This patch provides optimization of bit manipulation operations by
enabling the +experimental-b target feature.
It adds matching of single block patterns of instructions to specific
bit-manip instructions from the ternary subset (zbt subextension) of the
experimental B extension of RISC-V.
It adds also the correspondent codegen tests.
This patch is based on Claire Wolf's proposal for the bit manipulation
extension of RISCV:
https://github.com/riscv/riscv-bitmanip/blob/master/bitmanip-0.92.pdf
Differential Revision: https://reviews.llvm.org/D79875
This patch provides optimization of bit manipulation operations by
enabling the +experimental-b target feature.
It adds matching of single block patterns of instructions to specific
bit-manip instructions from the single-bit subset (zbs subextension) of
the experimental B extension of RISC-V.
It adds also the correspondent codegen tests.
This patch is based on Claire Wolf's proposal for the bit manipulation
extension of RISCV:
https://github.com/riscv/riscv-bitmanip/blob/master/bitmanip-0.92.pdf
Differential Revision: https://reviews.llvm.org/D79874
This patch provides optimization of bit manipulation operations by
enabling the +experimental-b target feature.
It adds matching of single block patterns of instructions to specific
bit-manip instructions belonging to both the permutation and the base
subsets of the experimental B extension of RISC-V.
It adds also the correspondent codegen tests.
This patch is based on Claire Wolf's proposal for the bit manipulation
extension of RISCV:
https://github.com/riscv/riscv-bitmanip/blob/master/bitmanip-0.92.pdf
Differential Revision: https://reviews.llvm.org/D79873
This patch provides optimization of bit manipulation operations by
enabling the +experimental-b target feature.
It adds matching of single block patterns of instructions to specific
bit-manip instructions from the permutation subset (zbp subextension) of
the experimental B extension of RISC-V.
It adds also the correspondent codegen tests.
This patch is based on Claire Wolf's proposal for the bit manipulation
extension of RISCV:
https://github.com/riscv/riscv-bitmanip/blob/master/bitmanip-0.92.pdf
Differential Revision: https://reviews.llvm.org/D79871
This patch provides optimization of bit manipulation operations by
enabling the +experimental-b target feature.
It adds matching of single block patterns of instructions to specific
bit-manip instructions from the base subset (zbb subextension) of the
experimental B extension of RISC-V.
It adds also the correspondent codegen tests.
This patch is based on Claire Wolf's proposal for the bit manipulation
extension of RISCV:
https://github.com/riscv/riscv-bitmanip/blob/master/bitmanip-0.92.pdf
Differential Revision: https://reviews.llvm.org/D79870
Summary:
Without these, the generic branch relaxation pass will underestimate the
range required for branches spanning these and we can end up with
"fixup value out of range" errors rather than relaxing the branches.
Some of the instructions in the expansion may end up being compressed
but exactly determining that is awkward, and these conservative values
should be safe, if slightly suboptimal in rare cases.
Reviewers: asb, lenary, luismarques, lewis-revill
Reviewed By: asb, luismarques
Subscribers: hiraditya, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, jfb, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, sameer.abuasal, apazos, evandro, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77443
Add handling of s_andn2 and mask of 0.
This eliminates redundant instructions from uniform control flow.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D83641
This patch handles CFI with basic block sections, which unlike DebugInfo does
not support ranges. The DWARF standard explicitly requires emitting separate
CFI Frame Descriptor Entries for each contiguous fragment of a function. Thus,
the CFI information for all callee-saved registers (possibly including the
frame pointer, if necessary) have to be emitted along with redefining the
Call Frame Address (CFA), viz. where the current frame starts.
CFI directives are emitted in FDE’s in the object file with a low_pc, high_pc
specification. So, a single FDE must point to a contiguous code region unlike
debug info which has the support for ranges. This is what complicates CFI for
basic block sections.
Now, what happens when we start placing individual basic blocks in unique
sections:
* Basic block sections allow the linker to randomly reorder basic blocks in the
address space such that a given basic block can become non-contiguous with the
original function.
* The different basic block sections can no longer share the cfi_startproc and
cfi_endproc directives. So, each basic block section should emit this
independently.
* Each (cfi_startproc, cfi_endproc) directive will result in a new FDE that
caters to that basic block section.
* Now, this basic block section needs to duplicate the information from the
entry block to compute the CFA as it is an independent entity. It cannot refer
to the FDE of the original function and hence must duplicate all the stuff that
is needed to compute the CFA on its own.
* We are working on a de-duplication patch that can share common information in
FDEs in a CIE (Common Information Entry) and we will present this as a follow up
patch. This can significantly reduce the duplication overhead and is
particularly useful when several basic block sections are created.
* The CFI directives are emitted similarly for registers that are pushed onto
the stack, like callee saved registers in the prologue. There are cfi
directives that emit how to retrieve the value of the register at that point
when the push happened. This has to be duplicated too in a basic block that is
floated as a separate section.
Differential Revision: https://reviews.llvm.org/D79978
This fixes warnings raised by Clang's new -Wsuggest-override, in preparation for enabling that warning in the LLVM build. This patch also removes the virtual keyword where redundant, but only in places where doing so improves consistency within a given file. It also removes a couple unnecessary virtual destructor declarations in derived classes where the destructor inherited from the base class is already virtual.
Differential Revision: https://reviews.llvm.org/D83709
Because of the layout of stores (that don't have a destination operand)
this check is exactly the same as the one in
RISCVInstrInfo::isLoadFromStackSlot.
Differential Revision: https://reviews.llvm.org/D81805
AArch64 does not support enabling rcpc via .arch_extension in assembly.
GCC, on the other hand, does.
This patch adds 'rcpc' as a valid value to .arch_extension handling.
Differential Revision: https://reviews.llvm.org/D83685
Fix two obvious errors in the code and also update the test check.
Also add one test to catch the failure.
Patch by Ruiling Song!
Differential Revision: https://reviews.llvm.org/D83280
If a vector body has live-out values, it is probably a reduction, which needs a
final reduction step after the loop. MVE has a VADDV instruction to reduce
integer vectors, but doesn't have an equivalent one for float vectors. A
live-out value that is not recognised as reduction later in the optimisation
pipeline will result in the tail-predicated loop to be reverted to a
non-predicated loop and this is very expensive, i.e. it has a significant
performance impact, which is what we hope to avoid with fine tuning the ARM TTI
hook preferPredicateOverEpilogue implementation.
Differential Revision: https://reviews.llvm.org/D82953
The code already supports addressing a fixed-size stack object from
the frame-pointer, by first subtracting sizeof(SVE area) from FP.
Reviewers: efriedma, cameron.mcinally, david-arm, rengolin
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D83125
The hardware spec require src0 of s_cmpk should be a register. So, we
should not optimize s_cmp to s_cmpk if src0 is not register.
Patch by Ruiling Song!
Preserve SCC dead flags in SIOptimizeExecMaskingPreRA.
This helps with removing redundant s_andn2 instructions later.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D83637
The GlobalISelEmitter is stricter about matching timm instruction
outputs to timm inputs (although in an accidental sort of way that
doesn't hit a proper import failure error). Also, apparently no
intrinsic patterns were importing since the ID enum declaration was
missing.
Summary:
Add support for MASM STRUCT casting field accessors: (<TYPE> PTR <value>).<field>
Since these are operands, we add them to X86AsmParser. If/when we extend MASM support to other architectures (e.g., ARM), we will need similar changes there as well.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D83346
This refactors option -disable-mve-tail-predication to take different arguments
so that we have 1 option to control tail-predication rather than several
different ones.
This is also a prep step for D82953, in which we want to reject reductions
unless that is requested with this option.
Differential Revision: https://reviews.llvm.org/D83133
This patch adds support for constrained int/fp conversion between
signed/unsigned i32 and f32/f64.
Reviewed By: jhibbits
Differential Revision: https://reviews.llvm.org/D82747
Bit 7 of the index controls zeroing, the other bits are ignored when bit 7 is set. Shuffle lowering was using 128 and shuffle combining was using 255. Seems like we should be consistent.
This patch changes shuffle combining to use 128 to match lowering.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D83587
peekThroughOneUseBitcasts checks the use count of the operand of the bitcast. Not the bitcast itself. So I think that means we need to do any outside haseOneUse checks before calling the function not after.
I was working on another patch where I misused the function and did a very quick audit to see if I there were other similar mistakes.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D83598
Currently, llvm when see a global variable in .maps section,
it ensures its type must be a struct type. Then pointee
will be further evaluated for the structure members.
In normal cases, the pointee type will be skipped.
Although this is what current all bpf programs are doing,
but it is a little bit restrictive. For example, it is legitimate
for users to have:
typedef struct { int key_size; int value_size; } __map_t;
__map_t map __attribute__((section(".maps")));
This patch lifts this restriction and typedef of
a struct type is also allowed for .maps section variables.
To avoid create unnecessary fixup entries when traversal
started with typedef/struct type, the new implementation
first traverse all map struct members and then traverse
the typedef/struct type. This way, in internal BTFDebug
implementation, no fixup entries are generated.
Two new unit tests are added for typedef and const
struct in .maps section. Also tested with kernel bpf selftests.
Differential Revision: https://reviews.llvm.org/D83638
It is possible that LowerSwitch pass leaves certain blocks
unreachable from the entry. If not removed, these dead blocks
can cause undefined behavior in the subsequent passes.
It caused a crash in the AMDGPU backend after the instruction
selection when a PHI node has its incoming values coming from
these unreachable blocks.
In the AMDGPU pass flow, the last invocation of UnreachableBlockElim
precedes where LowerSwitch is currently placed and eventually
missed out on the opportunity to get these blocks eliminated.
This patch ensures that LowerSwitch pass get inserted earlier
to make use of the existing unreachable block elimination pass.
Reviewed By: sameerds, arsenm
Differential Revision: https://reviews.llvm.org/D83584
P9 is the only one with InstrSchedModel, but we may have more in the
future, we should not hardcoded it to P9, check hasInstrSchedModel
instead.
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D83590
In BUILD_VECTOR lowering, we used to generally prefer using splats
over v128.const instructions because v128.const has a very large
encoding. However, in d5b7a4e2e8 we switched to preferring consts
because they are expected to be more efficient in engines. This patch
updates the ISel patterns to match this current preference.
Differential Revision: https://reviews.llvm.org/D83581
This doesn't appear used for anything, and is emitted incorrectly
based on the description. This also depends on the IR type, and
pointee element type.
Summary:
This patch separates the peeling specific parameters from the UnrollingPreferences,
and creates a new struct called PeelingPreferences. Functions which used the
UnrollingPreferences struct for peeling have been updated to use the PeelingPreferences struct.
Author: sidbav (Sidharth Baveja)
Reviewers: Whitney (Whitney Tsang), Meinersbur (Michael Kruse), skatkov (Serguei Katkov), ashlykov (Arkady Shlykov), bogner (Justin Bogner), hfinkel (Hal Finkel), anhtuyen (Anh Tuyen Tran), nikic (Nikita Popov)
Reviewed By: Meinersbur (Michael Kruse)
Subscribers: fhahn (Florian Hahn), hiraditya (Aditya Kumar), llvm-commits, LLVM
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D80580