. At the moment,
new induction recipes can be created in different blocks when trying to
optimize casts and induction variables.
Having all induction recipes in the header makes it easier to
analyze/transform them in VPlan.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D111300
With D112160 and D112164, on a Chrome Mac build this reduces the total
size of CGProfile sections by 78% (around 25% eliminated entirely) and
total size of object files by 0.14%.
Differential Revision: https://reviews.llvm.org/D112655
This extends the canonicalizeClampLike function to allow cases where the
input is truncated, but still matching on the types of the ICmps. For
example
%t = trunc i32 %X to i8
%a = add i32 %X, 128
%cmp = icmp ult i32 %a, 256
%c = icmp sgt i32 %X, -1
%f = select i1 %c, i8 High, i8 Low
%r = select i1 %cmp, i8 %t, i8 %f
becomes
%c1 = icmp slt i32 %X, -128
%c2 = icmp sge i32 %X, 128
%s1 = select i1 %c1, i32 sext(Low), i32 %X
%s2 = select i1 %c2, i32 sext(High), i32 %s1
%t = trunc i32 %s2 to i8
https://alive2.llvm.org/ce/z/vPzfxH
We limit the transform to constant High and Low values, where we know
the sext are free.
Differential Revision: https://reviews.llvm.org/D108049
That's https://reviews.llvm.org/D90328 follow-up.
This change eliminates writes to variables where the value that is being written is already stored in the variable.
This achieves the goal by looping through all memory definitions in the current state and getting defining access from each of them.
When there is defining access where the write instruction is identical to the original instruction it will remove this redundant write.
For example:
void f() {
x = 1;
if foo() {
x = 1;
g();
} else {
h();
}
}
void g();
void h();
The second x=1 will be eliminated since it is rewriting 1 to x. This pass will produce this:
void f() {
x = 1;
if foo() {
g();
} else {
h();
}
}
void g();
void h();
Differential Revision: https://reviews.llvm.org/D111727
Gathered loads/extractelements/extractvalue instructions should be
checked if they can represent a vector reordering node too and their
order should ve taken into account for better graph reordering analysis/
Also, if the gather node has reused scalars, they must be reordered
instead of the scalars themselves.
Differential Revision: https://reviews.llvm.org/D112454
The motivating test is reduced from:
https://llvm.org/PR52261
Note that the more general problem of folding any binop into a multi-use
select of constants is still there. We need to ease the restriction in
InstCombinerImpl::FoldOpIntoSelect() to catch those. But these examples
never reach that code because Negator exclusively handles negation
patterns within visitSub().
Differential Revision: https://reviews.llvm.org/D112657
Even if we look for `nocapture` we need to bail on escaping pointers.
The crucial thing is that we might not look at a big enough scope when
we derive the memory behavior. Thus, it might be `nocapture` in a larger
context while it is "captured" in a smaller context.
When we strip and accumulate constant offsets we need to pick the right
address space such that the offset APInt has the right bit width.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D112544
A constant complaint we get is that the __typeid__ symbols in the CFI
jump tables causes confusing stack traces in applications. Emit the more
readable cfi_jt aliases regardless of function export (LTO vs Thin LTO).
Reviewed By: pcc, tejohnson
Differential Revision: https://reviews.llvm.org/D107934
It's a no-op, no overflow happens ever: https://alive2.llvm.org/ce/z/Zw89rZ
While generally i don't like such hacks,
we have a very good reason to do this: here we are expanding
a run-time correctness check for the vectorization,
and said `umul_with_overflow` will not be optimized out
before we query the cost of the checks we've generated.
Which means, the cost of run-time checks would be artificially inflated,
and after https://reviews.llvm.org/D109368 that will affect
the minimal trip count for which these checks are even evaluated.
And if they aren't even evaluated, then the vectorized code
certainly won't be run.
We could consider doing this in IRBuilder, but then we'd need to
also teach `CreateExtractValue()` to look into chain of `insertvalue`'s,
and i'm not sure there's precedent for that.
Refs. https://reviews.llvm.org/D109368#3089809
Gathered loads/extractelements/extractvalue instructions should be
checked if they can represent a vector reordering node too and their
order should ve taken into account for better graph reordering analysis/
Also, if the gather node has reused scalars, they must be reordered
instead of the scalars themselves.
Differential Revision: https://reviews.llvm.org/D112454
This patch changes the definition of getStepVector from:
Value *getStepVector(Value *Val, int StartIdx, Value *Step, ...
to
Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, ...
because:
1. it seems inconsistent to pass some values as Value* and some as
integer, and
2. future work will require the StartIdx to be an expression made up
of runtime calculations of the VF.
In widenIntOrFpInduction I've changed the code to pass in the
value returned from getRuntimeVF, but the presence of the assert:
assert(!VF.isScalable() && "scalable vectors not yet supported.");
means that currently this code path is only exercised for fixed-width
VFs and so the patch is still NFC.
Differential revision: https://reviews.llvm.org/D111882
Gathered loads/extractelements/extractvalue instructions should be
checked if they can represent a vector reordering node too and their
order should ve taken into account for better graph reordering analysis/
Also, if the gather node has reused scalars, they must be reordered
instead of the scalars themselves.
Differential Revision: https://reviews.llvm.org/D112454
Need to emit select(cmp) instructions for poison-safe forms of select
ops. Currently alive reports that `Target is more poisonous than source`
for operations we generating for such instructions.
https://alive2.llvm.org/ce/z/FiNiAA
Differential Revision: https://reviews.llvm.org/D112562
I have removed LoopVectorizationPlanner::setBestPlan, since this
function is quite aggressive because it deletes all other plans
except the one containing the <VF,UF> pair required. The code is
currently written to assume that all <VF,UF> pairs will live in the
same vplan. This is overly restrictive, since scalable VFs live in
different plans to fixed-width VFS. When we add support for
vectorising epilogue loops when the main loop uses scalable vectors
then we will the vplan for the main loop will be different to the
epilogue.
Instead I have added a new function called
LoopVectorizationPlanner::getBestPlanFor
that returns the best vplan for the <VF,UF> pair requested and leaves
all the vplans untouched. We then pass this best vplan to
LoopVectorizationPlanner::executePlan
which now takes an additional VPlanPtr argument.
Differential revision: https://reviews.llvm.org/D111125
Use RdxDesc->getOpcode instead of getUnderlingInstr()->getOpcode.
Move the code which finds Kind and IsOrdered to be outside the for loop
since neither of these change with the vector part.
Differential Revision: https://reviews.llvm.org/D112547
The final reduction nodes should not be reordered, the order does not
matter for reductions. Also, it might be profitable to vectorize smaller
reduction trees, reduction cost may compensate small tree cost.
Part of D111574
Differential Revision: https://reviews.llvm.org/D112467
The function simplifyOnce only calls simplifyOnceImpl and does nothing else.
Having this separate helper makes no sense. Removing it.
Patch by Dmitry Bakunevich!
Differential Revision: https://reviews.llvm.org/D112517
Reviewed By: mkazantsev
When peeling a loop, we assume that the latch has a `br` terminator and that
all loop exits are either terminated with an `unreachable` or have a terminating
deoptimize call. So when we peel off the 1st iteration, we change the IDom of
all loop exits to the peeled copy of `NCD(IDom(Exit), Latch)`. This works now,
but if we add logic to support loops with exits that are followed by a block
with an `unreachable` or a terminating deoptimize call, changing the exit's idom
wouldn't be enough and DT would be broken.
For example, let `Exit1` and `Exit2` are loop exits, and each of them
unconditionally branches to the same `unreachable` terminated block. So neither
of the exits dominates this unreachable block. If we change the IDoms of the
exits to some peeled loop block, we don't update the dominators of the unreachable
block. Currently we just don't get to the peeling logic, saying that we can't peel
such loops.
Previously we stored exits' IDoms in a map before peeling a loop and then, after
peeling off one iteration, we changed their IDoms.
Now we use the same logic not only for exits but for all non-loop blocks dominated
by the loop.
So when we add logic to support peeling loops with exits which branch, for example,
to an unreachable-terminated block, we would update the IDoms not only for exits,
but for their successors.
Patch by Dmitry Makogon!
Differential Revision: https://reviews.llvm.org/D111611
Reviewed By: mkazantsev, nikic
Always insert values into ExprValueMap, and instead skip using them
in SCEVExpander if poison-generating flags have been lost. This
ensures that all values that are in ValueExprMap are also in
ExprValueMap, so we can use the latter to invalidate the former.
This change is probably not entirely NFC for the case where
originally the SCEV had no nowrap flags but they were inferred
later, in which case that would now allow reusing the existing
value for expansion.
Differential Revision: https://reviews.llvm.org/D112389
The recently added logic to canonicalize exit conditions to unsigned relies on facts which hold about the use (i.e. exit test). Applying this blindly to the icmp is not legal, as there may be another use which never reaches the exit. Restrict ourselves to case where we have a single use.
Need to change the order of the reduction/binops args pair vectorization
attempts. Need to try to find the reduction at first and postpone
vectorization of binops args. This may help to find more reduction
patterns and vectorize them.
Part of D111574.
Differential Revision: https://reviews.llvm.org/D112224
We observe a hang within iterativelySimplifyCFG due to infinite
loop execution. Currently, there is no limit to this loop, so
in case of bug it just works forever. This patch adds an assert
that will break it after 1000 iterations if it didn't converge.
Currently strip.invariant/launder.invariant are handled by
constructing constant expressions with the intrinsics skipped.
This takes an alternative approach of accumulating the offset
using stripAndAccumulateConstantOffsets(), with a flag to look
through invariant.group intrinsics.
Differential Revision: https://reviews.llvm.org/D112382
At the moment a dummy entry block is created at the beginning of VPlan
construction. This dummy block is later removed again.
This means it is not easy to identify the VPlan header block in a
general fashion, because during recipe creation it is the single
successor of the entry block, while later it is the entry block.
To make getting the header easier, just skip creating the dummy block.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D111299
Fixes a crash observed by oss-fuzz in 39934. Issue at hand is that code expects a pattern match on m_Mul to imply the operand is a mul instruction, however mul constexprs are also valid here.
As this API is now internally offset-based, we can accept a starting
offset and remove the need to create a temporary bitcast+gep
sequence to perform an offset load. The API now mirrors the
ConstantFoldLoadFromConst() API.
The logic in this patch is that if we find a comparison which would be unsigned except for when the loop is infinite, and we can prove that an infinite loop must be ill defined, we can still make the predicate unsigned.
The eventual goal (combined with a follow on patch) is to use the fact the loop exits to remove the zext (see tests) entirely.
A couple of points worth noting:
* We loose the ability to prove the loop unreachable by committing to the must exit interpretation. If instead, we later proved that rhs was definitely outside the range required for finiteness, we could have killed the loop entirely. (We don't currently implement this transform, but could in theory, do so.)
* simplifyAndExtend has a very limited list of users it walks. In particular, in the examples is stops at the zext and never visits the icmp. (Because we can't fold the zext to an addrec yet in SCEV.) Being willing to visit when we haven't simplified regresses multiple tests (seemingly because of less optimal results when computing trip counts). D112170 explores fixing that, but - at least so far - appears to be too expensive compile time wise.
Differential Revision: https://reviews.llvm.org/D111836
Make use of the getGEPIndicesForOffset() helper for creating GEPs.
This handles arrays as well, uses correct GEP index types and
reduces code duplication.
Differential Revision: https://reviews.llvm.org/D112263
When I playing with Coroutines, I found that it is possible to generate
following IR:
```
%struct = alloca ...
%sub.element = getelementptr %struct, i64 0, i64 index ; index is not
%zero
lifetime.marker.start(%sub.element)
% use of %sub.element
lifetime.marker.end(%sub.element)
store %struct to xxx ; %struct is escaping!
<suspend points>
```
Then the AllocaUseVisitor would collect the lifetime marker for
sub.element and treat it as the lifetime markers of the alloca! So it
judges that the alloca could be put on the stack instead of the frame by
judging the lifetime markers only.
The root cause for the bug is that AllocaUseVisitor collects wrong
lifetime markers.
This patch fixes this.
Reviewed By: lxfind
Differential Revision: https://reviews.llvm.org/D112216
Transformations may strip the attribute from the
argument, e.g. for unused, which will result in
shadow offsets mismatch between caller and
callee.
Stripping noundef for used arguments can be
a problem, as TLS is not going to be set
by caller. However this is not the goal of the
patch and I am not aware if that's even
possible.
Differential Revision: https://reviews.llvm.org/D112197
As discussed in D112016, our current requirement of speculatability
for ephemeral is overly strict: What we really care about is that
the instruction will be DCEd once the assume is dropped. For that
it is sufficient that the instruction is side-effect free and not
a terminator.
In particular, this allows non-dereferenceable loads to be ephemeral
values.
Differential Revision: https://reviews.llvm.org/D112179
shuf (bo X, Y), (bo X, W) --> bo (shuf X), (shuf Y, W)
This is motivated by an example in D111800
(although that patch avoids the problem for that particular example).
The pattern is shown in reduced form with:
https://llvm.org/PR52178https://alive2.llvm.org/ce/z/d8zB4D
There is no difference on the PhaseOrdering test from D111800
because the aarch64 cost model says that the shuffle cost is 3 while
the fadd cost is 2.
Differential Revision: https://reviews.llvm.org/D111901
Vectorization of PHIs and stores very similar, it might be beneficial to
try to revectorize stores (like PHIs) if the total number of stores with
the same/alternate opcode is less than the vector size but number of
stores with the same type is larger than the vector size.
Differential Revision: https://reviews.llvm.org/D109831
In order to explore different variants of reassociation current implementation uses "swap in a loop" approach. Unfortunately, the implementation is more complicated than it could be. This is an attempt to streamline the code. New approach is to extract core functionality into a helper function and call it explicitly as many times as required.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D112128
At the moment, rewriteLoopExitValue forgets the current phi node in the
loop that collects phis to rewrite. A few lines after the value is
forgotten, SCEV is used again to analyze incoming values and
potentially expand SCEV expression. This means that another SCEV is
created for PN, before the IR is actually updated in the next loop.
This leads to accessing invalid cached expression in combination with
D71539.
PN should only be changed once the actual incoming exit value is set in
the next loop. Moving invalidation there should ensure that PN is
invalidated in all relevant cases.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D111495
bitcast (inselt (bitcast X), Y, 0) --> or (and X, MaskC), (zext Y)
https://alive2.llvm.org/ce/z/Ux-662
Similar to D111082 / db231ebdb0 :
We want to avoid relatively opaque vector ops on types that are
likely supported by the backend as scalar integers. The bitwise
logic ops are more likely to allow further combining.
We probably want to generalize this to allow a shift too, but
that would oppose instcombine's general rule of not creating
extra instructions, so that's left as a potential follow-up.
Alternatively, we could do that transform in VectorCombine
with the help of the TTI cost model.
This is part of solving:
https://llvm.org/PR52057
As discussed in:
* https://reviews.llvm.org/D94166
* https://lists.llvm.org/pipermail/llvm-dev/2020-September/145031.html
The GlobalIndirectSymbol class lost most of its meaning in
https://reviews.llvm.org/D109792, which disambiguated getBaseObject
(now getAliaseeObject) between GlobalIFunc and everything else.
In addition, as long as GlobalIFunc is not a GlobalObject and
getAliaseeObject returns GlobalObjects, a GlobalAlias whose aliasee
is a GlobalIFunc cannot currently be modeled properly. Creating
aliases for GlobalIFuncs does happen in the wild (e.g. glibc). In addition,
calling getAliaseeObject on a GlobalIFunc will currently return nullptr,
which is undesirable because it should return the object itself for
non-aliases.
This patch refactors the GlobalIFunc class to inherit directly from
GlobalObject, and removes GlobalIndirectSymbol (while inlining the
relevant parts into GlobalAlias and GlobalIFunc). This allows for
calling getAliaseeObject() on a GlobalIFunc to return the GlobalIFunc
itself, making getAliaseeObject() more consistent and enabling
alias-to-ifunc to be properly modeled in the IR.
I exercised some judgement in the API clients of GlobalIndirectSymbol:
some were 'monomorphized' for GlobalAlias and GlobalIFunc, and
some remained shared (with the type adapted to become GlobalValue).
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D108872
To guarantee convergence of the algorithm each optimization step should decrease number of instructions when IR is modified. This property is not held in this test case. The problem is that SCEV Expander may do "unexpected" reassociation what results in creation of new min/max chains and introduction of extra instructions. As a result on each step we indefinitely optimize back and forth.
The solution is to restrict SCEV Expander to perform uncontrolled reassociations by means of "Unknown" expressions.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D112060
This is trivial. It was left out of the original review only because we had multiple copies of the same code in review at the same time, and keeping them in sync was easiest if the structure was kept in sync.
This patch duplicates a bit of logic we apply to comparisons encountered during the IV users walk to conditions which feed exit conditions. Why? simplifyAndExtend has a very limited list of users it walks. In particular, in the examples is stops at the zext and never visits the icmp. (Because we can't fold the zext to an addrec yet in SCEV.) Being willing to visit when we haven't simplified regresses multiple tests (seemingly because of less optimal results when computing trip counts).
Note that this can be trivially extended to multiple exiting blocks. I'm leaving that to a future patch (solely to cut down on the number of versions of the same code in review at once.)
Differential Revision: https://reviews.llvm.org/D111896
Using BPI within loop predication is non-trivial because BPI is only
preserved lossily in loop pass manager (one fix exposed by lossy
preservation is up for review at D111448). However, since loop
predication is only used in downstream pipelines, it is hard to keep BPI
from breaking for incomplete state with upstream changes in BPI.
Also, correctly preserving BPI for all loop passes is a non-trivial
undertaking (D110438 does this lossily), while the benefit of using it
in loop predication isn't clear.
In this patch, we rely on profile metadata to get almost similar benefit as
BPI, without actually using the complete heuristics provided by BPI.
This avoids the compile time explosion we tried to fix with D110438 and
also avoids fragile bugs because BPI can be lossy in loop passes
(D111448).
Reviewed-By: asbirlea, apilipenko
Differential Revision: https://reviews.llvm.org/D111668
Inspired by D111968, provide a isNegatedPowerOf2() wrapper instead of obfuscating code with (-Value).isPowerOf2() patterns, which I'm sure are likely avenues for typos.....
Differential Revision: https://reviews.llvm.org/D111998
Need to follow the order of the reused scalars from the
ReuseShuffleIndices mask rather than rely on the natural order.
Differential Revision: https://reviews.llvm.org/D111898
The goal is to allow grafting an inline tree from Clang or GCC into a new compilation without affecting other functions. For GCC, we're doing this by extracting the inline tree from dwarf information and generating the equivalent remarks.
This allows easier side-by-side asm analysis and a trial way to see if a particular inlining setup provides benefits by itself.
Testing:
ninja check-all
Reviewed By: wenlei, mtrofin
Differential Revision: https://reviews.llvm.org/D110658
This simplifies the return value of addRuntimeCheck from a pair of
instructions to a single `Value *`.
The existing users of addRuntimeChecks were ignoring the first element
of the pair, hence there is not reason to track FirstInst and return
it.
Additionally all users of addRuntimeChecks use the second returned
`Instruction *` just as `Value *`, so there is no need to return an
`Instruction *`. Therefore there is no need to create a redundant
dummy `and X, true` instruction any longer.
Effectively this change should not impact the generated code because the
redundant AND will be folded by later optimizations. But it is easy to
avoid creating it in the first place and it allows more accurately
estimating the cost of the runtime checks.
Record widening decisions for memory operations within the planned recipes and
use the recorded decisions in code-gen rather than querying the cost model.
Differential Revision: https://reviews.llvm.org/D110479
This is NFC-intended for the callers. Posting in case there are
other potential users that I missed.
I would also use this from VectorCombine in a patch for:
https://llvm.org/PR52178 ( D111901 )
Differential Revision: https://reviews.llvm.org/D111891
When peeling a loop, we assume that the latch has a `br` terminator and
that all loop exits are either terminated with an `unreachable` or have
a terminating deoptimize call. So when we peel off the 1st iteration, we
change the IDom of all loop exits to the peeled copy of
`NCD(IDom(Exit), Latch)`. This works now, but if we add logic to support
loops with exits that are followed by a block with an `unreachable` or a
terminating deoptimize call, changing the exit's idom wouldn't be enough
and DT would be broken.
For example, let `Exit1` and `Exit2` are loop exits, and each of them
unconditionally branches to the same `unreachable` terminated block. So
neither of the exits dominates this unreachable block. If we change the
IDoms of the exits to some peeled loop block, we don't update the
dominators of the unreachable block. Currently we just don't get to the
peeling logic, saying that we can't peel such loops.
With this NFC we just insert edges from cloned exiting blocks to their
exits after peeling each iteration (we accumulate the insertion updates
and then after peeling apply the updates to DT).
This patch was a part of D110922.
Patch by Dmitry Makogon!
Differential Revision: https://reviews.llvm.org/D111611
Reviewed By: mkazantsev
This removes an over-specified fold. The more general transform
was added with:
727e642e97
There's a difference on an existing test that shows a potentially
unnecessary use limit on an icmp fold.
That fold is in InstCombinerImpl::foldICmpSubConstant(), and IIRC
there was some back-and-forth on it and similar folds because they
could cause analysis/passes (SCEV, LSR?) to miss optimizations.
Differential Revision: https://reviews.llvm.org/D111410
(iN X s>> (N-1)) & Y --> (X < 0) ? Y : 0
https://alive2.llvm.org/ce/z/qeYhdz
I was looking at a missing abs() transform and found my way to this
generalization of an existing fold that was added with D67799.
As discussed in that review, we want to make sure codegen handles
this difference well, and for all of the targets/types that I
spot-checked, it looks good.
I am leaving the existing fold in place in this commit because
it covers a potentially missing icmp fold, but I plan to remove
that as a follow-up commit as suggested during review.
Differential Revision: https://reviews.llvm.org/D111410
This patch adds a pass option to only run transforms that scalarize
vector operations and do not create new vector instructions.
When running VectorCombine early in the pipeline introducing new vector
operations can have negative effects, like blocking loop or SLP
vectorization. To avoid regressions, restrict the early VectorCombine
run (when using -enable-matrix) to only perform scalarization and not
introduce new vector operations.
This is done as option to the pass directly, which is then set when
adding the pass to the pipeline. This is done for the new pass manager
only.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D111800
Fixes: https://bugs.llvm.org/show_bug.cgi?id=51841
This patch places an arbitrary limit on the size of DIExpressions that
we will produce via salvaging, for performance reasons. This helps to
fix a performance issue observed in the bug above, in which debug values
would be salvaged hundreds of times, producing expressions with over
1000 elements and causing the compiler to hang. Limiting the size of
debug values that we will produce to 128 largely fixes this issue.
Reviewed By: dblaikie, jmorse
Differential Revision: https://reviews.llvm.org/D110332
Add lshr (sext i1 X to iN), C --> select (X, -1 >> C, 0) case. This expands
C == N-1 case to arbitrary C.
Fixes PR52078.
Reviewed By: spatel, RKSimon, lebedev.ri
Differential Revision: https://reviews.llvm.org/D111330
Need to check that either Idx is UndefMaskElem and value is UndefValue
or Idx is valid and value is the same as the scalar value in the node.
Differential Revision: https://reviews.llvm.org/D111802
Rather than checking for loop nest preheaders upfront in IVUsers,
move this requirement into isSafeToExpand() from SCEVExpander.
Historically, LSR did not check whether SCEVs are safe to expand
and fully relied on IVUsers to validate this. Later, support for
non-expandable SCEVs was added via rigid formulas.
Checking this in isSafeToExpand() makes it more obvious what
exactly this check is guarding against, and avoids the awkward
loop nest scan.
This is a followup to https://reviews.llvm.org/D111493#3055286.
Differential Revision: https://reviews.llvm.org/D111681
The initial MemoryAccess *Current assignment is never used, and all other uses are initialized/used within the worklist loop (and not across multiple iterations) - so move the variable internal to the loop.
Fixes scan-build unused assignment warning.
If the parameter had been annotated as nonnull because of the null
check, we want to remove the attribute, since it may no longer apply and
could result in miscompiles if left. Similarly, we also want to remove
undef-implying attributes, since they may not apply anymore either.
Fixes PR52110.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D111515
This extends the foldOpIntoPhi code used when visiting a freeze user of a phi to allow any non-undef/poison operand as opposed to only non-undef/poison constants. This lets us hoist a freeze in the increment of an IV into the preheader in many cases.
Differential Revision: https://reviews.llvm.org/D111744
Even if there are no interesting functions, the SCCP solver would still run
before bailing. Now bail earlier, avoid running the solver for nothing.
Differential Revision: https://reviews.llvm.org/D111645
This is NFC-intended for scalar code. There are still unnecessary
m_ConstantInt restrictions in surrounding code, so this is not a
complete fix.
This prevents regressions seen with a planned follow-on to D111410.
If we have an instruction which produces poison only when flags are specified on the instruction, then we know that freezing the operands and dropping flags is equivalent to freezing the result. If we know those flags don't result in any undefined behavior being executed, then there's no point in preserving the flags as we gain no knowledge by having them.
This patch extends the existing propagation logic which sinks freeze to single potential non-poison operands to allow dropping of flags when we know the freeze is the sole use of the instruction with poison flags.
The main value is that we tend to sink freezes towards the phi in IV cycles where the incoming value to the phi is the freeze of an IV increment. This will in turn (in a future patch), let us fold the freeze through the phi into the loop preheader. Motivated by eliminating need for CanonicalizeFreezeInLoops for the clearly profitable cases from onephi.ll test case in the test directory.
Differential Revision: https://reviews.llvm.org/D111675
This patch fixes another crash revealed by PR51614:
when *deciding* to vectorize with masked interleave groups, check if the access
is reverse (which is currently not supported).
Differential Revision: https://reviews.llvm.org/D108900
If another inlining session came after a ModuleInlinerWrapperPass, the
advisor alanysis would still be cached, but its Result would be cleared.
We need to clear both.
This addresses PR52118
Differential Revision: https://reviews.llvm.org/D111586
This may not be obvious, but Alive2 agrees:
https://alive2.llvm.org/ce/z/Ld9qNT
If the mul has "nsw", then -1 * INT_MIN is poison, so the
negate can also have "nsw" because 0 - INT_MIN is poison.
If the mul has "nuw", then that means the "OtherOp" can only
be 0 or 1 (anything else multiplied by 0xfff... would wrap).
So the replacement negate must be "nsw" because it is either
"0-0" or "0-1".
This is another regression noticed with a planned follow-up
to D111410.
This patch continues unblocking optimizations that are blocked by pseudo probe instrumentation.
Not exactly like DbgIntrinsics, PseudoProbe intrinsic has other attributes (such as mayread, maywrite, mayhaveSideEffect) that can block optimizations. The issues fixed are:
- Flipped default param of getFirstNonPHIOrDbg API to skip pseudo probes
- Unblocked CSE by avoiding pseudo probe from clobbering memory SSA
- Unblocked induction variable simpliciation
- Allow empty loop deletion by treating probe intrinsic isDroppable
- Some refactoring.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D110847
collectLoopScalars collects pointer induction updates in ScalarPtrs, assuming
that the instruction will be scalar after vectorization. This may crash later
in VPReplicateRecipe::execute() if there there is another user of the instruction
other than the Phi node which needs to be widened.
This changes collectLoopScalars so that if there are any other users of
Update other than a Phi node, it is not added to ScalarPtrs.
Reviewed By: david-arm, fhahn
Differential Revision: https://reviews.llvm.org/D111294
This is a follow up of D110529 that disallowed constexprs. That change
introduced a regression as this also disallowed constexprs that are function
pointers, which is actually one of the motivating use cases that we do want to
support.
Differential Revision: https://reviews.llvm.org/D111567
This patch adds a new cost heuristic that allows peeling a single
iteration off read-only loops, if the loop contains a load that
1. is feeding an exit condition,
2. dominates the latch,
3. is not already known to be dereferenceable,
4. and has a loop invariant address.
If all non-latch exits are terminated with unreachable, such loads
in the loop are guaranteed to be dereferenceable after peeling,
enabling hoisting/CSE'ing them.
This enables vectorization of loops with certain runtime-checks, like
multiple calls to `std::vector::at` if the vector is passed as pointer.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D108114
LoopSimplifyCFG does not need MSSA, but should preserve it if it's available.
This is a legacy PM change, aimed to denoise the test changes in D109958.
Differential Revision: https://reviews.llvm.org/D111578
There may be some other patterns like this or a generalization,
but this is an example that I noticed would definitely regress
with a planned follow-up to D111410.
https://alive2.llvm.org/ce/z/GVpQDb