introduced by using decls are hidden even if their template parameter lists
or return types differ from the "overriding" declaration.
Propagate using shadow declarations around more effectively when looking up
template-ids. Reperform lookup for template-ids in member expressions so that
access control is properly set up.
Fix some number of latent bugs involving template-ids with totally invalid
base types. You can only actually get these with a scope specifier, since
otherwise the template-id won't parse as a template-id.
Fixes PR7384.
llvm-svn: 106093
provides C "integer type" semantics in C and C++ "integral type"
semantics in C++.
Note that I still need to update isIntegerType (and possibly other
predicates) using the same approach I've taken for
isIntegralType(). The two should have the same meaning, but currently
don't (!).
llvm-svn: 106074
in C++ that involve both integral and enumeration types. Convert all
of the callers to Type::isIntegralType() that are meant to work with
both integral and enumeration types over to
Type::isIntegralOrEnumerationType(), to prepare to eliminate
enumeration types as integral types.
llvm-svn: 106071
objective-c++ class objects which have GC'able objc object
pointers and need to use ObjC's objc_memmove_collectable
API (radar 8070772).
llvm-svn: 106061
case of an elaborated-type-specifier like 'typename A<T>::foo', and
DependentTemplateSpecializationType represents the case of an
elaborated-type-specifier like 'typename A<T>::template B<T>'. The TypeLoc
representation of a DependentTST conveniently exactly matches that of an
ElaboratedType wrapping a TST.
Kill off the explicit rebuild methods for RebuildInCurrentInstantiation;
the standard implementations work fine because the nested name specifier
is computable in the newly-entered context.
llvm-svn: 105801
that is missing the 'template' keyword, e.g.,
t->getAs<T>()
where getAs is a member of an unknown specialization. C++ requires
that we treat "getAs" as a value, but that would fail to parse since T
is the name of a type. We would then fail at the '>', since a type
cannot be followed by a '>'.
This is a very common error for C++ programmers to make, especially
since GCC occasionally allows it when it shouldn't (as does Visual
C++). So, when we are in this case, we use tentative parsing to see if
the tokens starting at "<" can only be parsed as a template argument
list. If so, we produce a diagnostic with a fix-it that states that
the 'template' keyword is needed:
test/SemaTemplate/dependent-template-recover.cpp:5:8: error: 'template' keyword
is required to treat 'getAs' as a dependent template name
t->getAs<T>();
^
template
This is just a start of this patch; I'd like to apply the same
approach to everywhere that a template-id with dependent template name
can be parsed.
llvm-svn: 104406
ObjCObjectType, which is basically just a pair of
one of {primitive-id, primitive-Class, user-defined @class}
with
a list of protocols.
An ObjCObjectPointerType is therefore just a pointer which always points to
one of these types (possibly sugared). ObjCInterfaceType is now just a kind
of ObjCObjectType which happens to not carry any protocols.
Alter a rather large number of use sites to use ObjCObjectType instead of
ObjCInterfaceType. Store an ObjCInterfaceType as a pointer on the decl rather
than hashing them in a FoldingSet. Remove some number of methods that are no
longer used, at least after this patch.
By simplifying ObjCObjectPointerType, we are now able to easily remove and apply
pointers to Objective-C types, which is crucial for a certain kind of ObjC++
metaprogramming common in WebKit.
llvm-svn: 103870
return value optimization. Sema marks return statements with their
NRVO candidates (which may or may not end up using the NRVO), then, at
the end of a function body, computes and marks those variables that
can be allocated into the return slot.
I've checked this locally with some debugging statements (not
committed), but there won't be any tests until CodeGen comes along.
llvm-svn: 103865
"used" (e.g., we will refer to the vtable in the generated code) and
when they are defined (i.e., because we've seen the key function
definition). Previously, we were effectively tracking "potential
definitions" rather than uses, so we were a bit too eager about emitting
vtables for classes without key functions.
The new scheme:
- For every use of a vtable, Sema calls MarkVTableUsed() to indicate
the use. For example, this occurs when calling a virtual member
function of the class, defining a constructor of that class type,
dynamic_cast'ing from that type to a derived class, casting
to/through a virtual base class, etc.
- For every definition of a vtable, Sema calls MarkVTableUsed() to
indicate the definition. This happens at the end of the translation
unit for classes whose key function has been defined (so we can
delay computation of the key function; see PR6564), and will also
occur with explicit template instantiation definitions.
- For every vtable defined/used, we mark all of the virtual member
functions of that vtable as defined/used, unless we know that the key
function is in another translation unit. This instantiates virtual
member functions when needed.
- At the end of the translation unit, Sema tells CodeGen (via the
ASTConsumer) which vtables must be defined (CodeGen will define
them) and which may be used (for which CodeGen will define the
vtables lazily).
From a language perspective, both the old and the new schemes are
permissible: we're allowed to instantiate virtual member functions
whenever we want per the standard. However, all other C++ compilers
were more lazy than we were, and our eagerness was both a performance
issue (we instantiated too much) and a portability problem (we broke
Boost test cases, which now pass).
Notes:
(1) There's a ton of churn in the tests, because the order in which
vtables get emitted to IR has changed. I've tried to isolate some of
the larger tests from these issues.
(2) Some diagnostics related to
implicitly-instantiated/implicitly-defined virtual member functions
have moved to the point of first use/definition. It's better this
way.
(3) I could use a review of the places where we MarkVTableUsed, to
see if I missed any place where the language effectively requires a
vtable.
Fixes PR7114 and PR6564.
llvm-svn: 103718
particular, don't complain about unused variables that have dependent
type until instantiation time, so that we can look at the type of the
variable. Moreover, only complain about unused variables that have
neither a user-declared constructor nor a non-trivial destructor.
llvm-svn: 103362
typedef int functype(int, int);
functype func;
also instantiate the synthesized function parameters for the resulting
function declaration.
With this change, Boost.Wave builds and passes all of its regression
tests.
llvm-svn: 103025
(-Wunused-exception-parameter) than normal variables, since it's more
common to name and then ignore an exception parameter. This warning is
neither enabled by default nor by -Wall. Fixes <rdar://problem/7931045>.
llvm-svn: 102931
entering the current instantiation. Set up a little to preserve type location
information for typename types while we're in there.
Fixes a Boost failure.
llvm-svn: 102673
when they are not complete (since we could not match them up to
anything) and ensuring that enum parsing can cope with dependent
elaborated-type-specifiers. Fixes PR6915 and PR6649.
llvm-svn: 102247
(e.g., no typename, enum, class, etc.), e.g., because the context is
one that is known to refer to a type. Patch from Enea Zaffanella!
llvm-svn: 102243
arguments. Rather than having the parser call ActOnParamDeclarator
(which is a bit of a hack), call a new ActOnObjCExceptionDecl
action. We'll be moving more functionality into this handler to
perform earlier checking of @catch.
llvm-svn: 102222
way that C does. Among other differences, elaborated type specifiers
are defined to skip "non-types", which, as you might imagine, does not
include typedefs. Rework our use of IDNS masks to capture the semantics
of different kinds of declarations better, and remove most current lookup
filters. Removing the last remaining filter is more complicated and will
happen in a separate patch.
Fixes PR 6885 as well some spectrum of unfiled bugs.
llvm-svn: 102164
function declaration, since it may end up being changed (e.g.,
"extern" can become "static" if a prior declaration was static). Patch
by Enea Zaffanella and Paolo Bolzoni.
llvm-svn: 101826
in case it ends up doing something that might trigger diagnostics
(template instantiation, ambiguity reporting, access
reporting). Noticed while working on PR6831.
llvm-svn: 101412
ASTContext::getTypeSize() rather than ASTContext::getIntWidth() for
the width of an integral type. The former includes padding for bools
(to the target's size) while the latter does not, so we woud end up
zero-extending bools to the target width when we shouldn't. Fixes a
crash-on-valid in the included test.
llvm-svn: 101372
generally recover from typos in keywords (since we would effectively
have to mangle the token stream). However, there are still benefits to
typo-correcting with keywords:
- We don't make stupid suggestions when the user typed something
that is similar to a keyword.
- We can suggest the keyword in a diagnostic (did you mean
"static_cast"?), even if we can't recover and therefore don't have
a fix-it.
llvm-svn: 101274
function's type is (strictly speaking) non-dependent. This ensures
that, e.g., default function arguments get instantiated properly.
And, since I couldn't resist, collapse the two implementations of
function-parameter instantiation into calls to a single, new function
(Sema::SubstParmVarDecl), since the two had nearly identical code (and
each had bugs the other didn't!). More importantly, factored out the
semantic analysis of a parameter declaration into
Sema::CheckParameter, which is called both by
Sema::ActOnParamDeclarator (when parameters are parsed) and when a
parameter is instantiated. Previously, we were missing some
Objective-C and address-space checks on instantiated function
parameters.
Fixes PR6733.
llvm-svn: 101029
nested-name-specifier (e.g., "class T::foo") fails to find a tag
member in the scope nominated by the
nested-name-specifier. Previously, we gave a bland
error: 'Nested' does not name a tag member in the specified scope
which didn't actually say where we were looking, which was rather
horrible when the nested-name-specifier was instantiated. Now, we give
something a bit better:
error: no class named 'Nested' in 'NoDepBase<T>'
llvm-svn: 100060
This introduces FunctionType::ExtInfo to hold the calling convention and the
noreturn attribute. The next patch will extend it to include the regparm
attribute and fix the bug.
llvm-svn: 99920
since we have absolutely no way to match them when they are declared
nor do we have a way to represent these parsed-but-not-checked friend
declarations.
llvm-svn: 99407
template <> friend void foo(int);
we need to change it to
friend void foo<>(int);
or else the user won't get the template specialization they obviously want.
llvm-svn: 99390
entering a function or block definition, not on every single declaration.
Unfortunately we don't have previous-lookup results around when it's time
to make this decision, so we have to redo the lookup. The alternative is
to use delayed diagnostics.
llvm-svn: 99172
This object controls when the warnings are executed, allowing the client code
in Sema to selectively disable warnings as needed.
Centralizing the logic for analysis-based warnings allows us to optimize
when and how they are run.
Along the way, remove the redundant logic for the 'check fall-through' warning
for blocks; now the same logic is used for both blocks and functions.
llvm-svn: 99085
ActOnStartCXXMemberDeclaration. We haven't started the field collector on this
class yet, so don't stop it. Fixes a crash in the VS buildbot and a memory error
on all the others.
llvm-svn: 98760
on unqualified declarations.
Patch by Enea Zaffanella! Minimal adjustments: allocate the ExtInfo nodes
with the ASTContext and delete them during Destroy(). I audited a bunch of
Destroy methods at the same time, to ensure that the correct teardown was
being done.
llvm-svn: 98540
instantiation. Based on a patch by Enea Zaffanella! I found a way to
reduce some of the redundancy between TreeTransform's "standard"
FunctionProtoType transformation and TemplateInstantiator's override,
and I killed off the old SubstFunctionType by adding type source info
for the last cases where we were creating FunctionDecls without TSI
(at least that get passed through template instantiation).
llvm-svn: 98252
injected class name of a class template or class template partial specialization.
This is a non-canonical type; the canonical type is still a template
specialization type. This becomes the TypeForDecl of the pattern declaration,
which cleans up some amount of code (and complicates some other parts, but
whatever).
Fixes PR6326 and probably a few others, primarily by re-establishing a few
invariants about TypeLoc sizes.
llvm-svn: 98134
uninitialized. This seems not to be the case in C++0x, where we still
call the (trivial) default constructor for a POD class
(!). Previously, we had implemented only the C++0x rules; now we
implement both. Fixes PR6536.
llvm-svn: 97928
which has the label map, switch statement stack, etc. Previously, we
had a single set of maps in Sema (for the function) along with a stack
of block scopes. However, this lead to funky behavior with nested
functions, e.g., in the member functions of local classes.
The explicit-stack approach is far cleaner, and we retain a 1-element
cache so that we're not malloc/free'ing every time we enter a
function. Fixes PR6382.
Also, tweaked the unused-variable warning suppression logic to look at
errors within a given Scope rather than within a given function. The
prior code wasn't looking at the right number-of-errors count when
dealing with blocks, since the block's count would be deallocated
before we got to ActOnPopScope. This approach works with nested
blocks/functions, and gives tighter error recovery.
llvm-svn: 97518
re-declare them. This fixes PR6317. Also add the beginnings of an interesting
test case for p1 of [class.friend] which also covers PR6317.
llvm-svn: 97499
a fixme and PR6451.
Only perform jump checking if the containing function has no errors,
and add the infrastructure needed to do this.
On the testcase in the PR, we produce:
t.cc:6:3: error: illegal goto into protected scope
goto later;
^
t.cc:7:5: note: jump bypasses variable initialization
X x;
^
llvm-svn: 97497
errors, e.g.:
t.c:1:21: error: redefinition of parameter 'x'
int test(int x, int x);
^
t.c:1:14: note: previous declaration is here
int test(int x, int x);
^
llvm-svn: 96769
fixing up a few callers that thought they were propagating NoReturn
information but were in fact saying something about exception
specifications.
llvm-svn: 96766
are for out of line declarations more easily. This simplifies the logic and
handles the case of out-of-line class definitions correctly. Fixes PR6107.
llvm-svn: 96729
array allocated using the allocator in ASTContext. This addresses
these strings getting leaked when using a BumpPtrAllocator (in
ASTContext).
Fixes: <rdar://problem/7636765>
llvm-svn: 95853
Sema::ActOnUninitializedDecl over to InitializationSequence (with
default initialization), eliminating redundancy. More importantly, we
now check that a const definition in C++ has an initilizer, which was
an #if 0'd code for many, many months. A few other tweaks were needed
to get everything working again:
- Fix all of the places in the testsuite where we defined const
objects without initializers (now that we diagnose this issue)
- Teach instantiation of static data members to find the previous
declaration, so that we build proper redeclaration
chains. Previously, we had the redeclaration chain but built it
too late to be useful, because...
- Teach instantiation of static data member definitions not to try
to check an initializer if a previous declaration already had an
initializer. This makes sure that we don't complain about static
const data members with in-class initializers and out-of-line
definitions.
- Move all of the incomplete-type checking logic out of
Sema::FinalizeDeclaratorGroup; it makes more sense in
ActOnUnitializedDecl.
There may still be a few places where we can improve these
diagnostics. I'll address that as a separate commit.
llvm-svn: 95657
follows (as conservatively as possible) gcc's current behavior: attributes
written on return types that don't apply there are applied to the function
instead, etc. Only parse CC attributes as type attributes, not as decl attributes;
don't accepet noreturn as a decl attribute on ValueDecls, either (it still
needs to apply to other decls, like blocks). Consistently consume CC/noreturn
information throughout codegen; enforce this by removing their default values
in CodeGenTypes::getFunctionInfo().
llvm-svn: 95436
of a C++ record. Exposed a lot of problems where various routines were
silently doing The Wrong Thing (or The Acceptable Thing in The Wrong Order)
when presented with a non-definition. Also cuts down on memory usage.
llvm-svn: 95330
WHAT!?!
It turns out that Type::isPromotableIntegerType() was not considering
enumeration types to be promotable, so we would never do the
promotion despite having properly computed the promotion type when the
enum was defined. Various operations on values of enum type just
"worked" because we could still compute the integer rank of an enum
type; the oddity, however, is that operations such as "add an enum and
an unsigned" would often have an enum result type (!). The bug
actually showed up as a spurious -Wformat diagnostic
(<rdar://problem/7595366>), but in theory it could cause miscompiles.
In this commit:
- Enum types with a promotion type of "int" or "unsigned int" are
promotable.
- Tweaked the computation of promotable types for enums
- For all of the ABIs, treat enum types the same way as their
underlying types (*not* their promotion types) for argument passing
and return values
- Extend the ABI tester with support for enumeration types
llvm-svn: 95117
- In C++, prior to the closing '}', set the type of enumerators
based on the type of their initializer. Don't perform unary
conversions on the enumerator values.
- In C++, handle overflow when an enumerator has no initializer and
its value cannot be represented in the type of the previous
enumerator.
- In C, handle overflow more gracefully, by complaining and then
falling back to the C++ rules.
- In C, if the enumerator value is representable in an int, convert the
expression to the type 'int'.
Fixes PR5854 and PR4515.
llvm-svn: 95031