Summary:
As per title. DAGCombiner only mathes the special case where b = 0, this patches extends the pattern to match any value of b.
Depends on D57302
Reviewers: hfinkel, RKSimon, craig.topper
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59208
llvm-svn: 366214
We already split extract_subvector(binop(insert_subvector(v,x),insert_subvector(w,y))) -> binop(x,y).
This patch adds support for extract_subvector(binop(concat_vectors(),concat_vectors())) cases as well.
In particular this means we don't have to wait for X86 lowering to convert concat_vectors to insert_subvector chains, which helps avoid some cases where demandedelts/combine calls occur too late to split large vector ops.
The fast-isel-store.ll load folding regression is annoying but I don't think is that critical.
Differential Revision: https://reviews.llvm.org/D63653
llvm-svn: 365785
Summary: Unsafe does not map well alone for each of these three cases as it is missing NoNan context when accessed directly with clang. I have migrated the fold guards to reflect the expectations of handing nan and zero contexts directly (NoNan, NSZ) and some tests with it. Unsafe does include NSZ, however there is already precedent for using the target option directly to reflect that context.
Reviewers: spatel, wristow, hfinkel, craig.topper, arsenm
Reviewed By: arsenm
Subscribers: michele.scandale, wdng, javed.absar
Differential Revision: https://reviews.llvm.org/D64450
llvm-svn: 365679
Basically the problem is that X86 doesn't set the Fast flag from
allowsMemoryAccess on certain CPUs due to slow unaligned memory
subtarget features. This prevents bitcasts from being folded into
loads and stores. But all vector loads and stores of the same width
are the same cost on X86.
This patch merges the allowsMemoryAccess call into isLoadBitCastBeneficial to allow X86 to skip it.
Differential Revision: https://reviews.llvm.org/D64295
llvm-svn: 365549
Summary:
The uaddo won't be removed and the addcarry will still be
dependent on the uaddo. So we'll just increase the use count
of X and Y and potentially require a COPY.
Reviewers: spatel, RKSimon, deadalnix
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64190
llvm-svn: 365149
Summary:
This diff improve the capability of DAGCOmbine to generate linear carries propagation in presence of a diamond pattern. It is now able to match a large variety of different patterns rather than some hardcoded one.
Arguably, the codegen in test cases is not better, but this is to be expected. The goal of this transformation is more about canonicalisation than actual optimisation.
Reviewers: hfinkel, RKSimon, craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D57302
llvm-svn: 365051
Summary:
This is the backend part of [[ https://bugs.llvm.org/show_bug.cgi?id=42457 | PR42457 ]].
In middle-end, we'd want to prefer the form with two adds - D63992,
but as this diff shows, not every target will prefer that pattern.
Out of 4 targets for which i added tests all seem to be ok with inc-of-add for scalars,
but only X86 prefer that same pattern for vectors.
Here i'm adding a new TLI hook, always defaulting to the inc-of-add,
but adding AArch64,ARM,PowerPC overrides to prefer inc-of-add only for scalars.
Reviewers: spatel, RKSimon, efriedma, t.p.northover, hfinkel
Reviewed By: efriedma
Subscribers: nemanjai, javed.absar, kristof.beyls, kbarton, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64090
llvm-svn: 365010
For a given floating point load / store pair, if the load value isn't used by any other operations,
then consider transforming the pair to integer load / store operations if the target deems the transformation profitable.
And we can exploiting much more when there are other operation nodes with chain operand between the load/store pair
so long as we keep the chain ordering original. We only replace the register used to load/store from float to integer.
I only add testcase in ARM because the TLI.isDesirableToTransformToIntegerOp hook is only enabled in ARM target.
Differential Revision: https://reviews.llvm.org/D60601
llvm-svn: 364883
We support 'big to little' (e.g. extract_subvector(v16i8 bitcast(v2i64))) but not 'little to big' cases (e.g. extract_subvector(v2i64 bitcast(v16i8)))
llvm-svn: 364405
This can occur under certain circumstances when undefs are created later on in the constant multipliers (e.g. in this case due to SimplifyDemandedVectorElts). Its better to let the shift by zero to occur and perform any cleanup afterward.
Fixes OSS Fuzz #15429
llvm-svn: 364179
The code divides the alignment by 2 if the original alignment is
equal to the original VT size. But this wouldn't be correct
if the alignment was larger than the VT size.
The memory operand object already takes care of calling MinAlign
on the base alignment and the memory pointer offset. So we don't
need any special code at all.
llvm-svn: 364151
We tend to only test for scalar/scalar consts when really we could support non-uniform vectors using ISD::matchUnaryPredicate/matchBinaryPredicate etc.
llvm-svn: 363924
Use getAPIntValue() in a few more places. Most of the time getZExtValue() is fine, but occasionally there's fuzzed code or someone decides to create i65536 or something.....
llvm-svn: 363887
Use matchBinaryPredicate instead of isConstOrConstSplat to let us handle non-uniform shift cases.
This requires us to tweak matchBinaryPredicate to allow it to (optionally) handle constants with different type widths.
llvm-svn: 363792
Some GEPs were not being split, presumably because that split would just be
undone by the DAGCombiner. Not performing those splits can prevent important
optimizations, such as preventing the element indices / member offsets from
being (partially) folded into load/store instruction immediates. This patch:
- Makes the splits also occur in the cases where the base address and the GEP
are in the same BB.
- Ensures that the DAGCombiner doesn't reassociate them back again.
Differential Revision: https://reviews.llvm.org/D60294
llvm-svn: 363544
This reverts rL363474. -debug-only=isel was added to some tests that
don't specify `REQUIRES: asserts`. This causes failures on
-DLLVM_ENABLE_ASSERTIONS=off builds.
I chose to revert instead of fixing the tests because I'm not sure
whether we should add `REQUIRES: asserts` to more tests.
llvm-svn: 363482
As discussed on D62910, we need to check whether particular types of memory access are allowed, not just their alignment/address-space.
This NFC patch adds a MachineMemOperand::Flags argument to allowsMemoryAccess and allowsMisalignedMemoryAccesses, and wires up calls to pass the relevant flags to them.
If people are happy with this approach I can then update X86TargetLowering::allowsMisalignedMemoryAccesses to handle misaligned NT load/stores.
Differential Revision: https://reviews.llvm.org/D63075
llvm-svn: 363179
As suggested by @arsenm on D63075 - this adds a TargetLowering::allowsMemoryAccess wrapper that takes a Load/Store node's MachineMemOperand to handle the AddressSpace/Alignment arguments and will also implicitly handle the MachineMemOperand::Flags change in D63075.
llvm-svn: 363048
This opportunity is found from spec 2017 557.xz_r. And it is used by the sha encrypt/decrypt. See sha-2/sha512.c
static void store64(u64 x, unsigned char* y)
{
for(int i = 0; i != 8; ++i)
y[i] = (x >> ((7-i) * 8)) & 255;
}
static u64 load64(const unsigned char* y)
{
u64 res = 0;
for(int i = 0; i != 8; ++i)
res |= (u64)(y[i]) << ((7-i) * 8);
return res;
}
The load64 has been implemented by https://reviews.llvm.org/D26149
This patch is trying to implement the store pattern.
Match a pattern where a wide type scalar value is stored by several narrow
stores. Fold it into a single store or a BSWAP and a store if the targets
supports it.
Assuming little endian target:
i8 *p = ...
i32 val = ...
p[0] = (val >> 0) & 0xFF;
p[1] = (val >> 8) & 0xFF;
p[2] = (val >> 16) & 0xFF;
p[3] = (val >> 24) & 0xFF;
>
*((i32)p) = val;
i8 *p = ...
i32 val = ...
p[0] = (val >> 24) & 0xFF;
p[1] = (val >> 16) & 0xFF;
p[2] = (val >> 8) & 0xFF;
p[3] = (val >> 0) & 0xFF;
>
*((i32)p) = BSWAP(val);
Differential Revision: https://reviews.llvm.org/D62897
llvm-svn: 362921
This patch is the first step towards ensuring MergeConsecutiveStores correctly handles non-temporal loads\stores:
1 - When merging load\stores we must ensure that they all have the same non-temporal flag. This is unlikely to occur, but can in strange cases where we're storing at the end of one page and the beginning of another.
2 - The merged load\store node must retain the non-temporal flag.
Differential Revision: https://reviews.llvm.org/D62910
llvm-svn: 362723
This is a special case of a more general transform (not (sub Y, X)) -> (add X, ~Y). InstCombine knows the general form. I've restricted to the special case to fix the motivating case PR42118. I tried handling any case where Y was constant, but got some changes on some Mips tests that I couldn't quickly prove where beneficial.
Fixes PR42118
Differential Revision: https://reviews.llvm.org/D62828
llvm-svn: 362533
The proposal in D62498 showed that x86 would benefit from vector
store splitting, but that may conflict with the generic DAG
combiner's store merging transforms.
Add memory type to the existing TLI hook that enables the merging
transforms, so we can limit those changes to scalars only for x86.
llvm-svn: 362507
Summary:
This *might* be the last fold for `sink-addsub-of-const.ll`, but i'm not sure yet.
As far as i can tell, there are no regressions here (ignoring x86-32),
all changes are either good or neutral.
This, almost surprisingly to me, fixes the motivational tests (in `shift-amount-mod.ll`)
`@reg32_lshr_by_sub_from_negated` from [[ https://bugs.llvm.org/show_bug.cgi?id=41952 | PR41952 ]].
https://rise4fun.com/Alive/vMd3
Reviewers: RKSimon, t.p.northover, craig.topper, spatel, efriedma
Reviewed By: RKSimon
Subscribers: sdardis, javed.absar, arichardson, kristof.beyls, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62774
llvm-svn: 362488
This opportunity is found from spec 2017 557.xz_r. And it is used by the sha encrypt/decrypt. See sha-2/sha512.c
static void store64(u64 x, unsigned char* y)
{
for(int i = 0; i != 8; ++i)
y[i] = (x >> ((7-i) * 8)) & 255;
}
static u64 load64(const unsigned char* y)
{
u64 res = 0;
for(int i = 0; i != 8; ++i)
res |= (u64)(y[i]) << ((7-i) * 8);
return res;
}
The load64 has been implemented by https://reviews.llvm.org/D26149
This patch is trying to implement the store pattern.
Match a pattern where a wide type scalar value is stored by several narrow
stores. Fold it into a single store or a BSWAP and a store if the targets
supports it.
Assuming little endian target:
i8 *p = ...
i32 val = ...
p[0] = (val >> 0) & 0xFF;
p[1] = (val >> 8) & 0xFF;
p[2] = (val >> 16) & 0xFF;
p[3] = (val >> 24) & 0xFF;
>
*((i32)p) = val;
i8 *p = ...
i32 val = ...
p[0] = (val >> 24) & 0xFF;
p[1] = (val >> 16) & 0xFF;
p[2] = (val >> 8) & 0xFF;
p[3] = (val >> 0) & 0xFF;
>
*((i32)p) = BSWAP(val);
Differential Revision: https://reviews.llvm.org/D61843
llvm-svn: 362472
Summary: This change facilitates propagating fmf which was placed on setcc from fcmp through folds with selects so that back ends can model this path for arithmetic folds on selects in SDAG.
Reviewers: qcolombet, spatel
Reviewed By: qcolombet
Subscribers: nemanjai, jsji
Differential Revision: https://reviews.llvm.org/D62552
llvm-svn: 362439
We were missing this fold in the DAG, which I've copied directly from llvm::ConstantFoldCastInstruction
Differential Revision: https://reviews.llvm.org/D62807
llvm-svn: 362397
If we hit the limit, we do expand the outstanding tokenfactors.
Otherwise, we might drop nodes with users in the unexpanded
tokenfactors. This fixes the crashes reported by Jordan Rupprecht.
Reviewers: niravd, spatel, craig.topper, rupprecht
Reviewed By: niravd
Differential Revision: https://reviews.llvm.org/D62633
llvm-svn: 362350
Move this combine from x86 into generic DAGCombine, which currently only manages cases where the bitcast is between types of the same scalarsize.
Differential Revision: https://reviews.llvm.org/D59188
llvm-svn: 362324
The results of the dyn_casts were immediately dereferenced on the next line
so they had better not be null.
I don't think there's any way for these dyn_casts to fail, so use a cast
of adding null check.
llvm-svn: 362315
I don't have a test case for these, but there is a test case for D62266
where, even after all the constant-folding patches, we still end up
with endless combine loop. Which makes sense, since we don't constant
fold for opaque constants.
llvm-svn: 362156
Summary:
Only vector tests are being affected here,
since subtraction by scalar constant is rewritten
as addition by negated constant.
No surprising test changes.
https://rise4fun.com/Alive/pbT
This is a recommit, originally committed in rL361852, but reverted
to investigate test-suite compile-time hangs.
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: RKSimon
Subscribers: javed.absar, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62257
llvm-svn: 362146
Summary:
Again only vectors affected. Frustrating. Let me take a look into that..
https://rise4fun.com/Alive/AAq
This is a recommit, originally committed in rL361852, but reverted
to investigate test-suite compile-time hangs, and then reverted in
rL362109 to fix missing constant folds that were causing
endless combine loops.
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: RKSimon
Subscribers: javed.absar, JDevlieghere, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62294
llvm-svn: 362145
Summary:
This prevents regressions in next patch,
and somewhat recovers from the regression to AMDGPU test in D62223.
It is indeed not great that we leave vector decrement,
don't transform it into vector add all-ones..
https://rise4fun.com/Alive/ZRl
This is a recommit, originally committed in rL361852, but reverted
to investigate test-suite compile-time hangs, and then reverted in
rL362109 to fix missing constant folds that were causing
endless combine loops.
Reviewers: RKSimon, craig.topper, spatel, arsenm
Reviewed By: RKSimon, arsenm
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, javed.absar, dstuttard, tpr, t-tye, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62263
llvm-svn: 362144
Summary:
Direct sibling of D62223 patch.
While i don't have a direct motivational pattern for this,
it would seem to make sense to handle both patterns (or none),
for symmetry?
The aarch64 changes look neutral;
sparc and systemz look like improvement (one less instruction each);
x86 changes - 32bit case improves, 64bit case shows that LEA no longer
gets constructed, which may be because that whole test is `-mattr=+slow-lea,+slow-3ops-lea`
https://rise4fun.com/Alive/ffh
This is a recommit, originally committed in rL361852, but reverted
to investigate test-suite compile-time hangs, and then reverted in
rL362109 to fix missing constant folds that were causing
endless combine loops.
Reviewers: RKSimon, craig.topper, spatel, t.p.northover
Reviewed By: t.p.northover
Subscribers: t.p.northover, jyknight, javed.absar, kristof.beyls, fedor.sergeev, jrtc27, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62252
llvm-svn: 362143
Summary:
The main motivation is shown by all these `neg` instructions that are now created.
In particular, the `@reg32_lshr_by_negated_unfolded_sub_b` test.
AArch64 test changes all look good (`neg` created), or neutral.
X86 changes look neutral (vectors), or good (`neg` / `xor eax, eax` created).
I'm not sure about `X86/ragreedy-hoist-spill.ll`, it looks like the spill
is now hoisted into preheader (which should still be good?),
2 4-byte reloads become 1 8-byte reload, and are elsewhere,
but i'm not sure how that affects that loop.
I'm unable to interpret AMDGPU change, looks neutral-ish?
This is hopefully a step towards solving [[ https://bugs.llvm.org/show_bug.cgi?id=41952 | PR41952 ]].
https://rise4fun.com/Alive/pkdq (we are missing more patterns, i'll submit them later)
This is a recommit, originally committed in rL361852, but reverted
to investigate test-suite compile-time hangs, and then reverted in
rL362109 to fix missing constant folds that were causing
endless combine loops.
Reviewers: craig.topper, RKSimon, spatel, arsenm
Reviewed By: RKSimon
Subscribers: bjope, qcolombet, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, javed.absar, dstuttard, tpr, t-tye, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62223
llvm-svn: 362142
Summary:
Direct sibling of D62662, the root cause of the endless combine loop in D62257
https://rise4fun.com/Alive/d3W
Reviewers: RKSimon, craig.topper, spatel, t.p.northover
Reviewed By: t.p.northover
Subscribers: t.p.northover, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62664
llvm-svn: 362133
Summary:
No tests change, and i'm not sure how to test this, but it's better safe than sorry.
Reviewers: spatel, RKSimon, craig.topper, t.p.northover
Reviewed By: craig.topper
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62663
llvm-svn: 362132
Summary:
This was the root cause of the endless combine loop in D62257
https://rise4fun.com/Alive/d3W
Reviewers: RKSimon, spatel, craig.topper, t.p.northover
Reviewed By: t.p.northover
Subscribers: t.p.northover, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62662
llvm-svn: 362131
Summary: No tests change, and i'm not sure how to test this, but it's better safe than sorry.
Reviewers: spatel, RKSimon, craig.topper, t.p.northover
Reviewed By: craig.topper
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62661
llvm-svn: 362130
I was looking into an endless combine loop the uncommitted follow-up patch
was causing, and it appears even these patches can exibit such an
endless loop. The root cause is that we try to hoist one binop (add/sub) with
constant operand, and if we get two such binops both of which are
eligible for this hoisting, we get stuck.
Some cases may highlight missing constant-folds.
Reverts r361871,r361872,r361873,r361874.
llvm-svn: 362109
Summary:
Again only vectors affected. Frustrating. Let me take a look into that..
https://rise4fun.com/Alive/AAq
This is a recommit, originally committed in rL361856, but reverted
to investigate test-suite compile-time hangs.
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: RKSimon
Subscribers: javed.absar, JDevlieghere, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62294
llvm-svn: 361874
Summary:
This prevents regressions in next patch,
and somewhat recovers from the regression to AMDGPU test in D62223.
It is indeed not great that we leave vector decrement,
don't transform it into vector add all-ones..
https://rise4fun.com/Alive/ZRl
This is a recommit, originally committed in rL361855, but reverted
to investigate test-suite compile-time hangs.
Reviewers: RKSimon, craig.topper, spatel, arsenm
Reviewed By: RKSimon, arsenm
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, javed.absar, dstuttard, tpr, t-tye, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62263
llvm-svn: 361873
Summary:
Direct sibling of D62223 patch.
While i don't have a direct motivational pattern for this,
it would seem to make sense to handle both patterns (or none),
for symmetry?
The aarch64 changes look neutral;
sparc and systemz look like improvement (one less instruction each);
x86 changes - 32bit case improves, 64bit case shows that LEA no longer
gets constructed, which may be because that whole test is `-mattr=+slow-lea,+slow-3ops-lea`
https://rise4fun.com/Alive/ffh
This is a recommit, originally committed in rL361853, but reverted
to investigate test-suite compile-time hangs.
Reviewers: RKSimon, craig.topper, spatel, t.p.northover
Reviewed By: t.p.northover
Subscribers: t.p.northover, jyknight, javed.absar, kristof.beyls, fedor.sergeev, jrtc27, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62252
llvm-svn: 361872
Summary:
The main motivation is shown by all these `neg` instructions that are now created.
In particular, the `@reg32_lshr_by_negated_unfolded_sub_b` test.
AArch64 test changes all look good (`neg` created), or neutral.
X86 changes look neutral (vectors), or good (`neg` / `xor eax, eax` created).
I'm not sure about `X86/ragreedy-hoist-spill.ll`, it looks like the spill
is now hoisted into preheader (which should still be good?),
2 4-byte reloads become 1 8-byte reload, and are elsewhere,
but i'm not sure how that affects that loop.
I'm unable to interpret AMDGPU change, looks neutral-ish?
This is hopefully a step towards solving [[ https://bugs.llvm.org/show_bug.cgi?id=41952 | PR41952 ]].
https://rise4fun.com/Alive/pkdq (we are missing more patterns, i'll submit them later)
This is a recommit, originally committed in rL361852, but reverted
to investigate test-suite compile-time hangs.
Reviewers: craig.topper, RKSimon, spatel, arsenm
Reviewed By: RKSimon
Subscribers: bjope, qcolombet, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, javed.absar, dstuttard, tpr, t-tye, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62223
llvm-svn: 361871
Summary:
Again only vectors affected. Frustrating. Let me take a look into that..
https://rise4fun.com/Alive/AAq
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: RKSimon
Subscribers: javed.absar, JDevlieghere, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62294
llvm-svn: 361856
Summary:
This prevents regressions in next patch,
and somewhat recovers from the regression to AMDGPU test in D62223.
It is indeed not great that we leave vector decrement,
don't transform it into vector add all-ones..
https://rise4fun.com/Alive/ZRl
Reviewers: RKSimon, craig.topper, spatel, arsenm
Reviewed By: RKSimon, arsenm
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, javed.absar, dstuttard, tpr, t-tye, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62263
llvm-svn: 361855
Summary:
Only vector tests are being affected here,
since subtraction by scalar constant is rewritten
as addition by negated constant.
No surprising test changes.
https://rise4fun.com/Alive/pbT
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: RKSimon
Subscribers: javed.absar, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62257
llvm-svn: 361854
Summary:
Direct sibling of D62223 patch.
While i don't have a direct motivational pattern for this,
it would seem to make sense to handle both patterns (or none),
for symmetry?
The aarch64 changes look neutral;
sparc and systemz look like improvement (one less instruction each);
x86 changes - 32bit case improves, 64bit case shows that LEA no longer
gets constructed, which may be because that whole test is `-mattr=+slow-lea,+slow-3ops-lea`
https://rise4fun.com/Alive/ffh
Reviewers: RKSimon, craig.topper, spatel, t.p.northover
Reviewed By: t.p.northover
Subscribers: t.p.northover, jyknight, javed.absar, kristof.beyls, fedor.sergeev, jrtc27, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62252
llvm-svn: 361853
Summary:
The main motivation is shown by all these `neg` instructions that are now created.
In particular, the `@reg32_lshr_by_negated_unfolded_sub_b` test.
AArch64 test changes all look good (`neg` created), or neutral.
X86 changes look neutral (vectors), or good (`neg` / `xor eax, eax` created).
I'm not sure about `X86/ragreedy-hoist-spill.ll`, it looks like the spill
is now hoisted into preheader (which should still be good?),
2 4-byte reloads become 1 8-byte reload, and are elsewhere,
but i'm not sure how that affects that loop.
I'm unable to interpret AMDGPU change, looks neutral-ish?
This is hopefully a step towards solving [[ https://bugs.llvm.org/show_bug.cgi?id=41952 | PR41952 ]].
https://rise4fun.com/Alive/pkdq (we are missing more patterns, i'll submit them later)
Reviewers: craig.topper, RKSimon, spatel, arsenm
Reviewed By: RKSimon
Subscribers: bjope, qcolombet, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, javed.absar, dstuttard, tpr, t-tye, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62223
llvm-svn: 361852
Details: To make instruction selection really divergence driven it is necessary to assign
the correct register classes to the cross block values beforehand. For the divergent targets
same value type requires different register classes dependent on the value divergence.
Reviewers: rampitec, nhaehnle
Differential Revision: https://reviews.llvm.org/D59990
This commit was reverted because of the build failure.
The reason was mlformed patch.
Build failure fixed.
llvm-svn: 361741
Details: To make instruction selection really divergence driven it is necessary to assign
the correct register classes to the cross block values beforehand. For the divergent targets
same value type requires different register classes dependent on the value divergence.
Reviewers: rampitec, nhaehnle
Differential Revision: https://reviews.llvm.org/D59990
llvm-svn: 361644
This patch adds the overridable TargetLowering::getTargetConstantFromLoad function which allows targets to return any constant value loaded by a LoadSDNode node - only X86 makes use of this so far but everything should be in place for other targets.
computeKnownBits then uses this function to improve codegen, notably vector code after legalization.
A future commit will do the same for ComputeNumSignBits but computeKnownBits sees the bigger benefit.
This required a couple of fixes:
* SimplifyDemandedBits must early-out for getTargetConstantFromLoad cases to prevent infinite loops of constant regeneration (similar to what we already do for BUILD_VECTOR).
* Fix a DAGCombiner::visitTRUNCATE issue as we had trunc(shl(v8i32),v8i16) <-> shl(trunc(v8i16),v8i32) infinite loops after legalization on AVX512 targets.
Differential Revision: https://reviews.llvm.org/D61887
llvm-svn: 361620
This is no-functional-change-intended currently because the definition
of isBinOp() only includes opcodes that produce 1 value. But if we
share that implementation with isCommutativeBinOp() as proposed in
D62191, then we need to make sure that the callers bail out for
opcodes that they are not prepared to handle correctly.
llvm-svn: 361547
There are no FP callers of DAGCombiner::reassociateOps() currently,
but we can add a fast-math check to make sure this API is not being
misused.
This was noted as a potential risk (and that risk might increase) with:
D62191
llvm-svn: 361268
This changes the isShift variable to include the constant operand
check that was previously in the if statement.
While there fix an 80 column violation and an unnecessary use of
getNode. Also fix variable name capitalization.
llvm-svn: 361168
Summary:
That check claims that the transform is illegal otherwise.
That isn't true:
1. For `ISD::ADD`, we only process `ISD::SHL` outer shift => sign bit does not matter
https://rise4fun.com/Alive/K4A
2. For `ISD::AND`, there is no restriction on constants:
https://rise4fun.com/Alive/Wy3
3. For `ISD::OR`, there is no restriction on constants:
https://rise4fun.com/Alive/GOH
3. For `ISD::XOR`, there is no restriction on constants:
https://rise4fun.com/Alive/ml6
So, why is it there then?
This changes the testcase that was touched by @spatel in rL347478,
but i'm not sure that test tests anything particular?
Reviewers: RKSimon, spatel, craig.topper, jojo, rengolin
Reviewed By: spatel
Subscribers: javed.absar, llvm-commits, spatel
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61918
llvm-svn: 361044
We catch most of these patterns (on x86 at least) by matching
a concat vectors opcode early in combining, but the pattern may
emerge later using insert subvector instead.
The AVX1 diffs for add/sub overflow show another missed narrowing
pattern. That one may be falling though the cracks because of
combine ordering and multiple uses.
llvm-svn: 360585
Summary:
When we know for sure whether two addresses do or do not alias, we
should immediately return from DAGCombiner::isAlias().
I think this comes from a bad copy/paste, Sorry for not catching that during the
code review.
Fixes PR41855.
Reviewers: niravd, gchatelet, EricWF
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61846
llvm-svn: 360566
I noticed that we were failing to narrow an x86 ymm math op in a case similar
to the 'madd' test diff. That is because a bitcast is sitting between the math
and the extract subvector and thwarting our pattern matching for narrowing:
t56: v8i32 = add t59, t58
t68: v4i64 = bitcast t56
t73: v2i64 = extract_subvector t68, Constant:i64<2>
t96: v4i32 = bitcast t73
There are a few wins and neutral diffs in the other tests.
Differential Revision: https://reviews.llvm.org/D61806
llvm-svn: 360541
To find the candidates to merge stores we iterate over all nodes in a chain
for each store, which leads to quadratic compile times for large basic blocks
with a large number of stores.
Reviewers: niravd, spatel, craig.topper
Reviewed By: niravd
Differential Revision: https://reviews.llvm.org/D61511
llvm-svn: 360357
Add a new function to do the endian check, as I will commit another patch later, which will also need the endian check.
Differential Revision: https://reviews.llvm.org/D61236
llvm-svn: 360226
When simplifying TokenFactors, we potentially iterate over all
operands of a large number of TokenFactors. This causes quadratic
compile times in some cases and the large token factors cause additional
scalability problems elsewhere.
This patch adds some limits to the number of nodes explored for the
cases mentioned above.
Reviewers: niravd, spatel, craig.topper
Reviewed By: niravd
Differential Revision: https://reviews.llvm.org/D61397
llvm-svn: 360171
The problem was that we were creating a CMOV64rr <TargetFrameIndex>, <TargetFrameIndex>. The entire point of a TFI is that address code is not generated, so there's no way to legalize/lower this. Instead, simply prevent it's creation.
Arguably, we shouldn't be using *Target*FrameIndices in StatepointLowering at all, but that's a much deeper change.
llvm-svn: 360090
This addresses one half of https://bugs.llvm.org/show_bug.cgi?id=41635
by combining a VECREDUCE_AND/OR into VECREDUCE_UMIN/UMAX (if latter is
legal but former is not) for zero-or-all-ones boolean reductions (which
are detected based on sign bits).
Differential Revision: https://reviews.llvm.org/D61398
llvm-svn: 360054
The original patch was committed at rL359398 and reverted at rL359695 because of
infinite looping.
This includes a fix to check for a vector splat of "1.0" to avoid the infinite loop.
Original commit message:
This was originally part of D61028, but it's an independent diff.
If we try the repeated divisor reciprocal transform before producing an estimate sequence,
then we have an opportunity to use scalar fdiv. On x86, the trade-off is 1 divss vs. 5
vector FP ops in the default estimate sequence. On recent chips (Skylake, Ryzen), the
full-precision division is only 3 cycle throughput, so that's probably the better perf
default option and avoids problems from x86's inaccurate estimates.
The last 2 tests show that users still have the option to override the defaults by using
the function attributes for reciprocal estimates, but those patterns are potentially made
faster by converting the vector ops (including ymm ops) to scalar math.
Differential Revision: https://reviews.llvm.org/D61149
llvm-svn: 359793
Do not combine (trunc adde(X, Y, Carry)) into (adde trunc(X), trunc(Y), Carry),
if adde is not legal for the target. Even it's at type-legalize phase.
Because adde is special and will not be legalized at operation-legalize phase later.
This fixes: PR40922
https://bugs.llvm.org/show_bug.cgi?id=40922
Differential Revision: https://reviews.llvm.org//D60854
llvm-svn: 359532
Summary:
Extract the logic for doing reassociations
from DAGCombiner::reassociateOps into a helper
function DAGCombiner::reassociateOpsCommutative,
and use that helper to trigger reassociation
on the original operand order, or the commuted
operand order.
Codegen is not identical since the operand order will
be different when doing the reassociations for the
commuted case. That causes some unfortunate churn in
some test cases. Apart from that this should be NFC.
Reviewers: spatel, craig.topper, tstellar
Reviewed By: spatel
Subscribers: dmgreen, dschuff, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, hiraditya, aheejin, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61199
llvm-svn: 359476
This was originally part of D61028, but it's an independent diff.
If we try the repeated divisor reciprocal transform before producing an estimate sequence,
then we have an opportunity to use scalar fdiv. On x86, the trade-off is 1 divss vs. 5
vector FP ops in the default estimate sequence. On recent chips (Skylake, Ryzen), the
full-precision division is only 3 cycle throughput, so that's probably the better perf
default option and avoids problems from x86's inaccurate estimates.
The last 2 tests show that users still have the option to override the defaults by using
the function attributes for reciprocal estimates, but those patterns are potentially made
faster by converting the vector ops (including ymm ops) to scalar math.
Differential Revision: https://reviews.llvm.org/D61149
llvm-svn: 359398
As detailed on PR40758, Bobcat/Jaguar can perform vector immediate shifts on the same pipes as vector ANDs with the same latency - so it doesn't make sense to replace a shl+lshr with a shift+and pair as it requires an additional mask (with the extra constant pool, loading and register pressure costs).
Differential Revision: https://reviews.llvm.org/D61068
llvm-svn: 359293
If we have a vector FP division with a splatted divisor, use the existing transform
that converts 'x/y' into 'x * (1.0/y)' to allow more conversions. This can then
potentially be converted into a scalar FP division by existing combines (rL358984)
as seen in the tests here.
That can be a potentially big perf difference if scalar fdiv has better timing
(including avoiding possible frequency throttling for vector ops).
Differential Revision: https://reviews.llvm.org/D61028
llvm-svn: 359147
If we only match build vectors, we can miss some patterns
that use shuffles as seen in the affected tests.
Note that the underlying calls within getSplatSourceVector()
have the potential for compile-time explosion because of
exponential recursion looking through binop opcodes, but
currently the list of supported opcodes is very limited.
Both of those problems should be addressed in follow-up
patches.
llvm-svn: 358984
Summary:
The DAGCombiner is rewriting (canonicalizing) an ISD::ADD
with no common bits set in the operands as an ISD::OR node.
This could sometimes result in "missing out" on some
combines that normally are performed for ADD. To be more
specific this could happen if we already have rewritten an
ADD into OR, and later (after legalizations or combines)
we expose patterns that could have been optimized if we
had seen the OR as an ADD (e.g. reassociations based on ADD).
To make the DAG combiner less sensitive to if ADD or OR is
used for these "no common bits set" ADD/OR operations we
now apply most of the ADD combines also to an OR operation,
when value tracking indicates that the operands have no
common bits set.
Reviewers: spatel, RKSimon, craig.topper, kparzysz
Reviewed By: spatel
Subscribers: arsenm, rampitec, lebedev.ri, jvesely, nhaehnle, hiraditya, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59758
llvm-svn: 358965
As discussed on PR41359, this patch renames the pair of shift-mask target feature functions to make their purposes more obvious.
shouldFoldShiftPairToMask -> shouldFoldConstantShiftPairToMask
preferShiftsToClearExtremeBits -> shouldFoldMaskToVariableShiftPair
llvm-svn: 358526
The checks in `canFoldInAddressingMode` tested for addressing modes that have a
base register but didn't set the `HasBaseReg` flag to true (it's false by
default). This patch fixes that. Although the omission of the flag was
technically incorrect it had no known observable impact, so no tests were
changed by this patch.
Differential Revision: https://reviews.llvm.org/D60314
llvm-svn: 358502
// shuffle (concat X, undef), (concat Y, undef), Mask -->
// concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1)
The ARM changes with 'vtrn' and narrowed 'vuzp' are improvements.
The x86 changes look neutral or better. There's one test with an
extra instruction, but that could be reversed for a subtarget with
the right attributes. But by default, we want to avoid the 256-bit
op when possible (in my motivating benchmark, a handful of ymm ops
sprinkled into a sequence of xmm ops are triggering frequency
throttling on Haswell resulting in significantly worse perf).
Differential Revision: https://reviews.llvm.org/D60545
llvm-svn: 358291
// bo (build_vec ...undef, x, undef...), (build_vec ...undef, y, undef...) -->
// build_vec ...undef, (bo x, y), undef...
The lifetime of the nodes in these examples is different for variables versus constants,
but they are all build vectors briefly, so I'm proposing to catch them in this form to
handle all of the leading examples in the motivating test file.
Before we have build vectors, we might have insert_vector_element. After that, we might
have scalar_to_vector and constant pool loads.
It's going to take more work to ensure that FP vector operands are getting simplified
with undef elements, so this transform can apply more widely. In a non-loose FP environment,
we are likely simplifying FP elements to NaN values rather than undefs.
We also need to allow more opcodes down this path. Eg, we don't handle FP min/max flavors
yet.
Differential Revision: https://reviews.llvm.org/D60514
llvm-svn: 358172
This lines up with what we do for regular subtract and it matches up better with X86 assumptions in isel patterns that add with immediate is more canonical than sub with immediate.
Differential Revision: https://reviews.llvm.org/D60020
llvm-svn: 358027
There are a variety of vector patterns that may be profitably reduced to a
scalar op when scalar ops are performed using a subset (typically, the
first lane) of the vector register file.
For x86, this is true for float/double ops and element 0 because
insert/extract is just a sub-register rename.
Other targets should likely enable the hook in a similar way.
Differential Revision: https://reviews.llvm.org/D60150
llvm-svn: 357760
There are 3 changes to make this correspond to the same transform in instcombine:
1. Remove the legality check - we can't create anything less legal than we started with.
2. Ease the use restriction, so we only bail out if both operands have >1 use.
3. Ease the use restriction for binops with a repeated operand (eg, mul x, x).
As discussed in D60150, there's a scalarization opportunity that will be made
easier by allowing this transform more generally.
llvm-svn: 357580
Summary:
Nodes that have no uses are eventually pruned when they are selected
from the worklist. Record nodes newly added to the worklist or DAG and
perform pruning after every combine attempt.
Reviewers: efriedma, RKSimon, craig.topper, spatel, jyknight
Reviewed By: jyknight
Subscribers: jdoerfert, jyknight, nemanjai, jvesely, nhaehnle, javed.absar, hiraditya, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58070
llvm-svn: 357283
Summary:
Various SelectionDAG non-combine operations (e.g. the getNode smart
constructor and legalization) may leave dangling nodes by applying
optimizations without fully pruning unused result values. This results
in nodes that are never added to the worklist and therefore can not be
pruned.
Add a node inserter for the combiner to make sure such nodes have the
chance of being pruned. This allows a number of additional peephole
optimizations.
Reviewers: efriedma, RKSimon, craig.topper, jyknight
Reviewed By: jyknight
Subscribers: msearles, jyknight, sdardis, nemanjai, javed.absar, hiraditya, jrtc27, atanasyan, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58068
llvm-svn: 357279
After investigating the examples from D59777 targeting an SSE4.1 machine,
it looks like a very different problem due to how we map illegal types (256-bit in these cases).
We're missing a shuffle simplification that maps elements of a vector back to a shuffled operand.
We have a more general version of this transform in DAGCombiner::visitVECTOR_SHUFFLE(), but that
generality means it is limited to patterns with a one-use constraint, and the examples here have
2 uses. We don't need any uses or legality limitations for a simplification (no new value is
created).
It looks like we miss this pattern in IR too.
In one of the zext examples here, we have shuffle masks like this:
Shuf0 = vector_shuffle<0,u,3,7,0,u,3,7>
Shuf = vector_shuffle<4,u,6,7,u,u,u,u>
...so that's moving the high half of the 1st vector into the low half. But the high half of the
1st vector is already identical to the low half.
Differential Revision: https://reviews.llvm.org/D59961
llvm-svn: 357258
This is a sibling to rL357178 that I noticed we'd hit if we chose
an alternate transform in D59818.
%z = zext i8 %x to i32
%dec = add i32 %z, -1
%r = sext i32 %dec to i64
=>
%z2 = zext i8 %x to i64
%r = add i64 %z2, -1
https://rise4fun.com/Alive/kPP
The x86 vector diffs show a slight regression, so there's a chance
that we should limit this and the previous transform to scalars.
But given that we allowed vectors before, I'm matching that behavior
here. We should change both transforms together if that's the right
thing to do.
llvm-svn: 357254
If scalar truncates are free, attempt to pre-truncate build_vectors source operands.
Only attempt to do this before legalization as we often end up with truncations/extensions during build_vector lowering.
Differential Revision: https://reviews.llvm.org/D59654
llvm-svn: 357161
Rework BaseIndexOffset and isAlias to fully work with lifetime nodes
and fold in lifetime alias analysis.
This is mostly NFC.
Reviewers: courbet
Reviewed By: courbet
Subscribers: hiraditya, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59794
llvm-svn: 357070
getAsCarry() checks that the input argument is a carry-producing node before
allowing a transformation to addcarry. This patch adds a check to make sure
that the carry-producing node is legal. If it is not, it may not remain in a
form that is manageable by the target backend. The test case caused a
compilation failure during instruction selection for this reason on SystemZ.
Patch by Ulrich Weigand.
Review: Sanjay Patel
https://reviews.llvm.org/D59822
llvm-svn: 357052
Various SelectionDAG non-combine operations (e.g. the getNode smart
constructor and legalization) may leave dangling nodes by applying
optimizations or not fully pruning unused result values. This can
result in nodes that are never added to the worklist and therefore can
not be pruned.
Add a node inserter as the current node deleter to make sure such
nodes have the chance of being pruned.
Many minor changes, mostly positive.
llvm-svn: 356996
This helps us relax the extension of a lot of scalar elements before they are inserted into a vector.
Its exposes an issue in DAGCombiner::convertBuildVecZextToZext as some/all the zero-extensions may be relaxed to ANY_EXTEND, so we need to handle that case to avoid a couple of AVX2 VPMOVZX test regressions.
Once this is in it should be easier to fix a number of remaining failures to fold loads into VBROADCAST nodes.
Differential Revision: https://reviews.llvm.org/D59484
llvm-svn: 356989