This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371484
If we're vectorizing a load in a predicated block, check to see if the load can be speculated rather than predicated. This allows us to generate a normal vector load instead of a masked.load.
To do so, we must prove that all bytes accessed on any iteration of the original loop are dereferenceable, and that all loads (across all iterations) are properly aligned. This is equivelent to proving that hoisting the load into the loop header in the original scalar loop is safe.
Note: There are a couple of code motion todos in the code. My intention is to wait about a day - to be sure this sticks - and then perform the NFC motion without furthe review.
Differential Revision: https://reviews.llvm.org/D66688
llvm-svn: 371452
This is similar to the existing fold for splats added with:
rL365379
If we can adjust the shuffle mask to include another element
in an identity mask (if it changes vector length, that's an
extract/insert subvector operation in the backend), then that
can eliminate extractelement/insertelement pairs in IR.
All targets are expected to lower shuffles with identity masks
efficiently.
llvm-svn: 371340
Summary:
This patch introduces initial `AAValueSimplify` which simplifies a value in a context.
example
- (for function returned) If all the return values are the same and constant, then we can replace callsite returned with the constant.
- If an internal function takes the same value(constant) as an argument in the callsite, then we can replace the argument with that constant.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66967
llvm-svn: 371291
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.
Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.
There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.
Reviewers: chandlerc, hfinkel
Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66428
llvm-svn: 371284
Add the new method `LibCallSimplifier::substituteInParent()` that calls
`LibCallSimplifier::replaceAllUsesWith()' and
`LibCallSimplifier::eraseFromParent()` back to back, simplifying the
resulting code.
llvm-svn: 371264
Summary:
Here we try to avoid issues with "explicit branch" with SimplifyBranchOnICmpChain
which can check on undef. Msan by design reports branches on uninitialized
memory and undefs, so we have false report here.
In general msan does not like when we convert
```
// If at least one of them is true we can MSAN is ok if another is undefs
if (a || b)
return;
```
into
```
// If 'a' is undef MSAN will complain even if 'b' is true
if (a)
return;
if (b)
return;
```
Example
Before optimization we had something like this:
```
while (true) {
bool maybe_undef = doStuff();
while (true) {
char c = getChar();
if (c != 10 && c != 13)
continue
break;
}
// we know that c == 10 || c == 13 if we get here,
// so msan know that branch is not affected by maybe_undef
if (maybe_undef || c == 10 || c == 13)
continue;
return;
}
```
SimplifyBranchOnICmpChain will convert that into
```
while (true) {
bool maybe_undef = doStuff();
while (true) {
char c = getChar();
if (c != 10 && c != 13)
continue;
break;
}
// however msan will complain here:
if (maybe_undef)
continue;
// we know that c == 10 || c == 13, so either way we will get continue
switch(c) {
case 10: continue;
case 13: continue;
}
return;
}
```
Reviewers: eugenis, efriedma
Reviewed By: eugenis, efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67205
llvm-svn: 371138
A follow-up for r329011.
This may be changed to produce @llvm.sub.with.overflow in a later patch,
but for now just make things more consistent overall.
A few observations stem from this:
* There does not seem to be a similar one-instruction fold for uadd-overflow
* I'm not sure we'll want to canonicalize `B u> A` as `usub.with.overflow`,
so since the `icmp` here no longer refers to `sub`,
reconstructing `usub.with.overflow` will be problematic,
and will likely require standalone pass (similar to DivRemPairs).
https://rise4fun.com/Alive/Zqs
Name: (A - B) u> A --> B u> A
%t0 = sub i8 %A, %B
%r = icmp ugt i8 %t0, %A
=>
%r = icmp ugt i8 %B, %A
Name: (A - B) u<= A --> B u<= A
%t0 = sub i8 %A, %B
%r = icmp ule i8 %t0, %A
=>
%r = icmp ule i8 %B, %A
Name: C u< (C - D) --> C u< D
%t0 = sub i8 %C, %D
%r = icmp ult i8 %C, %t0
=>
%r = icmp ult i8 %C, %D
Name: C u>= (C - D) --> C u>= D
%t0 = sub i8 %C, %D
%r = icmp uge i8 %C, %t0
=>
%r = icmp uge i8 %C, %D
llvm-svn: 371101
If we have:
bb5:
br i1 %arg3, label %bb6, label %bb7
bb6:
%tmp = getelementptr inbounds i32, i32* %arg1, i64 2
store i32 3, i32* %tmp, align 4
br label %bb9
bb7:
%tmp8 = getelementptr inbounds i32, i32* %arg1, i64 2
store i32 3, i32* %tmp8, align 4
br label %bb9
bb9: ; preds = %bb4, %bb6, %bb7
...
We can't sink stores directly into bb9.
This patch creates new BB that is successor of %bb6 and %bb7
and sinks stores into that block.
SplitFooterBB is the parameter to the pass that controls
that behavior.
Change-Id: I7fdf50a772b84633e4b1b860e905bf7e3e29940f
Differential: https://reviews.llvm.org/D66234
llvm-svn: 371089
Summary:
Avoid visiting an instruction more than once by using a map.
This is similar to https://reviews.llvm.org/rL361416.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67198
llvm-svn: 371086
This patch merges the sancov module and funciton passes into one module pass.
The reason for this is because we ran into an out of memory error when
attempting to run asan fuzzer on some protobufs (pc.cc files). I traced the OOM
error to the destructor of SanitizerCoverage where we only call
appendTo[Compiler]Used which calls appendToUsedList. I'm not sure where precisely
in appendToUsedList causes the OOM, but I am able to confirm that it's calling
this function *repeatedly* that causes the OOM. (I hacked sancov a bit such that
I can still create and destroy a new sancov on every function run, but only call
appendToUsedList after all functions in the module have finished. This passes, but
when I make it such that appendToUsedList is called on every sancov destruction,
we hit OOM.)
I don't think the OOM is from just adding to the SmallSet and SmallVector inside
appendToUsedList since in either case for a given module, they'll have the same
max size. I suspect that when the existing llvm.compiler.used global is erased,
the memory behind it isn't freed. I could be wrong on this though.
This patch works around the OOM issue by just calling appendToUsedList at the
end of every module run instead of function run. The same amount of constants
still get added to llvm.compiler.used, abd we make the pass usage and logic
simpler by not having any inter-pass dependencies.
Differential Revision: https://reviews.llvm.org/D66988
llvm-svn: 370971
Summary:
Instead of building attributes for internal functions which we do not
update as long as we assume they are dead, we now do not create
attributes until we assume the internal function to be live. This
improves the number of required iterations, as well as the number of
required updates, in real code. On our tests, the results are mixed.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66914
llvm-svn: 370924
Summary:
We create attributes on-demand so we need to check the white list
on-demand. This also unifies the location at which we create,
initialize, and eventually invalidate new abstract attributes.
The tests show mixed results, a few more call site attributes are
determined which can cause more iterations.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66913
llvm-svn: 370922
Summary:
Before we tried to rule out non-exact definitions early but that lead to
on-demand attributes created for them anyway. As a consequence we needed
to look at the definition in the initialize of each attribute again.
This patch centralized this lookup and tightens the condition under
which we give up on non-exact definitions.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67115
llvm-svn: 370917
SROA pass processes debug info incorrecly if applied twice.
Specifically, after SROA works first time, instcombine converts dbg.declare
intrinsics into dbg.value. Inlining creates new opportunities for SROA,
so it is called again. This time it does not handle correctly previously
inserted dbg.value intrinsics.
Differential Revision: https://reviews.llvm.org/D64595
llvm-svn: 370906
When I dug into this, it turns out to be *much* more involved than I'd realized and doesn't actually simplify anything.
The general purpose of the leader table is that we want to find the most-dominating definition quickly. The problem for equivalance folding is slightly different; we want to find the most dominating *value* whose definition block dominates our use quickly.
To make this change, we'd end up having to restructure the leader table (either the sorting thereof, or maybe even introducing multiple leader tables per value) and that complexity is just not worth it.
llvm-svn: 370824
Add the no-capture argument attribute deduction to the Attributor
fixpoint framework.
The new string attributed "no-capture-maybe-returned" is introduced to
allow deduction of no-capture through functions that "capture" an
argument but only by "returning" it. It is only used by the Attributor
for testing.
Differential Revision: https://reviews.llvm.org/D59922
llvm-svn: 370817
This extends the existing logic for propagating constant expressions in an analogous manner for what we do across basic blocks. The core point is that we chose some order of operands, and canonicalize uses towards that one.
The heuristic used is inspired by the one used across blocks; in a follow up change, I'd plan to common them so that the cross block version uses the slightly stronger ordering herein.
As noted by the TODOs in the code, there's a good amount of room for improving the existing code and making it more powerful. Some follow up work planned.
Differential Revision: https://reviews.llvm.org/D66977
llvm-svn: 370791
Summary:
Fold-tail currently supports reduction last-vector-value live-out's,
but has yet to support last-scalar-value live-outs, including
non-header phi's. As it relies on AllowedExit in order to detect
them and bail out we need to add the non-header PHI nodes to
AllowedExit, otherwise we end up with miscompiles.
Solves https://bugs.llvm.org/show_bug.cgi?id=43166
Reviewers: fhahn, Ayal
Reviewed By: fhahn, Ayal
Subscribers: anna, hiraditya, rkruppe, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67074
llvm-svn: 370721
Now that we allow tail-folding, not only when we optimise for size, make
sure we do not run in this assert.
Differential revision: https://reviews.llvm.org/D66932
llvm-svn: 370711
The loop vectorizer was running in an assert when it tried to fold the tail and
had to emit runtime memory disambiguation checks.
Differential revision: https://reviews.llvm.org/D66803
llvm-svn: 370707
bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) to i{N*8} --> bswap (bitcast X to i{N*8})
In PR43146:
https://bugs.llvm.org/show_bug.cgi?id=43146
...we have a more complicated case where SLP is making a mess of bswap. This patch won't
do anything for that currently, but we need to improve bswap recognition in instcombine,
SLP, and/or a standalone pass to avoid that problem.
This is limited using the data-layout so we don't try to do this transform with actual
vector types. The backend does not appear to have folds to convert in either direction,
so we don't want to mess up something that is actually better lowered as a shuffle.
On x86, we're trading something like this:
vmovd %edi, %xmm0
vpshufb LCPI0_0(%rip), %xmm0, %xmm0 ## xmm0 = xmm0[3,2,1,0,u,u,u,u,u,u,u,u,u,u,u,u]
vmovd %xmm0, %eax
For:
movl %edi, %eax
bswapl %eax
Differential Revision: https://reviews.llvm.org/D66965
llvm-svn: 370659
Summary:
Back-end currently expands mempcpy, but middle-end should work with memcpy instead of mempcpy to enable more memcpy-optimization.
GCC backend emits mempcpy, so LLVM backend could form it too, if we know mempcpy libcall is better than memcpy + n.
https://godbolt.org/z/dOCG96
Reviewers: efriedma, spatel, craig.topper, RKSimon, jdoerfert
Reviewed By: efriedma
Subscribers: hjl.tools, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65737
llvm-svn: 370593
Use a { iN undef, i1 false } struct as the base, and only insert
the first operand, instead of using { iN undef, i1 undef } as the
base and inserting both. This is the same as what we do in InstCombine.
Differential Revision: https://reviews.llvm.org/D67034
llvm-svn: 370573
cold versus function being newly added.
This is the second half of https://reviews.llvm.org/D66374.
Profile symbol list is the collection of function symbols showing up in
the binary which generates the current profile. It is used to discriminate
function being cold versus function being newly added. Profile symbol list
is only added for profile with ExtBinary format.
During profile use compilation, when profile-sample-accurate is enabled,
a function without profile will be regarded as cold only when it is
contained in that list.
Differential Revision: https://reviews.llvm.org/D66766
llvm-svn: 370563
This is an updated version of https://reviews.llvm.org/D66909 to fix PR42605.
Basically, current phi translatation translates an old value number to an new
value number for a call instruction based on the literal equality of call
expression, without verifying there is no clobber in between. This is incorrect.
To get a finegrain check, use MachineDependence analysis to do the job. However,
this is still not ideal. Although given a call instruction,
`MemoryDependenceResults::getCallDependencyFrom` returns identical call
instructions without clobber in between using MemDepResult with its DepType to
be `Def`. However, identical is too strict here and we want it to be relaxed a
little to consider phi-translation -- callee is the same, param operands can be
different. That means changing the semantic of `MemDepResult::Def` and I don't
know the potential impact.
So currently the patch is still conservative to only handle
MemDepResult::NonFuncLocal, which means the current call has no function local
clobber. If there is clobber, even if the clobber doesn't stand in between the
current call and the call with the new value, we won't do phi-translate.
Differential Revision: https://reviews.llvm.org/D67013
llvm-svn: 370547
Summary:
Instead of recomputing information for call sites we now use the
function information directly. This is always valid and once we have
call site specific information we can improve here.
This patch also bootstraps attributes that are created on-demand through
an initial update call. Information that is known will then directly be
available in the new attribute without causing an iteration delay.
The tests show how this improves the iteration count.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66781
llvm-svn: 370480
Summary:
Any pointer could have load/store users not only floating ones so we
move the manifest logic for alignment into the AAAlignImpl class.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66922
llvm-svn: 370479
Summary:
@mclow.lists brought up this issue up in IRC.
It is a reasonably common problem to compare some two values for equality.
Those may be just some integers, strings or arrays of integers.
In C, there is `memcmp()`, `bcmp()` functions.
In C++, there exists `std::equal()` algorithm.
One can also write that function manually.
libstdc++'s `std::equal()` is specialized to directly call `memcmp()` for
various types, but not `std::byte` from C++2a. https://godbolt.org/z/mx2ejJ
libc++ does not do anything like that, it simply relies on simple C++'s
`operator==()`. https://godbolt.org/z/er0Zwf (GOOD!)
So likely, there exists a certain performance opportunities.
Let's compare performance of naive `std::equal()` (no `memcmp()`) with one that
is using `memcmp()` (in this case, compiled with modified compiler). {F8768213}
```
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <limits>
#include <random>
#include <type_traits>
#include <utility>
#include <vector>
#include "benchmark/benchmark.h"
template <class T>
bool equal(T* a, T* a_end, T* b) noexcept {
for (; a != a_end; ++a, ++b) {
if (*a != *b) return false;
}
return true;
}
template <typename T>
std::vector<T> getVectorOfRandomNumbers(size_t count) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<T> dis(std::numeric_limits<T>::min(),
std::numeric_limits<T>::max());
std::vector<T> v;
v.reserve(count);
std::generate_n(std::back_inserter(v), count,
[&dis, &gen]() { return dis(gen); });
assert(v.size() == count);
return v;
}
struct Identical {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
auto Tmp = getVectorOfRandomNumbers<T>(count);
return std::make_pair(Tmp, std::move(Tmp));
}
};
struct InequalHalfway {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
auto V0 = getVectorOfRandomNumbers<T>(count);
auto V1 = V0;
V1[V1.size() / size_t(2)]++; // just change the value.
return std::make_pair(std::move(V0), std::move(V1));
}
};
template <class T, class Gen>
void BM_bcmp(benchmark::State& state) {
const size_t Length = state.range(0);
const std::pair<std::vector<T>, std::vector<T>> Data =
Gen::template Gen<T>(Length);
const std::vector<T>& a = Data.first;
const std::vector<T>& b = Data.second;
assert(a.size() == Length && b.size() == a.size());
benchmark::ClobberMemory();
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(a.data());
benchmark::DoNotOptimize(b);
benchmark::DoNotOptimize(b.data());
for (auto _ : state) {
const bool is_equal = equal(a.data(), a.data() + a.size(), b.data());
benchmark::DoNotOptimize(is_equal);
}
state.SetComplexityN(Length);
state.counters["eltcnt"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariant);
state.counters["eltcnt/sec"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariantRate);
const size_t BytesRead = 2 * sizeof(T) * Length;
state.counters["bytes_read/iteration"] =
benchmark::Counter(BytesRead, benchmark::Counter::kDefaults,
benchmark::Counter::OneK::kIs1024);
state.counters["bytes_read/sec"] = benchmark::Counter(
BytesRead, benchmark::Counter::kIsIterationInvariantRate,
benchmark::Counter::OneK::kIs1024);
}
template <typename T>
static void CustomArguments(benchmark::internal::Benchmark* b) {
const size_t L2SizeBytes = []() {
for (const benchmark::CPUInfo::CacheInfo& I :
benchmark::CPUInfo::Get().caches) {
if (I.level == 2) return I.size;
}
return 0;
}();
// What is the largest range we can check to always fit within given L2 cache?
const size_t MaxLen = L2SizeBytes / /*total bufs*/ 2 /
/*maximal elt size*/ sizeof(T) / /*safety margin*/ 2;
b->RangeMultiplier(2)->Range(1, MaxLen)->Complexity(benchmark::oN);
}
BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, Identical)
->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, Identical)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, Identical)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, Identical)
->Apply(CustomArguments<uint64_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, InequalHalfway)
->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, InequalHalfway)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, InequalHalfway)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, InequalHalfway)
->Apply(CustomArguments<uint64_t>);
```
{F8768210}
```
$ ~/src/googlebenchmark/tools/compare.py --no-utest benchmarks build-{old,new}/test/llvm-bcmp-bench
RUNNING: build-old/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpb6PEUx
2019-04-25 21:17:11
Running build-old/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 0.65, 3.90, 4.14
---------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000 432131 ns 432101 ns 1613 bytes_read/iteration=1000k bytes_read/sec=2.20706G/s eltcnt=825.856M eltcnt/sec=1.18491G/s
BM_bcmp<uint8_t, Identical>_BigO 0.86 N 0.86 N
BM_bcmp<uint8_t, Identical>_RMS 8 % 8 %
<...>
BM_bcmp<uint16_t, Identical>/256000 161408 ns 161409 ns 4027 bytes_read/iteration=1000k bytes_read/sec=5.90843G/s eltcnt=1030.91M eltcnt/sec=1.58603G/s
BM_bcmp<uint16_t, Identical>_BigO 0.67 N 0.67 N
BM_bcmp<uint16_t, Identical>_RMS 25 % 25 %
<...>
BM_bcmp<uint32_t, Identical>/128000 81497 ns 81488 ns 8415 bytes_read/iteration=1000k bytes_read/sec=11.7032G/s eltcnt=1077.12M eltcnt/sec=1.57078G/s
BM_bcmp<uint32_t, Identical>_BigO 0.71 N 0.71 N
BM_bcmp<uint32_t, Identical>_RMS 42 % 42 %
<...>
BM_bcmp<uint64_t, Identical>/64000 50138 ns 50138 ns 10909 bytes_read/iteration=1000k bytes_read/sec=19.0209G/s eltcnt=698.176M eltcnt/sec=1.27647G/s
BM_bcmp<uint64_t, Identical>_BigO 0.84 N 0.84 N
BM_bcmp<uint64_t, Identical>_RMS 27 % 27 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000 192405 ns 192392 ns 3638 bytes_read/iteration=1000k bytes_read/sec=4.95694G/s eltcnt=1.86266G eltcnt/sec=2.66124G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO 0.38 N 0.38 N
BM_bcmp<uint8_t, InequalHalfway>_RMS 3 % 3 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000 127858 ns 127860 ns 5477 bytes_read/iteration=1000k bytes_read/sec=7.45873G/s eltcnt=1.40211G eltcnt/sec=2.00219G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO 0.50 N 0.50 N
BM_bcmp<uint16_t, InequalHalfway>_RMS 0 % 0 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000 49140 ns 49140 ns 14281 bytes_read/iteration=1000k bytes_read/sec=19.4072G/s eltcnt=1.82797G eltcnt/sec=2.60478G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO 0.40 N 0.40 N
BM_bcmp<uint32_t, InequalHalfway>_RMS 18 % 18 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000 32101 ns 32099 ns 21786 bytes_read/iteration=1000k bytes_read/sec=29.7101G/s eltcnt=1.3943G eltcnt/sec=1.99381G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO 0.50 N 0.50 N
BM_bcmp<uint64_t, InequalHalfway>_RMS 1 % 1 %
RUNNING: build-new/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpQ46PP0
2019-04-25 21:19:29
Running build-new/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 1.01, 2.85, 3.71
---------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000 18593 ns 18590 ns 37565 bytes_read/iteration=1000k bytes_read/sec=51.2991G/s eltcnt=19.2333G eltcnt/sec=27.541G/s
BM_bcmp<uint8_t, Identical>_BigO 0.04 N 0.04 N
BM_bcmp<uint8_t, Identical>_RMS 37 % 37 %
<...>
BM_bcmp<uint16_t, Identical>/256000 18950 ns 18948 ns 37223 bytes_read/iteration=1000k bytes_read/sec=50.3324G/s eltcnt=9.52909G eltcnt/sec=13.511G/s
BM_bcmp<uint16_t, Identical>_BigO 0.08 N 0.08 N
BM_bcmp<uint16_t, Identical>_RMS 34 % 34 %
<...>
BM_bcmp<uint32_t, Identical>/128000 18627 ns 18627 ns 37895 bytes_read/iteration=1000k bytes_read/sec=51.198G/s eltcnt=4.85056G eltcnt/sec=6.87168G/s
BM_bcmp<uint32_t, Identical>_BigO 0.16 N 0.16 N
BM_bcmp<uint32_t, Identical>_RMS 35 % 35 %
<...>
BM_bcmp<uint64_t, Identical>/64000 18855 ns 18855 ns 37458 bytes_read/iteration=1000k bytes_read/sec=50.5791G/s eltcnt=2.39731G eltcnt/sec=3.3943G/s
BM_bcmp<uint64_t, Identical>_BigO 0.32 N 0.32 N
BM_bcmp<uint64_t, Identical>_RMS 33 % 33 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000 9570 ns 9569 ns 73500 bytes_read/iteration=1000k bytes_read/sec=99.6601G/s eltcnt=37.632G eltcnt/sec=53.5046G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO 0.02 N 0.02 N
BM_bcmp<uint8_t, InequalHalfway>_RMS 29 % 29 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000 9547 ns 9547 ns 74343 bytes_read/iteration=1000k bytes_read/sec=99.8971G/s eltcnt=19.0318G eltcnt/sec=26.8159G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO 0.04 N 0.04 N
BM_bcmp<uint16_t, InequalHalfway>_RMS 29 % 29 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000 9396 ns 9394 ns 73521 bytes_read/iteration=1000k bytes_read/sec=101.518G/s eltcnt=9.41069G eltcnt/sec=13.6255G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO 0.08 N 0.08 N
BM_bcmp<uint32_t, InequalHalfway>_RMS 30 % 30 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000 9499 ns 9498 ns 73802 bytes_read/iteration=1000k bytes_read/sec=100.405G/s eltcnt=4.72333G eltcnt/sec=6.73808G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO 0.16 N 0.16 N
BM_bcmp<uint64_t, InequalHalfway>_RMS 28 % 28 %
Comparing build-old/test/llvm-bcmp-bench to build-new/test/llvm-bcmp-bench
Benchmark Time CPU Time Old Time New CPU Old CPU New
---------------------------------------------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000 -0.9570 -0.9570 432131 18593 432101 18590
<...>
BM_bcmp<uint16_t, Identical>/256000 -0.8826 -0.8826 161408 18950 161409 18948
<...>
BM_bcmp<uint32_t, Identical>/128000 -0.7714 -0.7714 81497 18627 81488 18627
<...>
BM_bcmp<uint64_t, Identical>/64000 -0.6239 -0.6239 50138 18855 50138 18855
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000 -0.9503 -0.9503 192405 9570 192392 9569
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000 -0.9253 -0.9253 127858 9547 127860 9547
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000 -0.8088 -0.8088 49140 9396 49140 9394
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000 -0.7041 -0.7041 32101 9499 32099 9498
```
What can we tell from the benchmark?
* Performance of naive equality check somewhat improves with element size,
maxing out at eltcnt/sec=1.58603G/s for uint16_t, or bytes_read/sec=19.0209G/s
for uint64_t. I think, that instability implies performance problems.
* Performance of `memcmp()`-aware benchmark always maxes out at around
bytes_read/sec=51.2991G/s for every type. That is 2.6x the throughput of the
naive variant!
* eltcnt/sec metric for the `memcmp()`-aware benchmark maxes out at
eltcnt/sec=27.541G/s for uint8_t (was: eltcnt/sec=1.18491G/s, so 24x) and
linearly decreases with element size.
For uint64_t, it's ~4x+ the elements/second.
* The call obvious is more pricey than the loop, with small element count.
As it can be seen from the full output {F8768210}, the `memcmp()` is almost
universally worse, independent of the element size (and thus buffer size) when
element count is less than 8.
So all in all, bcmp idiom does indeed pose untapped performance headroom.
This diff does implement said idiom recognition. I think a reasonable test
coverage is present, but do tell if there is anything obvious missing.
Now, quality. This does succeed to build and pass the test-suite, at least
without any non-bundled elements. {F8768216} {F8768217}
This transform fires 91 times:
```
$ /build/test-suite/utils/compare.py -m loop-idiom.NumBCmp result-new.json
Tests: 1149
Metric: loop-idiom.NumBCmp
Program result-new
MultiSourc...Benchmarks/7zip/7zip-benchmark 79.00
MultiSource/Applications/d/make_dparser 3.00
SingleSource/UnitTests/vla 2.00
MultiSource/Applications/Burg/burg 1.00
MultiSourc.../Applications/JM/lencod/lencod 1.00
MultiSource/Applications/lemon/lemon 1.00
MultiSource/Benchmarks/Bullet/bullet 1.00
MultiSourc...e/Benchmarks/MallocBench/gs/gs 1.00
MultiSourc...gs-C/TimberWolfMC/timberwolfmc 1.00
MultiSourc...Prolangs-C/simulator/simulator 1.00
```
The size changes are:
I'm not sure what's going on with SingleSource/UnitTests/vla.test yet, did not look.
```
$ /build/test-suite/utils/compare.py -m size..text result-{old,new}.json --filter-hash
Tests: 1149
Same hash: 907 (filtered out)
Remaining: 242
Metric: size..text
Program result-old result-new diff
test-suite...ingleSource/UnitTests/vla.test 753.00 833.00 10.6%
test-suite...marks/7zip/7zip-benchmark.test 1001697.00 966657.00 -3.5%
test-suite...ngs-C/simulator/simulator.test 32369.00 32321.00 -0.1%
test-suite...plications/d/make_dparser.test 89585.00 89505.00 -0.1%
test-suite...ce/Applications/Burg/burg.test 40817.00 40785.00 -0.1%
test-suite.../Applications/lemon/lemon.test 47281.00 47249.00 -0.1%
test-suite...TimberWolfMC/timberwolfmc.test 250065.00 250113.00 0.0%
test-suite...chmarks/MallocBench/gs/gs.test 149889.00 149873.00 -0.0%
test-suite...ications/JM/lencod/lencod.test 769585.00 769569.00 -0.0%
test-suite.../Benchmarks/Bullet/bullet.test 770049.00 770049.00 0.0%
test-suite...HMARK_ANISTROPIC_DIFFUSION/128 NaN NaN nan%
test-suite...HMARK_ANISTROPIC_DIFFUSION/256 NaN NaN nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/64 NaN NaN nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/32 NaN NaN nan%
test-suite...ENCHMARK_BILATERAL_FILTER/64/4 NaN NaN nan%
Geomean difference nan%
result-old result-new diff
count 1.000000e+01 10.00000 10.000000
mean 3.152090e+05 311695.40000 0.006749
std 3.790398e+05 372091.42232 0.036605
min 7.530000e+02 833.00000 -0.034981
25% 4.243300e+04 42401.00000 -0.000866
50% 1.197370e+05 119689.00000 -0.000392
75% 6.397050e+05 639705.00000 -0.000005
max 1.001697e+06 966657.00000 0.106242
```
I don't have timings though.
And now to the code. The basic idea is to completely replace the whole loop.
If we can't fully kill it, don't transform.
I have left one or two comments in the code, so hopefully it can be understood.
Also, there is a few TODO's that i have left for follow-ups:
* widening of `memcmp()`/`bcmp()`
* step smaller than the comparison size
* Metadata propagation
* more than two blocks as long as there is still a single backedge?
* ???
Reviewers: reames, fhahn, mkazantsev, chandlerc, craig.topper, courbet
Reviewed By: courbet
Subscribers: hiraditya, xbolva00, nikic, jfb, gchatelet, courbet, llvm-commits, mclow.lists
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61144
llvm-svn: 370454
We can also apply the earlier updates to the lazy DTU, instead of
applying them directly.
Reviewers: kuhar, brzycki, asbirlea, SjoerdMeijer
Reviewed By: brzycki, asbirlea, SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D66918
llvm-svn: 370391
Summary:
I'm not planning to check this in at the moment, but feedback is very welcome, in particular how this affects performance.
The feedback obtains here will guide the next steps towards enabling this.
This patch enables the use of MemorySSA in the loop pass manager.
Passes that currently use MemorySSA:
- EarlyCSE
Passes that use MemorySSA after this patch:
- EarlyCSE
- LICM
- SimpleLoopUnswitch
Loop passes that update MemorySSA (and do not use it yet, but could use it after this patch):
- LoopInstSimplify
- LoopSimplifyCFG
- LoopUnswitch
- LoopRotate
- LoopSimplify
- LCSSA
Loop passes that do *not* update MemorySSA:
- IndVarSimplify
- LoopDelete
- LoopIdiom
- LoopSink
- LoopUnroll
- LoopInterchange
- LoopUnrollAndJam
- LoopVectorize
- LoopReroll
- IRCE
Reviewers: chandlerc, george.burgess.iv, davide, sanjoy, gberry
Subscribers: jlebar, Prazek, dmgreen, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58311
llvm-svn: 370384
Summary:
- Similar to the workaround in fix of PR30188, skip sinking common
lifetime markers of `alloca`. They are mostly left there after
inlining functions in branches.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66950
llvm-svn: 370376
Summary:
As it can be seen in the tests in D65143/D65144, even though we have formed an '@llvm.umul.with.overflow'
and got rid of potential for division-by-zero, the control flow remains, we still have that branch.
We have this condition:
```
// Don't fold i1 branches on PHIs which contain binary operators
// These can often be turned into switches and other things.
if (PN->getType()->isIntegerTy(1) &&
(isa<BinaryOperator>(PN->getIncomingValue(0)) ||
isa<BinaryOperator>(PN->getIncomingValue(1)) ||
isa<BinaryOperator>(IfCond)))
return false;
```
which was added back in rL121764 to help with `select` formation i think?
That check prevents us to flatten the CFG here, even though we know
we no longer need that guard and will be able to drop everything
but the '@llvm.umul.with.overflow' + `not`.
As it can be seen from tests, we end here because the `not` is being
sinked into the PHI's incoming values by InstCombine,
so we can't workaround this by hoisting it to after PHI.
Thus i suggest that we relax that check to not bailout if we'd get to hoist the `not`.
Reviewers: craig.topper, spatel, fhahn, nikic
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65147
llvm-svn: 370349
Summary:
Finally, the fold i was looking forward to :)
The legality check is muddy, i doubt i've groked the full generalization,
but it handles all the cases i care about, and can come up with:
https://rise4fun.com/Alive/26j
I.e. we can perform the fold if **any** of the following is true:
* The shift amount is either zero or one less than widest bitwidth
* Either of the values being shifted has at most lowest bit set
* The value that is being shifted by `shl` (which is not truncated) should have no less leading zeros than the total shift amount;
* The value that is being shifted by `lshr` (which **is** truncated) should have no less leading zeros than the widest bit width minus total shift amount minus one
I strongly suspect there is some better generalization, but i'm not aware of it as of right now.
For now i also avoided using actual `computeKnownBits()`, but restricted it to constants.
Reviewers: spatel, nikic, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66383
llvm-svn: 370324
We do not access the DT in the loop, so we do not have to apply updates
eagerly. We can apply them lazyly and flush them after we are done
merging blocks.
As follow-up work, we might be able to use the DTU above as well,
instead of manually updating the DT.
This brings the example from PR43134 from ~100s to ~4s for a relase +
assertions build on my machine.
Reviewers: efriedma, kuhar, asbirlea, brzycki
Reviewed By: kuhar, brzycki
Differential Revision: https://reviews.llvm.org/D66911
llvm-svn: 370292
...cloning a function from a different module
Currently when a function with debug info is cloned from a different module, the
cloned function may have hanging DICompileUnits, so that the module with the
cloned function fails debug info verification.
The proposed fix inserts all DICompileUnits reachable from the cloned function
to "llvm.dbg.cu" metadata operands of the cloned function module.
Reviewed By: aprantl, efriedma
Differential Revision: https://reviews.llvm.org/D66510
Patch by Oleg Pliss (Oleg.Pliss@azul.com)
llvm-svn: 370265
By default ASan calls a versioned function
`__asan_version_mismatch_check_vXXX` from the ASan module constructor to
check that the compiler ABI version and runtime ABI version are
compatible. This ensures that we get a predictable linker error instead
of hard-to-debug runtime errors.
Sometimes, however, we want to skip this safety guard. This new command
line option allows us to do just that.
rdar://47891956
Reviewed By: kubamracek
Differential Revision: https://reviews.llvm.org/D66826
llvm-svn: 370258
Always true/false checks were flagged by static analysis;
https://bugs.llvm.org/show_bug.cgi?id=43143
I have not confirmed the logic difference in propagating nsw vs. nuw,
but presumably we would have noticed a bug by now if that was wrong.
llvm-svn: 370248
Summary:
This functionality was added when Mapper::mapMetadata was recursive. It
is no longer needed after r265456, which switched it to be iterative.
Reviewers: dexonsmith, srhines
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66860
llvm-svn: 370236
As dependences between abstract attributes can become stale, e.g., if
one was sufficient to imply another one at some point but it has since
been wakened to the point it is not usable for the formerly implied one.
To weed out spurious dependences, and thereby eliminate unneeded
updates, we introduce an option to determine how often the dependence
cache is cleared and recomputed during the fixpoint iteration.
Note that the initial value was determined such that we see a positive
result on our tests.
Differential Revision: https://reviews.llvm.org/D63315
llvm-svn: 370230
Summary:
Until we have proper call-site information we should not recompute
liveness and return information for each call site. This patch directly
uses the function versions and introduces TODOs at the usage sites.
The required iterations to get to the fixpoint are most of the time
reduced by this change and we always avoid work duplication.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66562
llvm-svn: 370208
Allow vectorizing loops that have reductions when tail is folded by masking.
A select is introduced in VPlan, choosing between the last value carried by the
loop-exit/live-out instruction of the reduction, and the penultimate value
carried by the reduction phi, according to the "i < n" mask of fold-tail.
This select replaces the last value as the live-out value of the loop.
Differential Revision: https://reviews.llvm.org/D66720
llvm-svn: 370173
The code we had isSafeToLoadUnconditionally was blatantly wrong. This function takes a "Size" argument which is supposed to describe the span loaded from. Instead, the code use the size of the pointer passed (which may be unrelated!) and only checks that span. For any Size > LoadSize, this can and does lead to miscompiles.
Worse, the generic code just a few lines above correctly handles the cases which *are* valid. So, let's delete said code.
Removing this code revealed two issues:
1) As noted by jdoerfert the removed code incorrectly handled external globals. The test update in SROA is to stop testing incorrect behavior.
2) SROA was confusing bytes and bits, but this wasn't obvious as the Size parameter was being essentially ignored anyway. Fixed.
Differential Revision: https://reviews.llvm.org/D66778
llvm-svn: 370102
Summary:
During the fixpoint iteration, including the manifest stage, we should
not delete stuff as other abstract attributes might have a reference to
the value. Through the API this can now be done safely at the very end.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66779
llvm-svn: 370014
Try harder to emulate "old runtime" in the test.
To get the old behavior with the new runtime library, we need both
disable personality function wrapping and enable landing pad
instrumentation.
llvm-svn: 369977
Summary:
Try to verify how many iterations we need for a fixpoint in our tests.
This patch adjust the way we count to make it easier to follow. It also
adjusts the bounds to actually account for a fixpoint and not only the
minimum number to pass all checks.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66757
llvm-svn: 369945
By default, the Attributor tracks potential dependences between abstract
attributes based on the issued Attributor::getAAFor queries. This
simplifies the development of new abstract attributes but it can also
lead to spurious dependences that might increase compile time and make
internalization harder (D63312). With this patch, abstract attributes
can opt-out of implicit dependence tracking and instead register
dependences explicitly. It is up to the implementation to make sure all
existing dependences are registered.
Differential Revision: https://reviews.llvm.org/D63314
llvm-svn: 369935
Summary:
When reconstructing the CFG of the loop after unrolling,
LoopUnroll could in some cases remove the phi operands of
loop-carried values instead of preserving them, resulting
in undef phi values after loop unrolling.
When doing this reconstruction, avoid removing incoming
phi values for phis in the successor blocks if the successor
is the block we are jumping to anyway.
Patch-by: ebevhan
Reviewers: fhahn, efriedma
Reviewed By: fhahn
Subscribers: bjope, lebedev.ri, zzheng, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66334
llvm-svn: 369886
Promoting it from InstCombine's tryToReuseConstantFromSelectInComparison().
Return true if this constant and a constant 'Y' are element-wise equal.
This is identical to just comparing the pointers, with the exception that
for vectors, if only one of the constants has an `undef` element in some
lane, the constants still match.
llvm-svn: 369842
Summary:
`matchThreeWayIntCompare()` looks for
```
select i1 (a == b),
i32 Equal,
i32 (select i1 (a < b), i32 Less, i32 Greater)
```
but both of these selects/compares can be in it's commuted form,
so out of 8 variants, only the two most basic ones is handled.
This fixes regression being introduced in D66232.
Reviewers: spatel, nikic, efriedma, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66607
llvm-svn: 369841
Summary:
If we have e.g.:
```
%t = icmp ult i32 %x, 65536
%r = select i1 %t, i32 %y, i32 65535
```
the constants `65535` and `65536` are suspiciously close.
We could perform a transformation to deduplicate them:
```
Name: ult
%t = icmp ult i32 %x, 65536
%r = select i1 %t, i32 %y, i32 65535
=>
%t.inv = icmp ugt i32 %x, 65535
%r = select i1 %t.inv, i32 65535, i32 %y
```
https://rise4fun.com/Alive/avb
While this may seem esoteric, this should certainly be good for vectors
(less constant pool usage) and for opt-for-size - need to have only one constant.
But the real fun part here is that it allows further transformation,
in particular it finishes cleaning up the `clamp` folding,
see e.g. `canonicalize-clamp-with-select-of-constant-threshold-pattern.ll`.
We start with e.g.
```
%dont_need_to_clamp_positive = icmp sle i32 %X, 32767
%dont_need_to_clamp_negative = icmp sge i32 %X, -32768
%clamp_limit = select i1 %dont_need_to_clamp_positive, i32 -32768, i32 32767
%dont_need_to_clamp = and i1 %dont_need_to_clamp_positive, %dont_need_to_clamp_negative
%R = select i1 %dont_need_to_clamp, i32 %X, i32 %clamp_limit
```
without this patch we currently produce
```
%1 = icmp slt i32 %X, 32768
%2 = icmp sgt i32 %X, -32768
%3 = select i1 %2, i32 %X, i32 -32768
%R = select i1 %1, i32 %3, i32 32767
```
which isn't really a `clamp` - both comparisons are performed on the original value,
this patch changes it into
```
%1.inv = icmp sgt i32 %X, 32767
%2 = icmp sgt i32 %X, -32768
%3 = select i1 %2, i32 %X, i32 -32768
%R = select i1 %1.inv, i32 32767, i32 %3
```
and then the magic happens! Some further transform finishes polishing it and we finally get:
```
%t1 = icmp sgt i32 %X, -32768
%t2 = select i1 %t1, i32 %X, i32 -32768
%t3 = icmp slt i32 %t2, 32767
%R = select i1 %t3, i32 %t2, i32 32767
```
which is beautiful and just what we want.
Proofs for `getFlippedStrictnessPredicateAndConstant()` for de-canonicalization:
https://rise4fun.com/Alive/THl
Proofs for the fold itself: https://rise4fun.com/Alive/THl
Reviewers: spatel, dmgreen, nikic, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66232
llvm-svn: 369840
Summary:
We can now manifest alignment information in load/store instructions if
the pointer is known to have a better alignment.
Reviewers: uenoku, sstefan1, lebedev.ri
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66567
llvm-svn: 369804
Started implementing the vector case and realized the scalar case hadn't handled the GEP producing a different type than the base correctly. It's entertaining seeing what slips through review when we're focused on the 'hard' parts. :(
Also adding an extra vector test as it happened to be in workspace and wasn't worth separating.
llvm-svn: 369795
This generalizes the isGEPKnownNonNull rule from ValueTracking to apply when we do not know if the base is non-null, and thus need to replace one condition with another.
The core notion is that since an inbounds GEP can only form null if the base pointer is null and the offset is zero. However, if the offset is non-zero, the the "inbounds" marker makes the result poison. Thus, we're free to ignore the case where the offset is non-zero. Similarly, there's no case under which a non-null base can result in a null result without generating poison.
Differential Revision: https://reviews.llvm.org/D66608
llvm-svn: 369789
Summary:
If the unique return value is a constant we now replace call uses with
that constant.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66551
llvm-svn: 369785
Summary:
If we have a loop in which the dereferenceability of a pointer decreases
we did slowly decrease it iteration by iteration, leading to a timeout.
With this patch we detect such circular reasoning and indicate a
fixpoint early.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66558
llvm-svn: 369784
Summary:
If we have a negative inbounds offset dereferenceabily "grows". However,
until we do not handle the overflow that can occur in the
dereferenceable bytes and the problem with loops, we simply do not grow
the state.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66557
llvm-svn: 369771
If the number of potentially returned values not change since the last
traversal we do not need to visit the returned values again. This works
as we only add values to the returned values set now.
Differential Revision: https://reviews.llvm.org/D66484
llvm-svn: 369770
Summary:
When we have new attributes and we end the fixpoint iteration because
the iteration limit is reached, we need to treat the new ones as if they
changed in the last iteration, as they might have.
This adds a test for which we should not derive anything regardless of
the iteration limit, e.g., if we abort there should not be any
attributes manifested in the IR.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66549
llvm-svn: 369768
Summary:
Keep aliasees alive if their alias is live, otherwise we end up with an
alias to a declaration, which is invalid. This can happen when the
aliasee is weak and non-prevailing.
This fix exposed the fact that we were then attempting to internalize
the weak symbol, which was not exported as it was not prevailing. We
should not internalize interposable symbols in general, unless this is
the prevailing copy, since it can lead to incorrect inlining and other
optimizations. Most of the changes in this patch are due to the
restructuring required to pass down the prevailing callback.
Finally, while implementing the test cases, I found that in the case of
a weak aliasee that is still marked not live because its alias isn't
live, after dropping the definition we incorrectly marked the
declaration with weak linkage when resolving prevailing symbols in the
module. This was due to some special case handling for symbols marked
WeakLinkage in the summary located before instead of after a subsequent
check for the symbol being a declaration. It turns out that we don't
actually need this special case handling any more (looking back at the
history, when that was added the code was structured quite differently)
- we will correctly mark with weak linkage further below when the
definition hasn't been dropped.
Fixes PR42542.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, steven_wu, dexonsmith, dang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66264
llvm-svn: 369766
We were computing the loop exit value, but not ensuring the addrec belonged to the loop whose exit value we were computing. I couldn't actually trip this; the test case shows the basic setup which *might* trip this, but none of the variations I've tried actually do.
llvm-svn: 369730
The alignment is calculated incorrectly, thus sometimes it doesn't generate aligned mov instructions, as shown by the example below:
```
// b.cc
typedef long long index;
extern "C" index g_tid;
extern "C" index g_num;
void add3(float* __restrict__ a, float* __restrict__ b, float* __restrict__ c) {
index n = 64*1024;
index m = 16*1024;
index k = 4*1024;
index tid = g_tid;
index num = g_num;
__builtin_assume_aligned(a, 32);
__builtin_assume_aligned(b, 32);
__builtin_assume_aligned(c, 32);
for (index i0=tid*k; i0<m; i0+=num*k)
for (index i1=0; i1<n*m; i1+=m)
for (index i2=0; i2<k; i2++)
c[i1+i0+i2] = b[i0+i2] + a[i1+i0+i2];
}
```
Compile with `clang b.cc -Ofast -march=skylake -mavx2 -S`
```
vmovaps -224(%rdi,%rbx,4), %ymm0
vmovups -192(%rdi,%rbx,4), %ymm1 # should be movaps
vmovups -160(%rdi,%rbx,4), %ymm2 # should be movaps
vmovups -128(%rdi,%rbx,4), %ymm3 # should be movaps
vaddps -224(%rsi,%rbx,4), %ymm0, %ymm0
vaddps -192(%rsi,%rbx,4), %ymm1, %ymm1
vaddps -160(%rsi,%rbx,4), %ymm2, %ymm2
vaddps -128(%rsi,%rbx,4), %ymm3, %ymm3
vmovaps %ymm0, -224(%rdx,%rbx,4)
vmovups %ymm1, -192(%rdx,%rbx,4) # should be movaps
vmovups %ymm2, -160(%rdx,%rbx,4) # should be movaps
vmovups %ymm3, -128(%rdx,%rbx,4) # should be movaps
```
Differential Revision: https://reviews.llvm.org/D66575
Patch by Dun Liang
llvm-svn: 369723
One problem with untagging memory in landing pads is that it only works
correctly if the function that catches the exception is instrumented.
If the function is uninstrumented, we have no opportunity to untag the
memory.
To address this, replace landing pad instrumentation with personality function
wrapping. Each function with an instrumented stack has its personality function
replaced with a wrapper provided by the runtime. Functions that did not have
a personality function to begin with also get wrappers if they may be unwound
past. As the unwinder calls personality functions during stack unwinding,
the original personality function is called and the function's stack frame is
untagged by the wrapper if the personality function instructs the unwinder
to keep unwinding. If unwinding stops at a landing pad, the function is
still responsible for untagging its stack frame if it resumes unwinding.
The old landing pad mechanism is preserved for compatibility with old runtimes.
Differential Revision: https://reviews.llvm.org/D66377
llvm-svn: 369721
I noticed another instance of the issue where references to aliases were
being replaced with aliasees, this time in InstCombine. In the instance that
I saw it turned out to be only a QoI issue (a symbol ended up being missing
from the symbol table due to the last reference to the alias being removed,
preventing HWASAN from symbolizing a global reference), but it could easily
have manifested as incorrect behaviour.
Since this is the third such issue encountered (previously: D65118, D65314)
it seems to be time to address this common error/QoI issue once and for all
and make the strip* family of functions not look through aliases.
Includes a test for the specific issue that I saw, but no doubt there are
other similar bugs fixed here.
As with D65118 this has been tested to make sure that the optimization isn't
load bearing. I built Clang, Chromium for Linux, Android and Windows as well
as the test-suite and there were no size regressions.
Differential Revision: https://reviews.llvm.org/D66606
llvm-svn: 369697
Summary: In D65402, I want to get DerefState from AADereferenceable but it was not allowed. This patch moves DerefState definition into Attributor.h and makes AADerefenceable inherit StateWrapper.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66585
llvm-svn: 369653
Currently we do not properly translate addresses with PHIs if LoadBB !=
LI->getParent(), because PHITranslateAddr expects a direct predecessor as argument,
because it considers all instructions outside of the current block to
not requiring translation.
The amount of cases that trigger this should be very low, as most single
predecessor blocks should be folded into their predecessor by GVN before
we actually start with value numbering. It is still not guaranteed to
happen, so we should do PHI translation along all edges between the
loads' block and the predecessor where we have to place a load.
There are a few test cases showing current limits of the PHI translation, which
could be improved later.
Reviewers: spatel, reames, efriedma, john.brawn
Reviewed By: efriedma
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65020
llvm-svn: 369570
An intermediate extend is used to widen the narrow operand to the width of
the other (wider) operand. At that point, we have the same logic as the
existing transform that was restricted to folds of equal width zext/sext.
This mostly solves PR42700:
https://bugs.llvm.org/show_bug.cgi?id=42700
llvm-svn: 369519
For an internal function, if all its call sites are dead, the body of the function is considered dead.
Reviewers: jdoerfert, uenoku
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D66155
llvm-svn: 369470
Summary:
StringMap is used for storing call target to frequency map for AutoFDO. However the iterating order of StringMap is non-deterministic, which leads to non-determinism in AutoFDO profile output. Now new API getSortedCallTargets and SortCallTargets are added for deterministic ordering and output.
Roundtrip test for text profile and binary profile is added.
Reviewers: wmi, davidxl, danielcdh
Subscribers: hiraditya, mgrang, llvm-commits, twoh
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66191
llvm-svn: 369440
1. Update function name and stale code comments.
2. Use variable names that are less ambiguous.
3. Move operand checks into the function as early exits.
llvm-svn: 369390
Summary:
When the line format is wrong, we may end up accessing out of bound
memory. eg: the test with invalide line will cause assert.
Assertion `idx < size()' failed
The fix is to report fatal when we found mismatched line format.
Reviewers: qcolombet, volkan
Reviewed By: qcolombet
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66444
llvm-svn: 369389
Before, we create the set of abstract attributes initially and then
dealt with the fact hat a lookup could fail, e.g., return a nullptr.
This patch will ensure we always return a valid object from a lookup,
allowing us not only to remove the nullptr checks but also to grow the
set of abstract attributes "in-flight" on-demand.
One can now start from those that have the best chance of improving
performance without the need to specify all they might depend on.
While this introduces some boilerplate, the usage of attributes is much
easier and cleaner now.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66276
llvm-svn: 369331
Summary:
This is analogous to D66128 but for AADereferenceable. We have the logic
concentrated in the floating value updateImpl and we use the combiner
helper classes for arguments and return values.
The regressions will go away with "on-demand" attribute creation.
Improvements are already visible in the existing tests.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66272
llvm-svn: 369329
Summary:
What D66126 did for AAAlign, this patch does for AANonNull. Agian, the
logic becomes more concise and localized. Again, returned poiners are
not annotated properly but that will not be an issue if this lands with
the "on-demand" generation of attributes. First improvements due to the
genericValueTraversal are already visible.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66128
llvm-svn: 369328
The clamp operator should not take the known of the given state as the
known is potentially based on assumed information. This also adds TODOs
to guide improvements.
llvm-svn: 369327
We can avoid repetitive calls getSameOpcode() for already known tree elements by keeping MainOp and AltOp in TreeEntry.
Differential Revision: https://reviews.llvm.org/D64700
llvm-svn: 369315
Summary:
Simplify the API using Optional<> and address comments in
https://reviews.llvm.org/D66165
Reviewers: vitalybuka
Subscribers: hiraditya, llvm-commits, ostannard, pcc
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66317
llvm-svn: 369300
This reverts commit cedd0d9a6e.
Re-apply the original commit but make sure the variables are initialized
(even if they are not used) so UBSan is not complaining.
llvm-svn: 369294
Summary:
When inserting uses from outside the MemorySSA creation, we don't
normally need to rename uses, based on the assumption that there will be
no inserted Phis (if Def existed that required a Phi, that Phi already
exists). However, when dealing with unreachable blocks, MemorySSA will
optimize away Phis whose incoming blocks are unreachable, and these Phis end
up being re-added when inserting a Use.
There are two potential solutions here:
1. Analyze the inserted Phis and clean them up if they are unneeded
(current method for cleaning up trivial phis does not cover this)
2. Leave the Phi in place and rename uses, the same way as whe inserting
defs.
This patch use approach 2.
Resolves first test in PR42940.
Reviewers: george.burgess.iv
Subscribers: Prazek, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66033
llvm-svn: 369291
This patch applies only to the new pass manager.
Currently, when MSSA Analysis is available, and pass to each loop pass, it will be preserved by that loop pass.
Hence, mark the analysis preserved based on that condition, vs the current `EnableMSSALoopDependency`. This leaves the global flag to affect only the entry point in the loop pass manager (in FunctionToLoopPassAdaptor).
llvm-svn: 369181
This reverts commit 5dbb90bfe1.
As noted in the post-commit thread for r367891, this can create
a multiply that is lowered to a libcall that may not exist.
We need to improve the backend decomposition for integer multiply
before trying to re-land this (if it's still worthwhile after
doing the backend work).
llvm-svn: 369174
By partially resolving returned calls we did not record that they were
not fully resolved which caused odd behavior down the line. We could
also end up with some, but not all, returned values of the callee in the
returned values map of the caller, another odd behavior we want to
avoid.
llvm-svn: 369160
As a preparation to "on-demand" abstract attribute generation we need
implementations for all attributes (as they can be queried and then
created on-demand where we now fail to find one).
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66129
llvm-svn: 369155
Push LR register before calling __gnu_mcount_nc as it expects the value of LR register to be the top value of
the stack on ARM32.
Differential Revision: https://reviews.llvm.org/D65019
llvm-svn: 369147
Summary:
This is the first commit aiming to structure the attribute deduction.
The base idea is that we have default propagation patterns as listed
below on top of which we can add specific, e.g., context sensitive,
logic.
Deduction patterns used in this patch:
- argument states are determined from call site argument states,
see AAAlignArgument and AAArgumentFromCallSiteArguments.
- call site argument states are determined as if they were floating
values, see AAAlignCallSiteArgument and AAAlignFloating.
- floating value states are determined by traversing the def-use chain
and combining the states determined for the leaves, see
AAAlignFloating and genericValueTraversal.
- call site return states are determined from function return states,
see AAAlignCallSiteReturned and AACallSiteReturnedFromReturned.
- function return states are determined from returned value states,
see AAAlignReturned and AAReturnedFromReturnedValues.
Through this strategy all logic for alignment is concentrated in the
AAAlignFloating::updateImpl method.
Note: This commit works on its own but is part of a larger change that
involves "on-demand" creation of abstract attributes that will
participate in the fixpoint iteration. Without this part, we sometimes
do not have an AAAlign abstract attribute to query, loosing information
we determined before. All tests have appropriate FIXMEs and the
information will be recovered once we added all parts.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66126
llvm-svn: 369144
Until we have call site specific liveness and/or value information there
is no need to do call site specific deduction. Though, we need the
symbols in follow up patches that make Attributor::getAAFor return a
reference.
llvm-svn: 369143
Summary:
This patch should not change the behavior except that the added
initialize methods might indicate an optimistic fixpoint earlier. The
code movement is done to keep the attribute definitions in a single
block where it makes sense. No functional changes intended there.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66258
llvm-svn: 369142
This pattern may arise more frequently with an enhancement to SLP vectorization suggested in PR42755:
https://bugs.llvm.org/show_bug.cgi?id=42755
...but we should handle this pattern to make things easier for the backend either way.
For all in-tree targets that I looked at, codegen for typical vector sizes looks better when we change
to a vector select, so this is safe to do without a cost model (in other words, as a target-independent
canonicalization).
For example, if the condition of the select is a scalar, we end up with something like this on x86:
vpcmpgtd %xmm0, %xmm1, %xmm0
vpextrb $12, %xmm0, %eax
testb $1, %al
jne LBB0_2
## %bb.1:
vmovaps %xmm3, %xmm2
LBB0_2:
vmovaps %xmm2, %xmm0
Rather than the splat-condition variant:
vpcmpgtd %xmm0, %xmm1, %xmm0
vpshufd $255, %xmm0, %xmm0 ## xmm0 = xmm0[3,3,3,3]
vblendvps %xmm0, %xmm2, %xmm3, %xmm0
Differential Revision: https://reviews.llvm.org/D66095
llvm-svn: 369140
Summary:
The scheduler's dependence graph gets the use-def dependencies by accessing the operands of the instructions in a bundle. However, buildTree_rec() may change the order of the operands in TreeEntry, and the scheduler is currently not aware of this. This is not causing any functional issues currently, because reordering is restricted to the operands of a single instruction. Once we support operand reordering across multiple TreeEntries, as shown here: http://www.llvm.org/devmtg/2019-04/slides/Poster-Porpodas-Supernode_SLP.pdf , the scheduler will need to get the correct operands from TreeEntry and not from the individual instructions.
In short, this patch:
- Connects the scheduler's bundle with the corresponding TreeEntry. It introduces new TE and Lane fields in ScheduleData.
- Moves the location where the operands of the TreeEntry are initialized. This used to take place in newTreeEntry() setting one operand at a time, but is now moved pre-order just before the recursion of buildTree_rec(). This is required because the scheduler needs to access both operands of the TreeEntry in tryScheduleBundle().
- Updates the scheduler to access the instruction operands through the TreeEntry operands instead of accessing the instruction operands directly.
Reviewers: ABataev, RKSimon, dtemirbulatov, Ayal, dorit, hfinkel
Reviewed By: ABataev
Subscribers: hiraditya, llvm-commits, lebedev.ri, rcorcs
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62432
llvm-svn: 369131
Summary:
This is continuation of D63829 / https://bugs.llvm.org/show_bug.cgi?id=42399
I thought naive pattern would solve my issue, but nope, it involved truncation,
thus more folds needed.. This isn't really the fold i'm interested in,
i need trunc-of-lshr, but i'we decided to start with `shl` because it's simpler.
In this case, no extra legality checks are needed:
https://rise4fun.com/Alive/CAb
We should be careful about not increasing instruction count,
since we need to produce `zext` because `and` is done in wider type.
Reviewers: spatel, nikic, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66057
llvm-svn: 369117
cppcheck + MSVC analyzer both over zealously warn that we might dereference a null Bundle pointer - add an assertion to check for null to silence the warning, plus its a good idea to check that we succeeded in finding a schedule bundle anyway....
llvm-svn: 369094
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
assume_safety implies that loads under "if's" can be safely executed
speculatively (unguarded, unmasked). However this assumption holds only for the
original user "if's", not those introduced by the compiler, such as the
fold-tail "if" that guards us from loading beyond the original loop trip-count.
Currently the combination of fold-tail and assume-safety pragmas results in
ignoring the fold-tail predicate that guards the loads, generating unmasked
loads. This patch fixes this behavior.
Differential Revision: https://reviews.llvm.org/D66106
Reviewers: Ayal, hsaito, fhahn
llvm-svn: 368973
Summary:
Fixes https://bugs.llvm.org/show_bug.cgi?id=36578 and https://bugs.llvm.org/show_bug.cgi?id=36296.
Supersedes: https://reviews.llvm.org/D55966
One of the fundamental transformation that CoroSplit pass performs before splitting the coroutine is to find which values need to survive between suspend and resume and provide a slot for them in the coroutine frame to spill and restore the value as needed.
Coroutine frame becomes available once the storage for it was allocated and that point is marked in the pre-split coroutine with a llvm.coro.begin intrinsic.
FE normally puts all of the user-authored code that would be accessing those values after llvm.coro.begin, however, sometimes instructions accessing those values would end up prior to coro.begin. For example, writing out a value of the parameter into the alloca done by the FE or instructions that are added by the optimization passes such as SROA when it rewrites allocas.
Prior to this change, CoroSplit pass would try to move instructions that may end up accessing the values in the coroutine frame after CoroBegin. However it would run into problems (report_fatal_error) if some of the values would be used both in the allocation function (for example allocator is passed as a parameter to a coroutine) and in the use-authored body of the coroutine.
To handle this case and to simplify the instruction moving logic, this change removes all of the instruction moving. Instead, we only change the uses of the spilled values that are dominated by coro.begin and leave other instructions intact.
Before:
```
%var = alloca i32
%1 = getelementptr .. %var; ; will move this one after coro.begin
%f = call i8* @llvm.coro.begin(
```
After:
```
%var = alloca i32
%1 = getelementptr .. %var; stays put
%f = call i8* @llvm.coro.begin(
```
If we discover that there is a potential write into an alloca, prior to coro.begin we would copy its value from the alloca into the spill slot in the coroutine frame.
Before:
```
%var = alloca i32
store .. %var ; will move this one after coro.begin
%f = call i8* @llvm.coro.begin(
```
After:
```
%var = alloca i32
store .. %var ;stays put
%f = call i8* @llvm.coro.begin(
%tmp = load %var
store %tmp, %spill.slot.for.var
```
Note: This change does not handle array allocas as that is something that C++ FE does not produce, but, it can be added in the future if need arises
Reviewers: llvm-commits, modocache, ben-clayton, tks2103, rjmccall
Reviewed By: modocache
Subscribers: bartdesmet
Differential Revision: https://reviews.llvm.org/D66230
llvm-svn: 368949
Summary:
Instead of constantly keeping track of the nonnull status with the
dereferenceable information we can simply query the nonnull attribute
whenever we need the information (debug + manifest).
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66113
llvm-svn: 368924
Summary:
As one of the first attributes, and one of the complex ones,
AAReturnedValues was not using liveness but we filtered the result after
the fact. This change adds liveness usage during the creation. The
algorithm is also improved and shorter.
The new algorithm will collect returned values over time using the
generic facilities that work with liveness already, e.g.,
genericValueTraversal which does not look at dead PHI node predecessors.
A test to show how this leads to better results is included.
Note: Unresolved calls and resolved calls are now tracked explicitly.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66120
llvm-svn: 368922
Summary:
If the associated context instruction is assumed dead we do not need to
update or manifest the state.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66116
llvm-svn: 368921
Summary:
The next attempt to clean up the Attributor interface before we grow it
further.
Before, we used a combination of two values (associated + anchor) and an
argument number (or -1) to determine a location. This was very fragile.
The new system uses exclusively IR positions and we restrict the
generation of IR positions to special constructor methods that verify
internal constraints we have. This will catch misuse early.
The auto-conversion, e.g., in getAAFor, is now performed through the
SubsumingPositionIterator. This iterator takes an IR position and allows
to visit all IR positions that "subsume" the given one, e.g., function
attributes "subsume" argument attributes of that function. For a
detailed breakdown see the class comment of SubsumingPositionIterator.
This patch also introduces the IRPosition::getAttrs() to extract IR
attributes at a certain position. The method knows how to look up in
different positions that are equivalent, e.g., the argument position for
call site arguments. We also introduce three new positions kinds such
that we have all IR positions where attributes can be placed and one for
"floating" values.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65977
llvm-svn: 368919
We already supported rewriting loop exit values for multiple exit loops, but if any of the loop exits were not computable, we gave up on all loop exit values. This patch generalizes the existing code to handle individual computable loop exits where possible.
As discussed in the review, this is a starting point for figuring out a better API. The code is a bit ugly, but getting it in lets us test as we go.
Differential Revision: https://reviews.llvm.org/D65544
llvm-svn: 368898
I'm planning on handling intrinsics that will benefit from checking
the address space enums. Don't bother moving the address collection
for now, since those won't need th enums.
llvm-svn: 368895
Summary:
We can't speculate around indirect branches: indirectbr and invoke. The
callbr instruction needs to be included here.
Reviewers: nickdesaulniers, manojgupta, chandlerc
Reviewed By: chandlerc
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66200
llvm-svn: 368873
This is the compiler-flag equivalent of the Predicate pragma
(https://reviews.llvm.org/D65197), to direct the vectorizer to fold the
remainder-loop into the main-loop using predication.
Differential Revision: https://reviews.llvm.org/D66108
Reviewers: Ayal, hsaito, fhahn, SjoerdMeije
llvm-svn: 368801
The support for swifterror allocas should work in all lowerings.
The support for swifterror arguments only really works in a lowering
with prototypes where you can ensure that the prototype also has a
swifterror argument; I'm not really sure how it could possibly be
made to work in the switch lowering.
llvm-svn: 368795
A quick contrast of this ABI with the currently-implemented ABI:
- Allocation is implicitly managed by the lowering passes, which is fine
for frontends that are fine with assuming that allocation cannot fail.
This assumption is necessary to implement dynamic allocas anyway.
- The lowering attempts to fit the coroutine frame into an opaque,
statically-sized buffer before falling back on allocation; the same
buffer must be provided to every resume point. A buffer must be at
least pointer-sized.
- The resume and destroy functions have been combined; the continuation
function takes a parameter indicating whether it has succeeded.
- Conversely, every suspend point begins its own continuation function.
- The continuation function pointer is directly returned to the caller
instead of being stored in the frame. The continuation can therefore
directly destroy the frame when exiting the coroutine instead of having
to leave it in a defunct state.
- Other values can be returned directly to the caller instead of going
through a promise allocation. The frontend provides a "prototype"
function declaration from which the type, calling convention, and
attributes of the continuation functions are taken.
- On the caller side, the frontend can generate natural IR that directly
uses the continuation functions as long as it prevents IPO with the
coroutine until lowering has happened. In combination with the point
above, the frontend is almost totally in charge of the ABI of the
coroutine.
- Unique-yield coroutines are given some special treatment.
llvm-svn: 368788
Summary:
Given a pattern like:
```
%old_cmp1 = icmp slt i32 %x, C2
%old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
%old_x_offseted = add i32 %x, C1
%old_cmp0 = icmp ult i32 %old_x_offseted, C0
%r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
```
it can be rewritten as more canonical pattern:
```
%new_cmp1 = icmp slt i32 %x, -C1
%new_cmp2 = icmp sge i32 %x, C0-C1
%new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
%r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
```
Iff `-C1 s<= C2 s<= C0-C1`
Also, `ULT` predicate can also be `UGE`; or `UGT` iff `C0 != -1` (+invert result)
Also, `SLT` predicate can also be `SGE`; or `SGT` iff `C2 != INT_MAX` (+invert result)
If `C1 == 0`, then all 3 instructions must be one-use; else at most either `%old_cmp1` or `%old_x_offseted` can have extra uses.
NOTE: if we could reuse `%old_cmp1` as one of the comparisons we'll have to build, this could be less limiting.
So there are two icmp's, each one with 3 predicate variants, so there are 9 fold variants:
| | ULT | UGE | UGT |
| SLT | https://rise4fun.com/Alive/yIJ | https://rise4fun.com/Alive/5BfN | https://rise4fun.com/Alive/INH |
| SGE | https://rise4fun.com/Alive/hd8 | https://rise4fun.com/Alive/Abk | https://rise4fun.com/Alive/PlzS |
| SGT | https://rise4fun.com/Alive/VYG | https://rise4fun.com/Alive/oMY | https://rise4fun.com/Alive/KrzC |
{F9730206}
This fold was brought up in https://reviews.llvm.org/D65148#1603922 by @dmgreen, and is needed to unblock that patch.
This patch requires D65530.
Reviewers: spatel, nikic, xbolva00, dmgreen
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits, dmgreen
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65765
llvm-svn: 368687
Summary:
This is rather unconventional..
As the comment there says, we don't have much folds for xor-of-icmps,
we try to turn them into an and-of-icmps, for which we have plenty of folds.
But if the ICmp we need to invert is not single-use - we give up.
As discussed in https://reviews.llvm.org/D65148#1603922,
we may have a non-canonical CLAMP pattern, with bit match and
select-of-threshold that we'll potentially clamp.
As it can be seen in `canonicalize-clamp-with-select-of-constant-threshold-pattern.ll`,
out of all 8 variations of the pattern, only two are **not** canonicalized into
the variant with and+icmp instead of bit math.
The reason is because the ICmp we need to invert is not single-use - we give up.
We indeed can't perform this fold at will, the general rule is that
we should not increase instruction count in InstCombine,
But we wouldn't end up increasing instruction count if we can adapt every other
user to the inverted value. This way the `not` we create **will** get folded,
and in the end the instruction count did not increase.
For that, of course, we need to look at the users of a Value,
which is again rather unconventional for InstCombine :S
Thus i'm proposing to be a little bit more insistive in `foldXorOfICmps()`.
The alternatives would be to not create that `not`, but add duplicate code to
manually invert all users; or to add some even less general combine to handle
some more specific pattern[s].
Reviewers: spatel, nikic, RKSimon, craig.topper
Reviewed By: spatel
Subscribers: hiraditya, jdoerfert, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65530
llvm-svn: 368685
Summary:
This commit fixed a race condition from multi-threaded thinLTO backends that causes non-deterministic memory corruption for a data structure used only by AutoFDO with compact binary profile.
GUIDToFuncNameMap, a static data member of type DenseMap in FunctionSamples is used as a per-module mapping from function name MD5 to name string when input AutoFDO profile is in compact binary format. However with ThinLTO, we can have parallel backends modifying and accessing the class static map concurrently. The fix is to make GUIDToFuncNameMap a member of SampleProfileLoader instead of a file static data.
Reviewers: wmi, davidxl, danielcdh
Subscribers: mehdi_amini, inglorion, hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65848
llvm-svn: 368596
Instead of matching value and then blindly casting to BinaryOperator
just to get the opcode, just match instruction and do no cast.
Fixes https://bugs.llvm.org/show_bug.cgi?id=42962
llvm-svn: 368554
Summary:
Hoisting/sinking instruction out of a loop isn't always beneficial. Hoisting an instruction from a cold block inside a loop body out of the loop could hurt performance. This change makes Loop ICM profile aware - it now checks block frequency to make sure hoisting/sinking anly moves instruction to colder block.
Test Plan:
ninja check
Reviewers: asbirlea, sanjoy, reames, nikic, hfinkel, vsk
Reviewed By: asbirlea
Subscribers: fhahn, vsk, davidxl, xbolva00, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65060
llvm-svn: 368526
If one of the values being shifted is a constant, since the new shift
amount is known-constant, the new shift will end up being constant-folded
so, we don't need that one-use restriction then.
llvm-svn: 368519
That one-use restriction is not needed for correctness - we have already
ensured that one of the shifts will go away, so we know we won't increase
the instruction count. So there is no need for that restriction.
llvm-svn: 368518
This is an extension of a transform that tries to produce positive floating-point
constants to improve canonicalization (and hopefully lead to more reassociation
and CSE).
The original patches were:
D4904
D5363 (rL221721)
But as the test diffs show, these were limited to basic patterns by walking from
an instruction to its single user rather than recursively moving up the def-use
sequence. No fast-math is required here because we're only rearranging implicit
FP negations in intermediate ops.
A motivating bug is:
https://bugs.llvm.org/show_bug.cgi?id=32939
Differential Revision: https://reviews.llvm.org/D65954
llvm-svn: 368512
The default behavior of Clang's indirect function call checker will replace
the address of each CFI-checked function in the output file's symbol table
with the address of a jump table entry which will pass CFI checks. We refer
to this as making the jump table `canonical`. This property allows code that
was not compiled with ``-fsanitize=cfi-icall`` to take a CFI-valid address
of a function, but it comes with a couple of caveats that are especially
relevant for users of cross-DSO CFI:
- There is a performance and code size overhead associated with each
exported function, because each such function must have an associated
jump table entry, which must be emitted even in the common case where the
function is never address-taken anywhere in the program, and must be used
even for direct calls between DSOs, in addition to the PLT overhead.
- There is no good way to take a CFI-valid address of a function written in
assembly or a language not supported by Clang. The reason is that the code
generator would need to insert a jump table in order to form a CFI-valid
address for assembly functions, but there is no way in general for the
code generator to determine the language of the function. This may be
possible with LTO in the intra-DSO case, but in the cross-DSO case the only
information available is the function declaration. One possible solution
is to add a C wrapper for each assembly function, but these wrappers can
present a significant maintenance burden for heavy users of assembly in
addition to adding runtime overhead.
For these reasons, we provide the option of making the jump table non-canonical
with the flag ``-fno-sanitize-cfi-canonical-jump-tables``. When the jump
table is made non-canonical, symbol table entries point directly to the
function body. Any instances of a function's address being taken in C will
be replaced with a jump table address.
This scheme does have its own caveats, however. It does end up breaking
function address equality more aggressively than the default behavior,
especially in cross-DSO mode which normally preserves function address
equality entirely.
Furthermore, it is occasionally necessary for code not compiled with
``-fsanitize=cfi-icall`` to take a function address that is valid
for CFI. For example, this is necessary when a function's address
is taken by assembly code and then called by CFI-checking C code. The
``__attribute__((cfi_jump_table_canonical))`` attribute may be used to make
the jump table entry of a specific function canonical so that the external
code will end up taking a address for the function that will pass CFI checks.
Fixes PR41972.
Differential Revision: https://reviews.llvm.org/D65629
llvm-svn: 368495
Refactor `LibCallSimplifier::optimizeExp2()` to use the new
`emitBinaryFloatFnCall()` version that fetches the function name from TLI.
llvm-svn: 368457
Summary:
Make sure that we report that changes has been made
by InstSimplify also in situations when only trivially
dead instructions has been removed. If for example a call
is removed the call graph must be updated.
Bug seem to have been introduced by llvm-svn r367173
(commit 02b9e45a7e), since the code in question
was rewritten in that commit.
Reviewers: spatel, chandlerc, foad
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65973
llvm-svn: 368401
GlobalAlias and GlobalIFunc ought to be treated the same by the IR
linker, so we can generalize the code to be in terms of their common
base class GlobalIndirectSymbol.
Differential Revision: https://reviews.llvm.org/D55046
llvm-svn: 368357
For some targets the LICM pass can result in sub-optimal code in some
cases where it would be better not to run the pass, but it isn't
always possible to suppress the transformations heuristically.
Where the front-end has insight into such cases it is beneficial
to attach loop metadata to disable the pass - this change adds the
llvm.licm.disable metadata to enable that.
Differential Revision: https://reviews.llvm.org/D64557
llvm-svn: 368296
Summary:
The ever growing switch required Attribute::AttrKind values but they
might not be available for all abstract attributes we deduce. With the
new method we track statistics at the abstract attribute level. The
provided macros simplify the usage and make the messages uniform.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65732
llvm-svn: 368227
Summary:
The wrapper reduces boilerplate code and also provide a nice way to
determine the state type used by an abstract attributes statically via
AAType::StateType.
This was already discussed as part of the review of D65711.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65786
llvm-svn: 368224
If we know everything is live there is no need to query for liveness.
Indicating a pessimistic fixpoint will cause the state to be "invalid"
which will cause the Attributor to not return the AAIsDead on request,
which will prevent us from querying isAssumedDead().
llvm-svn: 368223
Summary:
So far, whenever one wants to look at returned values, one had to deal
with the AAReturnedValues and potentially with the AAIsDead attribute.
In the same spirit as other checkForAllXXX methods, we add this
functionality now to the Attributor. By adopting the use sites we got
better results when return instructions were dead.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65733
llvm-svn: 368222
If we know the trip count, we should make sure the interleave factor won't cause the vectorized loop to exceed it.
Improves one of the cases from PR42674
Differential Revision: https://reviews.llvm.org/D65896
llvm-svn: 368215
Summary:
In SimplifySelectsFeedingBinaryOp, propagate fast math flags from the
outer op into both arms of the new select, to take advantage of
simplifications that require fast math flags.
Reviewers: mcberg2017, majnemer, spatel, arsenm, xbolva00
Subscribers: wdng, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65658
llvm-svn: 368175
This was initially committed in r368059 but got reverted in r368084
because there was a faulty logic in how the shift amounts type mismatch
was being handled (it simply wasn't).
I've added an explicit bailout before we SimplifyAddInst() - i don't think
it's designed in general to handle differently-typed values, even though
the actual problem only comes from ConstantExpr's.
I have also changed the common type deduction, to not just blindly
look past zext, but try to do that so that in the end types match.
Differential Revision: https://reviews.llvm.org/D65380
llvm-svn: 368141
Globals are instrumented by adding a pointer tag to their symbol values
and emitting metadata into a special section that allows the runtime to tag
their memory when the library is loaded.
Due to order of initialization issues explained in more detail in the comments,
shadow initialization cannot happen during regular global initialization.
Instead, the location of the global section is marked using an ELF note,
and we require libc support for calling a function provided by the HWASAN
runtime when libraries are loaded and unloaded.
Based on ideas discussed with @evgeny777 in D56672.
Differential Revision: https://reviews.llvm.org/D65770
llvm-svn: 368102
Summary:
This change gives Emscripten the ability to use more than one constructor
priorities that runs before ASan. By convention, constructor priorites 0-100
are reserved for use by the system. ASan on Emscripten now uses priority 50,
leaving plenty of room for use by Emscripten before and after ASan.
This change is done in response to:
https://github.com/emscripten-core/emscripten/pull/9076#discussion_r310323723
Reviewers: kripken, tlively, aheejin
Reviewed By: tlively
Subscribers: cfe-commits, dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D65684
llvm-svn: 368101
This reverts r368059 (git commit 0f95710976)
This caused Clang to assert while self-hosting and compiling
SystemZInstrInfo.cpp. Reduction is running.
llvm-svn: 368084
Commit r368064 was necessary after r367953 (D65712) broke the module
build. That happened, apparently, because the template class IRAttribute
defined in the header had a virtual method defined in the corresponding
source file (IRAttribute::manifest). To unbreak the situation this patch
introduces a helper function IRAttributeManifest::manifestAttrs which
is used to implement IRAttribute::manifest in the header. The deifnition
of the helper function is still in the source file.
Patch by jdoerfert (Johannes Doerfert)
Differential Revision: https://reviews.llvm.org/D65821
llvm-svn: 368076
Summary:
Currently `reassociateShiftAmtsOfTwoSameDirectionShifts()` only handles
two shifts one after another. If the shifts are `shl`, we still can
easily perform the fold, with no extra legality checks:
https://rise4fun.com/Alive/OQbM
If we have right-shift however, we won't be able to make it
any simpler than it already is.
After this the only thing missing here is constant-folding: (`NewShAmt >= bitwidth(X)`)
* If it's a logical shift, then constant-fold to `0` (not `undef`)
* If it's a `ashr`, then a splat of original signbit
https://rise4fun.com/Alive/E1Khttps://rise4fun.com/Alive/i0V
Reviewers: spatel, nikic, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65380
llvm-svn: 368059
D62198 introduced an option to relax the checks for
hasOnlyUniformBranches. This commit turns the option on by default, for
better code generation in some cases in AMDGPU.
Differential Revision: https://reviews.llvm.org/D63198
Change-Id: I9cbff002a1e74d3b7eb96b4192dc8129936d537d
llvm-svn: 368042
Summary:
Similar to `Attributor::checkForAllCallSites`, we now provide such
functionality for instructions of a certain opcode through
`Attributor::checkForAllInstructions` and the convenient wrapper
`Attributor::checkForAllCallLikeInstructions`. This cleans up code,
avoids duplication, and simplifies the usage of liveness information.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65731
llvm-svn: 367961
Summary:
Certain properties, e.g., an AttrKind, are not shared among all abstract
attributes. This patch extracts the functionality into a helper struct.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65712
llvm-svn: 367953
To remove boilerplate, mostly passing through values to the
AbstractAttriubute base class, we extract the state into an IRPosition
helper. There is no function change intended but the IRPosition struct
will provide more functionality down the line.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65711
llvm-svn: 367952
Summary:
The new scheme is similar to the pass manager and dyn_cast scheme where
we identify classes by the address of a static member. This is better
than the old scheme in which we had to "invent" new Attributor enums if
there was no corresponding one.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65710
llvm-svn: 367951
Summary:
Instead of storing the reference to the InformationCache we now pass it
whenever it might be needed.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65709
llvm-svn: 367950
A function is "no-return" if we never reach a return instruction, either
because there are none or the ones that exist are dead.
Test have been adjusted:
- either noreturn was added, or
- noreturn was avoided by modifying the code.
The new noreturn_{sync,async} test make sure we do handle invoke
instructions with a noreturn (and potentially nowunwind) callee
correctly, even in the presence of potential asynchronous exceptions.
llvm-svn: 367948
When we remove instructions cached references could still be live. This
patch avoids removing invoke instructions that are replaced by calls and
instead keeps them around but in a dead block.
llvm-svn: 367933
Similar to other places where we transform invokes to calls we need to
be careful if the handler (=personality) can catch asynchronous
exceptions as they are not modeled as part of nounwind.
This is tested with D59978.
llvm-svn: 367931
This appears to slightly help patterns similar to what's
shown in PR42874:
https://bugs.llvm.org/show_bug.cgi?id=42874
...but not in the way requested.
That fix will require some later IR and/or backend pass to
decompose multiply/shifts into something more optimal per
target. Those transforms already exist in some basic forms,
but probably need enhancing to catch more cases.
https://rise4fun.com/Alive/Qzv2
llvm-svn: 367891
Summary:
This contains various fixes:
- Explicitly determine and return the next noreturn instruction.
- If an invoke calls a noreturn function which is not nounwind we
keep the unwind destination live. This also means we require an
invoke. Though we can still add the unreachable to the normal
destination block.
- Check if the return instructions are dead after we look for calls
to avoid triggering an optimistic fixpoint in the presence of
assumed liveness information.
- Make the interface work with "const" pointers.
- Some simplifications
While additional tests are included, full coverage is achieved only with
D59978.
Reviewers: sstefan1, uenoku
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65701
llvm-svn: 367791
When a fixpoint is indicated the change status is known due to the
fixpoint kind. This simplifies a common code pattern by making the
connection explicit.
llvm-svn: 367790
Summary:
If the DerefBytesState (and thereby the DerefState) is invalid, we
reached a fixpoint for the whole DerefState as we will not
manifest/provide information then.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65586
llvm-svn: 367789
Currently, when a GVN or CSE optimization happens,
the llvm.preserve.access.index metadata is dropped.
This caused a problem for BPF AbstructMemberOffset phase
as it relies on the metadata (debuginfo types).
This patch added proper hooks in lib/Transforms to
preserve !preserve.access.index metadata. A test
case is added to ensure metadata is preserved under CSE.
Differential Revision: https://reviews.llvm.org/D65700
llvm-svn: 367769
Modifying other AbstractAttributes to use Liveness AA and skip dead instructions.
Reviewers: jdoerfert, uenoku
Subscribers: hiraditya, llvm-commits
Differential revision: https://reviews.llvm.org/D65243
llvm-svn: 367725
Summary:
Since the for loop iterates over BB's predecessors, the branch conditions found must have BB as one of the successors.
For an unconditional branch the successor must be BB, added `assert`.
For a conditional branch, one of the two successors must be BB, simplify `else if` to `else` and `assert`.
Sink common instructions outside the if/else block.
Reviewers: sanjoy.google
Subscribers: jlebar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65596
llvm-svn: 367699
As discussed in PR42696:
https://bugs.llvm.org/show_bug.cgi?id=42696
...but won't help that case yet.
We have an odd situation where a select operand equivalence fold was
implemented in InstSimplify when it could have been done more generally
in InstCombine if we allow dropping of {nsw,nuw,exact} from a binop operand.
Here's an example:
https://rise4fun.com/Alive/Xplr
%cmp = icmp eq i32 %x, 2147483647
%add = add nsw i32 %x, 1
%sel = select i1 %cmp, i32 -2147483648, i32 %add
=>
%sel = add i32 %x, 1
I've left the InstSimplify code in place for now, but my guess is that we'd
prefer to remove that as a follow-up to save on code duplication and
compile-time.
Differential Revision: https://reviews.llvm.org/D65576
llvm-svn: 367695
This patch adds support to the WholeProgramDevirt pass to perform
index-based WPD, which is invoked from ThinLTO during the thin link.
The ThinLTO backend (WPD import phase) behaves the same regardless of
whether the WPD decisions were made with the index-based or (the
existing) IR-based analysis.
Depends on D54815.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, arphaman, dang, llvm-commits
Differential Revision: https://reviews.llvm.org/D55153
llvm-svn: 367679
This patch adds an ability to disable profile based peeling
causing the peeling of all iterations and as a result prohibits
further unroll/peeling attempts on that loop.
The motivation to get an ability to separate peeling usage in
pipeline where in the first part we peel only separate iterations if needed
and later in pipeline we apply the full peeling which will prohibit further peeling.
Reviewers: reames, fhahn
Reviewed By: reames
Subscribers: hiraditya, zzheng, dmgreen, llvm-commits
Differential Revision: https://reviews.llvm.org/D64983
llvm-svn: 367668
Current peeling cost model can decide to peel off not all iterations
but only some of them to eliminate conditions on phi. At the same time
if any peeling happens the door for further unroll/peel optimizations on that
loop closes because the part of the code thinks that if peeling happened
it is profile based peeling and all iterations are peeled off.
To resolve this inconsistency the patch provides the flag which states whether
the full peeling basing on profile is enabled or not and peeling cost model
is able to modify this field like it does not PeelCount.
In a separate patch I will introduce an option to allow/disallow peeling basing
on profile.
To avoid infinite loop peeling the patch tracks the total number of peeled iteration
through llvm.loop.peeled.count loop metadata.
Reviewers: reames, fhahn
Reviewed By: reames
Subscribers: hiraditya, zzheng, dmgreen, llvm-commits
Differential Revision: https://reviews.llvm.org/D64972
llvm-svn: 367647
Added code to truncate or shrink offsets so that we can continue
base pointer search if size has changed along the way.
Differential Revision: https://reviews.llvm.org/D65612
llvm-svn: 367646
The previous change to fix crash in the vectorizer introduced
performance regressions. The condition to preserve pointer
address space during the search is too tight, we only need to
match the size.
Differential Revision: https://reviews.llvm.org/D65600
llvm-svn: 367624
Summary:
DominatorTree is invalid after SimplifyCFG because of a missed `Changed = true` when simplifying a branch condition and removing an edge.
Resolves PR42272.
Reviewers: zhizhouy, manojgupta
Subscribers: jlebar, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65490
llvm-svn: 367596
Summary:
LoopSimplify is preserved in the legacy pass manager, but not in the new pass manager.
Update LoopSimplify to preserve MemorySSA conditionally when the analysis is available (same behavior as the legacy pass manager).
Reviewers: chandlerc
Subscribers: mehdi_amini, jlebar, Prazek, george.burgess.iv, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65418
llvm-svn: 367594
This allows folding of the scalar epilogue loop (the tail) into the main
vectorised loop body when the loop is annotated with a "vector predicate"
metadata hint. To fold the tail, instructions need to be predicated (masked),
enabling/disabling lanes for the remainder iterations.
Differential Revision: https://reviews.llvm.org/D65197
llvm-svn: 367592
User of AAReturnedValues need to know if HasOverdefinedReturnedCalls
changed from false to true as it will impact the result of the return
value traversal (calls are not ignored anymore).
This will be tested with the tests in D59978.
llvm-svn: 367581
Summary:
While there is always a `Value::replaceAllUsesWith()`,
sometimes the replacement needs to be conditional.
I have only cleaned a few cases where `replaceUsesWithIf()`
could be used, to both add test coverage,
and show that it is actually useful.
Reviewers: jdoerfert, spatel, RKSimon, craig.topper
Reviewed By: jdoerfert
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, aheejin, george.burgess.iv, asbirlea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65528
llvm-svn: 367548
Summary:
Sometimes we need to swap true-val and false-val of a `SelectInst`.
Having a function for that is nicer than hand-writing it each time.
Reviewers: spatel, RKSimon, craig.topper, jdoerfert
Reviewed By: jdoerfert
Subscribers: jdoerfert, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65520
llvm-svn: 367547
This is a prepatory patch for future work on support exit value rewriting in loops with a mixture of computable and non-computable exit counts. The intention is to be "mostly NFC" - i.e. not enable any interesting new transforms - but in practice, there are some small output changes.
The test differences are caused by cases wherewhere getSCEVAtScope can simplify a single entry phi without needing any knowledge of the loop.
llvm-svn: 367485
Reverse the canonicalization of fneg relative to fmul/fdiv. That makes it
easier to implement the transforms (and possibly other fneg transforms) in
1 place because we can always start the pattern match from fneg (either the
legacy binop or the new unop).
There's a secondary practical benefit seen in PR21914 and PR42681:
https://bugs.llvm.org/show_bug.cgi?id=21914https://bugs.llvm.org/show_bug.cgi?id=42681
...hoisting fneg rather than sinking seems to play nicer with LICM in IR
(although this change may expose analysis holes in the other direction).
1. The instcombine test changes show the expected neutral IR diffs from
reversing the order.
2. The reassociation tests show that we were missing an optimization
opportunity to fold away fneg-of-fneg. My reading of IEEE-754 says
that all of these transforms are allowed (regardless of binop/unop
fneg version) because:
"For all other operations [besides copy/abs/negate/copysign], this
standard does not specify the sign bit of a NaN result."
In all of these transforms, we always have some other binop
(fadd/fsub/fmul/fdiv), so we are free to flip the sign bit of a
potential intermediate NaN operand.
(If that interpretation is wrong, then we must already have a bug in
the existing transforms?)
3. The clang tests shouldn't exist as-is, but that's effectively a
revert of rL367149 (the test broke with an extension of the
pre-existing fneg canonicalization in rL367146).
Differential Revision: https://reviews.llvm.org/D65399
llvm-svn: 367447
When vectorizer strips pointers it can eventually end up with
pointers of two different sizes, then SCEV will crash.
Differential Revision: https://reviews.llvm.org/D65480
llvm-svn: 367443
We have some code marks instructions with struct operands as overdefined,
but if the instruction is a call to a function with tracked arguments,
this breaks the assumption that the lattice values of all call sites
are not overdefined and will be replaced by a constant.
This also re-adds the assertion from D65222, with additionally skipping
non-callsite uses. This patch should address the cases reported in which
the assertion fired.
Fixes PR42738.
Reviewers: efriedma, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D65439
llvm-svn: 367430
Summary:
While `-div-rem-pairs` pass can decompose rem in div+rem pair when div-rem pair
is unsupported by target, nothing performs the opposite fold.
We can't do that in InstCombine or DAGCombine since neither of those has access to TTI.
So it makes most sense to teach `-div-rem-pairs` about it.
If we matched rem in expanded form, we know we will be able to place div-rem pair
next to each other so we won't regress the situation.
Also, we shouldn't decompose rem if we matched already-decomposed form.
This is surprisingly straight-forward otherwise.
The original patch was committed in rL367288 but was reverted in rL367289
because it exposed pre-existing RAUW issues in internal data structures
of the pass; those now have been addressed in a previous patch.
https://bugs.llvm.org/show_bug.cgi?id=42673
Reviewers: spatel, RKSimon, efriedma, ZaMaZaN4iK, bogner
Reviewed By: bogner
Subscribers: bogner, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65298
llvm-svn: 367419
Summary:
`DivRemPairs` internally creates two maps:
* {sign, divident, divisor} -> div instruction
* {sign, divident, divisor} -> rem instruction
Then it iterates over rem map, and looks if there is an entry
in div map with the same key. Then depending on some internal logic
it may RAUW rem instruction with something else.
But if that rem instruction is an input to other div/rem,
then it was used as a key in these maps, so the old value (used in key)
is now dandling, because RAUW didn't update those maps.
And we can't even RAUW map keys in general, there's `ValueMap`,
but we don't have a single `Value` as key...
The bug was discovered via D65298, and the test there exists.
Now, i'm not sure how to expose this issue in trunk.
The bug is clearly there if i change the map keys to be `AssertingVH`/`PoisoningVH`,
but i guess this didn't miscompiled anything thus far?
I really don't think this is benin without that patch.
The fix is actually rather straight-forward - instead of trying to somehow
shoe-horn `ValueMap` here (doesn't fit, key isn't just `Value`), or writing a new
`ValueMap` with key being a struct of `Value`s, we can just have an intermediate
data structure - a vector, each entry containing matching `Div, Rem` pair,
and pre-filling it before doing any modifications.
This way we won't need to query map after doing RAUW, so no bug is possible.
Reviewers: spatel, bogner, RKSimon, craig.topper
Reviewed By: spatel
Subscribers: hiraditya, hans, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65451
llvm-svn: 367417
LoopInfo can be easily preserved by passing it to the functions that
modify the CFG (SplitCriticalEdge and MergeBlockIntoPredecessor.
SplitCriticalEdge also preserves LoopSimplify and LCSSA form when when passing in
LoopInfo. The test case shows that we preserve LoopSimplify and
LoopInfo. Adding addPreservedID(LCSSAID) did not preserve LCSSA for some
reason.
Also I am not sure if it is possible to preserve those in the new pass
manager, as they aren't analysis passes.
Reviewers: reames, hfinkel, davide, jdoerfert
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D65137
llvm-svn: 367332
Summary:
This patch extends the use of the OptimizationRemarkEmitter to provide
information about loops that are not fused, and loops that are not eligible for
fusion. In particular, it uses the OptimizationRemarkAnalysis to identify loops
that are not eligible for fusion and the OptimizationRemarkMissed to identify
loops that cannot be fused.
It also reuses the statistics to provide the messages used in the
OptimizationRemarks. This provides common message strings between the
optimization remarks and the statistics.
I would like feedback on this approach, in general. If people are OK with this,
I will flesh out additional remarks in subsequent commits.
Subscribers: hiraditya, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63844
llvm-svn: 367327
Summary:
I have stumbled into this by accident while preparing to extend backend `x s% C ==/!= 0` handling.
While we did happen to handle this fold in most of the cases,
the folding is indirect - we fold `x u% y` to `x & (y-1)` (iff `y` is power-of-two),
or first turn `x s% -y` to `x u% y`; that does handle most of the cases.
But we can't turn `x s% INT_MIN` to `x u% -INT_MIN`,
and thus we end up being stuck with `(x s% INT_MIN) == 0`.
There is no such restriction for the more general fold:
https://rise4fun.com/Alive/IIeS
To be noted, the fold does not enforce that `y` is a constant,
so it may indeed increase instruction count.
This is consistent with what `x u% y`->`x & (y-1)` already does.
I think it makes sense, it's at most one (simple) extra instruction,
while `rem`ainder is really much more un-simple (and likely **very** costly).
Reviewers: spatel, RKSimon, nikic, xbolva00, craig.topper
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65046
llvm-svn: 367322
test-suite/MultiSource/Benchmarks/DOE-ProxyApps-C/miniGMG broke:
Only PHI nodes may reference their own value!
%sub33 = srem i32 %sub33, %ranks_in_i
This reverts commit r367288.
llvm-svn: 367289
Summary:
While `-div-rem-pairs` pass can decompose rem in div+rem pair when div-rem pair
is unsupported by target, nothing performs the opposite fold.
We can't do that in InstCombine or DAGCombine since neither of those has access to TTI.
So it makes most sense to teach `-div-rem-pairs` about it.
If we matched rem in expanded form, we know we will be able to place div-rem pair
next to each other so we won't regress the situation.
Also, we shouldn't decompose rem if we matched already-decomposed form.
This is surprisingly straight-forward otherwise.
https://bugs.llvm.org/show_bug.cgi?id=42673
Reviewers: spatel, RKSimon, efriedma, ZaMaZaN4iK, bogner
Reviewed By: bogner
Subscribers: bogner, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65298
llvm-svn: 367288
Globals that are associated with globals with type metadata need to appear
in the merged module because they will reference the global's section directly.
Differential Revision: https://reviews.llvm.org/D65312
llvm-svn: 367242
The backend already does this via isNegatibleForFree(),
but we may want to alter the fneg IR canonicalizations
that currently exist, so we need to try harder to fold
fneg in IR to avoid regressions.
llvm-svn: 367227
The backend already does this via isNegatibleForFree(),
but we may want to alter the fneg IR canonicalizations
that currently exist, so we need to try harder to fold
fneg in IR to avoid regressions.
llvm-svn: 367194
The test case from:
https://bugs.llvm.org/show_bug.cgi?id=42771
...shows a ~30x slowdown caused by the awkward loop iteration (rL207302) that is
seemingly done just to avoid invalidating the instruction iterator. We can instead
delay instruction deletion until we reach the end of the block (or we could delay
until we reach the end of all blocks).
There's a test diff here for a degenerate case with llvm.assume that is not
meaningful in itself, but serves to verify this change in logic.
This change probably doesn't result in much overall compile-time improvement
because we call '-instsimplify' as a standalone pass only once in the standard
-O2 opt pipeline currently.
Differential Revision: https://reviews.llvm.org/D65336
llvm-svn: 367173
unreachable loop.
updatePredecessorProfileMetadata in jumpthreading tries to find the
first dominating predecessor block for a PHI value by searching upwards
the predecessor block chain.
But jumpthreading may see some temporary IR state which contains
unreachable bb not being cleaned up. If an unreachable loop happens to
be on the predecessor block chain, keeping chasing the predecessor
block will run into an infinite loop.
The patch fixes it.
Differential Revision: https://reviews.llvm.org/D65310
llvm-svn: 367154
(Y * (1.0 - Z)) + (X * Z) -->
Y - (Y * Z) + (X * Z) -->
Y + Z * (X - Y)
This is part of solving:
https://bugs.llvm.org/show_bug.cgi?id=42716
Factoring eliminates an instruction, so that should be a good canonicalization.
The potential conversion to FMA would be handled by the backend based on target
capabilities.
Differential Revision: https://reviews.llvm.org/D65305
llvm-svn: 367101
To avoid duplicates in loop metadata, if the string to add is
already there, just update the value.
Reviewers: reames, Ashutosh
Reviewed By: reames
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D65265
llvm-svn: 367087
Just move the utility function to LoopUtils.cpp to re-use it in loop peeling.
Reviewers: reames, Ashutosh
Reviewed By: reames
Subscribers: hiraditya, asbirlea, llvm-commits
Differential Revision: https://reviews.llvm.org/D65264
llvm-svn: 367085
changes were made to the patch since then.
--------
[NewPM] Port Sancov
This patch contains a port of SanitizerCoverage to the new pass manager. This one's a bit hefty.
Changes:
- Split SanitizerCoverageModule into 2 SanitizerCoverage for passing over
functions and ModuleSanitizerCoverage for passing over modules.
- ModuleSanitizerCoverage exists for adding 2 module level calls to initialization
functions but only if there's a function that was instrumented by sancov.
- Added legacy and new PM wrapper classes that own instances of the 2 new classes.
- Update llvm tests and add clang tests.
llvm-svn: 367053
Currently there are a few pointer comparisons in ValueDFS_Compare, which
can cause non-deterministic ordering when materializing values. There
are 2 cases this patch fixes:
1. Order defs before uses used to compare pointers, which guarantees
defs before uses, but causes non-deterministic ordering between 2
uses or 2 defs, depending on the allocation order. By converting the
pointers to booleans, we can circumvent that problem.
2. comparePHIRelated was comparing the basic block pointers of edges,
which also results in a non-deterministic order and is also not
really meaningful for ordering. By ordering by their destination DFS
numbers we guarantee a deterministic order.
For the example below, we can end up with 2 different uselist orderings,
when running `opt -mem2reg -ipsccp` hundreds of times. Because the
non-determinism is caused by allocation ordering, we cannot reproduce it
with ipsccp alone.
declare i32 @hoge() local_unnamed_addr #0
define dso_local i32 @ham(i8* %arg, i8* %arg1) #0 {
bb:
%tmp = alloca i32
%tmp2 = alloca i32, align 4
br label %bb19
bb4: ; preds = %bb20
br label %bb6
bb6: ; preds = %bb4
%tmp7 = call i32 @hoge()
store i32 %tmp7, i32* %tmp
%tmp8 = load i32, i32* %tmp
%tmp9 = icmp eq i32 %tmp8, 912730082
%tmp10 = load i32, i32* %tmp
br i1 %tmp9, label %bb11, label %bb16
bb11: ; preds = %bb6
unreachable
bb13: ; preds = %bb20
br label %bb14
bb14: ; preds = %bb13
%tmp15 = load i32, i32* %tmp
br label %bb16
bb16: ; preds = %bb14, %bb6
%tmp17 = phi i32 [ %tmp10, %bb6 ], [ 0, %bb14 ]
br label %bb19
bb18: ; preds = %bb20
unreachable
bb19: ; preds = %bb16, %bb
br label %bb20
bb20: ; preds = %bb19
indirectbr i8* null, [label %bb4, label %bb13, label %bb18]
}
Reviewers: davide, efriedma
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D64866
llvm-svn: 367049
We'd like to determine the idom of exit block after peeling one iteration.
Let Exit is exit block.
Let ExitingSet - is a set of predecessors of Exit block. They are exiting blocks.
Let Latch' and ExitingSet' are copies after a peeling.
We'd like to find an idom'(Exit) - idom of Exit after peeling.
It is an evident that idom'(Exit) will be the nearest common dominator of ExitingSet and ExitingSet'.
idom(Exit) is a nearest common dominator of ExitingSet.
idom(Exit)' is a nearest common dominator of ExitingSet'.
Taking into account that we have a single Latch, Latch' will dominate Header and idom(Exit).
So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'.
All these basic blocks are in the same loop, so what we find is
(nearest common dominator of idom(Exit) and Latch)'.
Reviewers: reames, fhahn
Reviewed By: reames
Subscribers: hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D65292
llvm-svn: 367044
Later code in TryToSimplifyUncondBranchFromEmptyBlock() assumes that
we have cleaned up unreachable blocks, but that was not happening
with this switch transform.
llvm-svn: 367037
This reverts commit bc4a63fd3c, this is a
speculative revert to fix a number of sanitizer bots (like
sanitizer-x86_64-linux-bootstrap-ubsan) that have started to see stage2
compiler crashes, presumably due to a miscompile.
llvm-svn: 367029
We do not need the SmallPtrSet to avoid adding duplicates to
OpsToRename, because we already keep a ValueInfo mapping. If we see an
op for the first time, Infos will be empty and we can also add it to
OpsToRename.
We process operands by visiting BBs depth-first and then iterate over
all instructions & users, so the order should be deterministic.
Therefore we can skip one round of sorting, which we purely needed for
guaranteeing a deterministic order when iterating over the SmallPtrSet.
Reviewers: efriedma, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D64816
llvm-svn: 367028
trunc (load X) --> load (bitcast X to narrow type)
We have this transform in DAGCombiner::ReduceLoadWidth(), but the truncated
load pattern can interfere with other instcombine transforms, so I'd like to
allow the fold sooner.
Example:
https://bugs.llvm.org/show_bug.cgi?id=16739
...in that report, we have bitcasts bracketing these ops, so those could get
eliminated too.
We've generally ruled out widening of loads early in IR ( LoadCombine -
http://lists.llvm.org/pipermail/llvm-dev/2016-September/105291.html ), but
that reasoning may not apply to narrowing if we can preserve information
such as the dereferenceable range.
Differential Revision: https://reviews.llvm.org/D64432
llvm-svn: 367011
We should only zap returns in functions, where all live users have a
replace-able value (are not overdefined). Unused return values should be
undefined.
This should make it easier to detect bugs like in PR42738.
Alternatively we could bail out of zapping the function returns, but I
think it would be better to address those divergences between function
and call-site values where they are actually caused.
Reviewers: davide, efriedma
Reviewed By: davide, efriedma
Differential Revision: https://reviews.llvm.org/D65222
llvm-svn: 366998
This refactors boolean 'OptForSize' that was passed around in a lot of places.
It controlled folding of the tail loop, the scalar epilogue, into the main loop
but code-size reasons may not be the only reason to do this. Thus, this is a
first step to generalise the concept of tail-loop folding, and hence OptForSize
has been renamed and is using an enum ScalarEpilogueStatus that holds the
status how the epilogue should be lowered.
This will be followed up by D65197, that picks up the predicate loop hint and
performs the tail-loop folding.
Differential Revision: https://reviews.llvm.org/D64916
llvm-svn: 366993
We can treat icmp eq X, MIN_UINT as icmp ule X, MIN_UINT and allow
it to merge with icmp ugt X, C. Similar for the other constants.
We can do simliar for icmp ne X, (U)INT_MIN/MAX in foldAndOfICmps. And we already handled UINT_MIN there.
Fixes PR42691.
Differential Revision: https://reviews.llvm.org/D65017
llvm-svn: 366945
This is a follow up to D64971. While we need to insert the deref after
the offset, it needs to come before the remaining elements in the
original expression since the deref needs to happen before the LLVM
fragment if present.
Differential Revision: https://reviews.llvm.org/D65172
llvm-svn: 366865
The original code failed to account for the fact that one exit can have a pointer exit count without all of them having pointer exit counts. This could cause two separate bugs:
1) We might exit the loop early, and leave optimizations undone. This is what triggered the assertion failure in the reported test case.
2) We might optimize one exit, then exit without indicating a change. This could result in an analysis invalidaton bug if no other transform is done by the rest of indvars.
Note that the pointer exit counts are a really fragile concept. They show up only when we have a pointer IV w/o a datalayout to provide their size. It's really questionable to me whether the complexity implied is worth it.
llvm-svn: 366829
This patch introduces the DAG version of SimplifyMultipleUseDemandedBits, which attempts to peek through ops (mainly and/or/xor so far) that don't contribute to the demandedbits/elts of a node - which means we can do this even in cases where we have multiple uses of an op, which normally requires us to demanded all bits/elts. The intention is to remove a similar instruction - SelectionDAG::GetDemandedBits - once SimplifyMultipleUseDemandedBits has matured.
The InstCombine version of SimplifyMultipleUseDemandedBits can constant fold which I haven't added here yet, and so far I've only wired this up to some basic binops (and/or/xor/add/sub/mul) to demonstrate its use.
We do see a couple of regressions that need to be addressed:
AMDGPU unsigned dot product codegen retains an AND mask (for ZERO_EXTEND) that it previously removed (but otherwise the dotproduct codegen is a lot better).
X86/AVX2 has poor handling of vector ANY_EXTEND/ANY_EXTEND_VECTOR_INREG - it prematurely gets converted to ZERO_EXTEND_VECTOR_INREG.
The code owners have confirmed its ok for these cases to fixed up in future patches.
Differential Revision: https://reviews.llvm.org/D63281
llvm-svn: 366799
cast<CallInst> shouldn't return null and we dereference the pointer in a lot of other places, causing both MSVC + cppcheck to warn about dereferenced null pointers
llvm-svn: 366793
Summary:
Deduce dereferenceable attribute in Attributor.
These will be added in a later patch.
* dereferenceable(_or_null)_globally (D61652)
* Deduction based on load instruction (similar to D64258)
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64876
llvm-svn: 366788
Summary: Adds a binding to the internalize pass that allows the caller to pass a function pointer that acts as the visibility-preservation predicate. Previously, one could only pass an unsigned value (not LLVMBool?) that directed the pass to consider "main" or not.
Reviewers: whitequark, deadalnix, harlanhaskins
Reviewed By: whitequark, harlanhaskins
Subscribers: kren1, hiraditya, llvm-commits, harlanhaskins
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62456
llvm-svn: 366777
[Attributor] Liveness analysis.
Liveness analysis abstract attribute used to indicate which BasicBlocks are dead and can therefore be ignored.
Right now we are only looking at noreturn calls.
Reviewers: jdoerfert, uenoku
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D64162
llvm-svn: 366769
[Attributor] Liveness analysis.
Liveness analysis abstract attribute used to indicate which BasicBlocks are dead and can therefore be ignored.
Right now we are only looking at noreturn calls.
Reviewers: jdoerfert, uenoku
Subscribers: hiraditya, llvm-commits
Differential revision: https://reviews.llvm.org/D64162
llvm-svn: 366753
Liveness analysis abstract attribute used to indicate which BasicBlocks are dead and can therefore be ignored.
Right now we are only looking at noreturn calls.
Reviewers: jdoerfert, uenoku
Subscribers: hiraditya, llvm-commits
Differential revision: https://reviews.llvm.org/D64162
llvm-svn: 366736
Porting function return value attribute noalias to attributor.
This will be followed with a patch for callsite and function argumets.
Reviewers: jdoerfert
Subscribers: lebedev.ri, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D63067
llvm-svn: 366728
While debugging code that uses SafeStack, we've noticed that LLVM
produces an invalid DWARF. Concretely, in the following example:
int main(int argc, char* argv[]) {
std::string value = "";
printf("%s\n", value.c_str());
return 0;
}
DWARF would describe the value variable as being located at:
DW_OP_breg14 R14+0, DW_OP_deref, DW_OP_constu 0x20, DW_OP_minus
The assembly to get this variable is:
leaq -32(%r14), %rbx
The order of operations in the DWARF symbols is incorrect in this case.
Specifically, the deref is incorrect; this appears to be incorrectly
re-inserted in repalceOneDbgValueForAlloca.
With this change which inserts the deref after the offset instead of
before it, LLVM produces correct DWARF:
DW_OP_breg14 R14-32
Differential Revision: https://reviews.llvm.org/D64971
llvm-svn: 366726
The bytes inserted before an overaligned global need to be padded according
to the alignment set on the original global in order for the initializer
to meet the global's alignment requirements. The previous implementation
that padded to the pointer width happened to be correct for vtables on most
platforms but may do the wrong thing if the vtable has a larger alignment.
This issue is visible with a prototype implementation of HWASAN for globals,
which will overalign all globals including vtables to 16 bytes.
There is also no padding requirement for the bytes inserted after the global
because they are never read from nor are they significant for alignment
purposes, so stop inserting padding there.
Differential Revision: https://reviews.llvm.org/D65031
llvm-svn: 366725
We were previously ignoring alignment entirely when combining globals
together in this pass. There are two main things that we need to do here:
add additional padding before each global to meet the alignment requirements,
and set the combined global's alignment to the maximum of all of the original
globals' alignments.
Since we now need to calculate layout as we go anyway, use the calculated
layout to produce GlobalLayout instead of using StructLayout.
Differential Revision: https://reviews.llvm.org/D65033
llvm-svn: 366722
Current algorithm to update branch weights of latch block and its copies is
based on the assumption that number of peeling iterations is approximately equal
to trip count.
However it is not correct. According to profitability check in one case we can decide to peel
in case it helps to reduce the number of phi nodes. In this case the number of peeled iteration
can be less then estimated trip count.
This patch introduces another way to set the branch weights to peeled of branches.
Let F is a weight of the edge from latch to header.
Let E is a weight of the edge from latch to exit.
F/(F+E) is a probability to go to loop and E/(F+E) is a probability to go to exit.
Then, Estimated TripCount = F / E.
For I-th (counting from 0) peeled off iteration we set the the weights for
the peeled latch as (TC - I, 1). It gives us reasonable distribution,
The probability to go to exit 1/(TC-I) increases. At the same time
the estimated trip count of remaining loop reduces by I.
As a result after peeling off N iteration the weights will be
(F - N * E, E) and trip count of loop becomes
F / E - N or TC - N.
The idea is taken from the review of the patch D63918 proposed by Philip.
Reviewers: reames, mkuper, iajbar, fhahn
Reviewed By: reames
Subscribers: hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D64235
llvm-svn: 366665
For equality, the function called getTrue/getFalse with the VT
of the comparison input. But getTrue/getFalse need the boolean VT.
So if this code ever executed, it would assert.
I believe these cases are removed by InstSimplify so we don't get here.
So this patch just fixes up an assert to exclude the equality
possibility and removes the broken code.
llvm-svn: 366649
AddOne/SubOne create new Constant objects. That seems heavy for
comparing ConstantInts which wrap APInts. Just do the math on
on the APInts and compare them.
llvm-svn: 366648
If the blockaddress is not destoryed, the destination block will still
be marked as having its address taken, limiting further transformations.
I think there are other places where the dead blockaddress constants are kept
around, I'll look into that as follow up.
Reviewers: craig.topper, brzycki, davide
Reviewed By: brzycki, davide
Differential Revision: https://reviews.llvm.org/D64936
llvm-svn: 366633
Summary:
This patch removes the `default` case from some switches on
`llvm::Triple::ObjectFormatType`, and cases for the missing enumerators
(`UnknownObjectFormat`, `Wasm`, and `XCOFF`) are then added.
For `UnknownObjectFormat`, the effect of the action for the `default`
case is maintained; otherwise, where `llvm_unreachable` is called,
`report_fatal_error` is used instead.
Where the `default` case returns a default value, `report_fatal_error`
is used for XCOFF as a placeholder. For `Wasm`, the effect of the action
for the `default` case in maintained.
The code is structured to avoid strongly implying that the `Wasm` case
is present for any reason other than to make the switch cover all
`ObjectFormatType` enumerator values.
Reviewers: sfertile, jasonliu, daltenty
Reviewed By: sfertile
Subscribers: hiraditya, aheejin, sunfish, llvm-commits, cfe-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64222
llvm-svn: 366544
Summary:
If we have some pattern that leaves only some low bits set, and then performs
left-shift of those bits, if none of the bits that are left after the final
shift are modified by the mask, we can omit the mask.
There are many variants to this pattern:
f. `((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt`
All these patterns can be simplified to just:
`x << ShiftShAmt`
iff:
f. `(ShiftShAmt-MaskShAmt) s>= 0` (i.e. `ShiftShAmt u>= MaskShAmt`)
Normally, the inner pattern is sign-extend,
but for our purposes it's no different to other patterns:
alive proofs:
f: https://rise4fun.com/Alive/7U3
For now let's start with patterns where both shift amounts are variable,
with trivial constant "offset" between them, since i believe this is
both simplest to handle and i think this is most common.
But again, there are likely other variants where we could use
ValueTracking/ConstantRange to handle more cases.
https://bugs.llvm.org/show_bug.cgi?id=42563
Differential Revision: https://reviews.llvm.org/D64524
llvm-svn: 366540
Summary:
If we have some pattern that leaves only some low bits set, and then performs
left-shift of those bits, if none of the bits that are left after the final
shift are modified by the mask, we can omit the mask.
There are many variants to this pattern:
e. `((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt`
All these patterns can be simplified to just:
`x << ShiftShAmt`
iff:
e. `(ShiftShAmt-MaskShAmt) s>= 0` (i.e. `ShiftShAmt u>= MaskShAmt`)
alive proofs:
e: https://rise4fun.com/Alive/0FT
For now let's start with patterns where both shift amounts are variable,
with trivial constant "offset" between them, since i believe this is
both simplest to handle and i think this is most common.
But again, there are likely other variants where we could use
ValueTracking/ConstantRange to handle more cases.
https://bugs.llvm.org/show_bug.cgi?id=42563
Differential Revision: https://reviews.llvm.org/D64521
llvm-svn: 366539
Summary:
If we have some pattern that leaves only some low bits set, and then performs
left-shift of those bits, if none of the bits that are left after the final
shift are modified by the mask, we can omit the mask.
There are many variants to this pattern:
d. `(x & ((-1 << MaskShAmt) >> MaskShAmt)) << ShiftShAmt`
All these patterns can be simplified to just:
`x << ShiftShAmt`
iff:
d. `(ShiftShAmt-MaskShAmt) s>= 0` (i.e. `ShiftShAmt u>= MaskShAmt`)
alive proofs:
d: https://rise4fun.com/Alive/I5Y
For now let's start with patterns where both shift amounts are variable,
with trivial constant "offset" between them, since i believe this is
both simplest to handle and i think this is most common.
But again, there are likely other variants where we could use
ValueTracking/ConstantRange to handle more cases.
https://bugs.llvm.org/show_bug.cgi?id=42563
Differential Revision: https://reviews.llvm.org/D64519
llvm-svn: 366538
Summary:
If we have some pattern that leaves only some low bits set, and then performs
left-shift of those bits, if none of the bits that are left after the final
shift are modified by the mask, we can omit the mask.
There are many variants to this pattern:
c. `(x & (-1 >> MaskShAmt)) << ShiftShAmt`
All these patterns can be simplified to just:
`x << ShiftShAmt`
iff:
c. `(ShiftShAmt-MaskShAmt) s>= 0` (i.e. `ShiftShAmt u>= MaskShAmt`)
alive proofs:
c: https://rise4fun.com/Alive/RgJh
For now let's start with patterns where both shift amounts are variable,
with trivial constant "offset" between them, since i believe this is
both simplest to handle and i think this is most common.
But again, there are likely other variants where we could use
ValueTracking/ConstantRange to handle more cases.
https://bugs.llvm.org/show_bug.cgi?id=42563
Differential Revision: https://reviews.llvm.org/D64517
llvm-svn: 366537
Summary:
If we have some pattern that leaves only some low bits set, and then performs
left-shift of those bits, if none of the bits that are left after the final
shift are modified by the mask, we can omit the mask.
There are many variants to this pattern:
b. `(x & (~(-1 << maskNbits))) << shiftNbits`
All these patterns can be simplified to just:
`x << ShiftShAmt`
iff:
b. `(MaskShAmt+ShiftShAmt) u>= bitwidth(x)`
alive proof:
b: https://rise4fun.com/Alive/y8M
For now let's start with patterns where both shift amounts are variable,
with trivial constant "offset" between them, since i believe this is
both simplest to handle and i think this is most common.
But again, there are likely other variants where we could use
ValueTracking/ConstantRange to handle more cases.
https://bugs.llvm.org/show_bug.cgi?id=42563
Differential Revision: https://reviews.llvm.org/D64514
llvm-svn: 366536
Summary:
If we have some pattern that leaves only some low bits set, and then performs
left-shift of those bits, if none of the bits that are left after the final
shift are modified by the mask, we can omit the mask.
There are many variants to this pattern:
a. `(x & ((1 << MaskShAmt) - 1)) << ShiftShAmt`
All these patterns can be simplified to just:
`x << ShiftShAmt`
iff:
a. `(MaskShAmt+ShiftShAmt) u>= bitwidth(x)`
alive proof:
a: https://rise4fun.com/Alive/wi9
Indeed, not all of these patterns are canonical.
But since this fold will only produce a single instruction
i'm really interested in handling even uncanonical patterns,
since i have this general kind of pattern in hotpaths,
and it is not totally outlandish for bit-twiddling code.
For now let's start with patterns where both shift amounts are variable,
with trivial constant "offset" between them, since i believe this is
both simplest to handle and i think this is most common.
But again, there are likely other variants where we could use
ValueTracking/ConstantRange to handle more cases.
https://bugs.llvm.org/show_bug.cgi?id=42563
Reviewers: spatel, nikic, huihuiz, xbolva00
Reviewed By: xbolva00
Subscribers: efriedma, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64512
llvm-svn: 366535
This will let us instrument globals during initialization. This required
making the new PM pass a module pass, which should still provide access to
analyses via the ModuleAnalysisManager.
Differential Revision: https://reviews.llvm.org/D64843
llvm-svn: 366379
Summary:
Deduce the "willreturn" attribute for functions.
For now, intrinsics are not willreturn. More annotation will be done in another patch.
Reviewers: jdoerfert
Subscribers: jvesely, nhaehnle, nicholas, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63046
llvm-svn: 366335
I don't have an IR sample which is actually failing, but the issue described in the comment is theoretically possible, and should be guarded against even if there's a different root cause for the bot failures.
llvm-svn: 366241
As there are some reported miscompiles with AVX512 and performance regressions
in Eigen. Verified with the original committer and testcases will be forthcoming.
This reverts commit r364964.
llvm-svn: 366154
Add "memtag" sanitizer that detects and mitigates stack memory issues
using armv8.5 Memory Tagging Extension.
It is similar in principle to HWASan, which is a software implementation
of the same idea, but there are enough differencies to warrant a new
sanitizer type IMHO. It is also expected to have very different
performance properties.
The new sanitizer does not have a runtime library (it may grow one
later, along with a "debugging" mode). Similar to SafeStack and
StackProtector, the instrumentation pass (in a follow up change) will be
inserted in all cases, but will only affect functions marked with the
new sanitize_memtag attribute.
Reviewers: pcc, hctim, vitalybuka, ostannard
Subscribers: srhines, mehdi_amini, javed.absar, kristof.beyls, hiraditya, cryptoad, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D64169
llvm-svn: 366123
There are scenarios where mutually recursive functions may cause the SCC
to contain both read only and write only functions. This removes an
assertion when adding read attributes which caused a crash with a the
provided test case, and instead just doesn't add the attributes.
Patch by Luke Lau <luke.lau@intel.com>
Differential Revision: https://reviews.llvm.org/D60761
llvm-svn: 366090
It is possible that loop exit has two predecessors in a loop body.
In this case after the peeling the iDom of the exit should be a clone of
iDom of original exit but no a clone of a block coming to this exit.
Reviewers: reames, fhahn
Reviewed By: reames
Subscribers: hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D64618
llvm-svn: 366050
We do not compute the scalarization overhead in getVectorIntrinsicCost
and TTI::getIntrinsicInstrCost requires the full arguments list.
llvm-svn: 366049
This CL enables peeling of the loop with multiple exits where
one exit should be from latch and others are basic blocks with
call to deopt.
The peeling is enabled under the flag which is false by default.
Reviewers: reames, mkuper, iajbar, fhahn
Reviewed By: reames
Subscribers: xbolva00, hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D63923
llvm-svn: 366048
With this patch the getLoopEstimatedTripCount function will
accept also the loops where there are more than one exit but
all exits except latch block should ends up with a call to deopt.
This side exits should not impact the estimated trip count.
Reviewers: reames, mkuper, danielcdh
Reviewed By: reames
Subscribers: fhahn, lebedev.ri, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D64553
llvm-svn: 366042
Extract the code from LoopUnrollRuntime into utility function to
re-use it in D63923.
Reviewers: reames, mkuper
Reviewed By: reames
Subscribers: fhahn, hiraditya, zzheng, dmgreen, llvm-commits
Differential Revision: https://reviews.llvm.org/D64548
llvm-svn: 366040
Loop invariant operands do not need to be scalarized, as we are using
the values outside the loop. We should ignore them when computing the
scalarization overhead.
Fixes PR41294
Reviewers: hsaito, rengolin, dcaballe, Ayal
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D59995
llvm-svn: 366030
Attributor::getAAFor will now only return AbstractAttributes with a
valid AbstractState. This simplifies call sites as they only need to
check if the returned pointer is non-null. It also reduces the potential
for accidental misuse.
llvm-svn: 365983
Some function in the Attributor framework are unnecessarily
marked virtual. This patch removes virtual keyword
Reviewers: jdoerfert
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D64637
llvm-svn: 365925
Continue in the spirit of D63618, and use exit count reasoning to prove away loop exits which can not be taken since the backedge taken count of the loop as a whole is provably less than the minimal BE count required to take this particular loop exit.
As demonstrated in the newly added tests, this triggers in a number of cases where IndVars was previously unable to discharge obviously redundant exit tests. And some not so obvious ones.
Differential Revision: https://reviews.llvm.org/D63733
llvm-svn: 365920
This patch contains a port of SanitizerCoverage to the new pass manager. This one's a bit hefty.
Changes:
- Split SanitizerCoverageModule into 2 SanitizerCoverage for passing over
functions and ModuleSanitizerCoverage for passing over modules.
- ModuleSanitizerCoverage exists for adding 2 module level calls to initialization
functions but only if there's a function that was instrumented by sancov.
- Added legacy and new PM wrapper classes that own instances of the 2 new classes.
- Update llvm tests and add clang tests.
Differential Revision: https://reviews.llvm.org/D62888
llvm-svn: 365838
Introduce and deduce "nosync" function attribute to indicate that a function
does not synchronize with another thread in a way that other thread might free memory.
Reviewers: jdoerfert, jfb, nhaehnle, arsenm
Subscribers: wdng, hfinkel, nhaenhle, mehdi_amini, steven_wu,
dexonsmith, arsenm, uenoku, hiraditya, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D62766
llvm-svn: 365830
Summary:
We will need to handle IntToPtr which I will submit in a separate patch as it's
not going to be NFC.
Reviewers: eugenis, pcc
Reviewed By: eugenis
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D63940
llvm-svn: 365709
Summary:
The map kept in loop rotate is used for instruction remapping, in order
to simplify the clones of instructions. Thus, if an instruction can be
simplified, its simplified value is placed in the map, even when the
clone is added to the IR. MemorySSA in contrast needs to know about that
clone, so it can add an access for it.
To resolve this: keep a different map for MemorySSA.
Reviewers: george.burgess.iv
Subscribers: jlebar, Prazek, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63680
llvm-svn: 365672
An alloca which can be sunk into the extraction region may have more
than one bitcast use. Move these uses along with the alloca to prevent
use-before-def.
Testing: check-llvm, stage2 build of clang
Fixes llvm.org/PR42451.
Differential Revision: https://reviews.llvm.org/D64463
llvm-svn: 365660
Summary:
Transform
pow(C,x)
To
exp2(log2(C)*x)
if C > 0, C != inf, C != NaN (and C is not power of 2, since we have some fold for such case already).
log(C) is folded by the compiler and exp2 is much faster to compute than pow.
Reviewers: spatel, efriedma, evandro
Reviewed By: evandro
Subscribers: lebedev.ri, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64099
llvm-svn: 365637
Only instructions with two or more unique successors should be considered for unswitching.
Patch Author: Daniil Suchkov.
Reviewers: reames, asbirlea, skatkov
Reviewed By: skatkov
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D64404
llvm-svn: 365611
For a given set of live values, the spill cost will always be the
same for each call. Compute the cost once and multiply it by the
number of calls.
(I'm not sure this spill cost modeling makes sense if there are
multiple calls, as the spill cost will likely be shared across
calls in that case. But that's how it currently works.)
llvm-svn: 365552
A short granule is a granule of size between 1 and `TG-1` bytes. The size
of a short granule is stored at the location in shadow memory where the
granule's tag is normally stored, while the granule's actual tag is stored
in the last byte of the granule. This means that in order to verify that a
pointer tag matches a memory tag, HWASAN must check for two possibilities:
* the pointer tag is equal to the memory tag in shadow memory, or
* the shadow memory tag is actually a short granule size, the value being loaded
is in bounds of the granule and the pointer tag is equal to the last byte of
the granule.
Pointer tags between 1 to `TG-1` are possible and are as likely as any other
tag. This means that these tags in memory have two interpretations: the full
tag interpretation (where the pointer tag is between 1 and `TG-1` and the
last byte of the granule is ordinary data) and the short tag interpretation
(where the pointer tag is stored in the granule).
When HWASAN detects an error near a memory tag between 1 and `TG-1`, it
will show both the memory tag and the last byte of the granule. Currently,
it is up to the user to disambiguate the two possibilities.
Because this functionality obsoletes the right aligned heap feature of
the HWASAN memory allocator (and because we can no longer easily test
it), the feature is removed.
Also update the documentation to cover both short granule tags and
outlined checks.
Differential Revision: https://reviews.llvm.org/D63908
llvm-svn: 365551
Note: I don't actually plan to implement all of the cases at the moment, I'm just documenting them for completeness. There's a couple of cases left which are practically useful for me in debugging loop transforms, and I'll probably stop there for the moment.
llvm-svn: 365550
These are sources of poison which don't come from flags, but are clearly documented in the LangRef. Left off support for scalable vectors for the moment, but should be easy to add if anyone is interested.
llvm-svn: 365543
Implements a transform pass which instruments IR such that poison semantics are made explicit. That is, it provides a (possibly partial) executable semantics for every instruction w.r.t. poison as specified in the LLVM LangRef. There are obvious parallels to the sanitizer tools, but this pass is focused purely on the semantics of LLVM IR, not any particular source language.
The target audience for this tool is developers working on or targetting LLVM from a frontend. The idea is to be able to take arbitrary IR (with the assumption of known inputs), and evaluate it concretely after having made poison semantics explicit to detect cases where either a) the original code executes UB, or b) a transform pass introduces UB which didn't exist in the original program.
At the moment, this is mostly the framework and still needs to be fleshed out. By reusing existing code we have decent coverage, but there's a lot of cases not yet handled. What's here is good enough to handle interesting cases though; for instance, one of the recent LFTR bugs involved UB being triggered by integer induction variables with nsw/nuw flags would be reported by the current code.
(See comment in PoisonChecking.cpp for full explanation and context)
Differential Revision: https://reviews.llvm.org/D64215
llvm-svn: 365536
This makes the functions in Loads.h require a type to be specified
independently of the pointer Value so that when pointers have no structure
other than address-space, it can still do its job.
Most callers had an obvious memory operation handy to provide this type, but a
SROA and ArgumentPromotion were doing more complicated analysis. They get
updated to merge the properties of the various instructions they were
considering.
llvm-svn: 365468
This patch modifies the loop peeling transformation so that
it does not expect that there is only one loop exit from latch.
It modifies only transformation. Update of branch weights remains
only for exit from latch.
The motivation is that in follow-up patch I plan to enable loop peeling for
loops with multiple exits but only if other exits then from latch one goes to
block with call to deopt.
For now this patch is NFC.
Reviewers: reames, mkuper, iajbar, fhahn
Reviewed By: reames, fhahn
Subscribers: zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D63921
llvm-svn: 365441
D63921 requires getExitEdges fills a vector of Edge pairs where
BasicBlocks are not constant.
The rest Loop API mostly returns non-const BasicBlocks, so to be more consistent with
other Loop API getExitEdges is modified to return non-const BasicBlocks as well.
This is an alternative solution to D64060.
Reviewers: reames, fhahn
Reviewed By: reames, fhahn
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D64309
llvm-svn: 365437
A while back, I added support for NE latches formed by LFTR. I didn't think that quite through, as LFTR will also produce the inverse EQ form for some loops and I hadn't handled that. This change just adds handling for that case as well.
llvm-svn: 365419
Deduce the "returned" argument attribute by collecting all potentially
returned values.
Not only the unique return value, if any, can be used by subsequent
attributes but also the set of all potentially returned values as well
as the mapping from returned values to return instructions that they
originate from (see AAReturnedValues::checkForallReturnedValues).
Change in statistics (-stats) for LLVM-TS + Spec2006, totaling ~19% more "returned" arguments.
ADDED: attributor NumAttributesManifested n/a -> 637
ADDED: attributor NumAttributesValidFixpoint n/a -> 25545
ADDED: attributor NumFnArgumentReturned n/a -> 637
ADDED: attributor NumFnKnownReturns n/a -> 25545
ADDED: attributor NumFnUniqueReturned n/a -> 14118
CHANGED: deadargelim NumRetValsEliminated 470 -> 449 ( -4.468%)
REMOVED: functionattrs NumReturned 535 -> n/a
CHANGED: indvars NumElimIdentity 138 -> 164 ( +18.841%)
Reviewers: homerdin, hfinkel, fedor.sergeev, sanjoy, spatel, nlopes, nicholas, reames, efriedma, chandlerc
Subscribers: hiraditya, bollu, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D59919
llvm-svn: 365407
Forming the canonical splat shuffle improves analysis and
may allow follow-on transforms (although some possibilities
are missing as shown in the test diffs).
The backend generically turns these patterns into build_vector,
so there should be no codegen regressions. All targets are
expected to be able to lower splats efficiently.
llvm-svn: 365379
loop
Summary:
Do the cloning in two steps, first allocate all the new loops, then
clone the basic blocks in the same order as the original loop.
Reviewer: Meinersbur, fhahn, kbarton, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, hiraditya, llvm-commits
Tag: https://reviews.llvm.org/D64224
Differential Revision:
llvm-svn: 365366
We recognize a splat from element 0 in (VectorUtils) llvm::getSplatValue()
and also in ShuffleVectorInst::isZeroEltSplatMask(), so this converts
to that form for better matching.
The backend generically turns these patterns into build_vector,
so there should be no codegen difference.
llvm-svn: 365342
This patch adds a function attribute, nofree, to indicate that a function does
not, directly or indirectly, call a memory-deallocation function (e.g., free,
C++'s operator delete).
Reviewers: jdoerfert
Differential Revision: https://reviews.llvm.org/D49165
llvm-svn: 365336
We had versions of this code scattered around, so consolidate into one location.
Not strictly NFC since the order of intermediate results may change in some places, but since these operations are associatives, should not change results.
llvm-svn: 365259
It's possible that some function can load and store the same
variable using the same constant expression:
store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
%42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
The bitcast expression was mistakenly cached while processing loads,
and never examined later when processing store. This caused @bar to
be mistakenly treated as read-only variable. See load-store-caching.ll.
llvm-svn: 365188
We allow forming a splat (broadcast) shuffle, but we were conservatively limiting
that to cases where all elements of the vector are specified. It should be safe
from a codegen perspective to allow undefined lanes of the vector because the
expansion of a splat shuffle would become the chain of inserts again.
Forming splat shuffles can reduce IR and help enable further IR transforms.
Motivating bugs:
https://bugs.llvm.org/show_bug.cgi?id=42174https://bugs.llvm.org/show_bug.cgi?id=16739
Differential Revision: https://reviews.llvm.org/D63848
llvm-svn: 365147
This reverts r365040 (git commit 5cacb91475)
Speculatively reverting, since this appears to have broken check-lld on
Linux. Partial analysis in https://crbug.com/981168.
llvm-svn: 365097
If the block being cloned contains a PHI node, in general, we need to
clone that PHI node, even though it's trivial. If the operand of the PHI
is an instruction in the block being cloned, the correct value for the
operand doesn't exist until SSAUpdater constructs it.
We usually don't hit this issue because we try to avoid threading across
loop headers, but it's possible to hit this in some cases involving
irreducible CFGs. I added a flag to allow threading across loop headers
to make the testcase easier to understand.
Thanks to Brian Rzycki for reducing the testcase.
Fixes https://bugs.llvm.org/show_bug.cgi?id=42085.
Differential Revision: https://reviews.llvm.org/D63913
llvm-svn: 365094
As noted in the test change, this is not trivially NFC, but all of the changes in output are cases where the SCEVExpander form is more canonical/optimal than the hand generation.
llvm-svn: 365075
The motivation for this is two fold:
1) Make the output (and thus tests) a bit more readable to a human trying to understand the result of the transform
2) Reduce spurious diffs in a potential future change to restructure all of this logic to use SCEVExpander (which hoists by default)
llvm-svn: 365066
Summary:
Handling callbr is very similar to handling an inline assembly call:
MSan must checks the instruction's inputs.
callbr doesn't (yet) have outputs, so there's nothing to unpoison,
and conservative assembly handling doesn't apply either.
Fixes PR42479.
Reviewers: eugenis
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64072
llvm-svn: 365008
Summary: This patch introduces a new heuristic for guiding operand reordering. The new "look-ahead" heuristic can look beyond the immediate predecessors. This helps break ties when the immediate predecessors have identical opcodes (see lit test for an example).
Reviewers: RKSimon, ABataev, dtemirbulatov, Ayal, hfinkel, rnk
Reviewed By: RKSimon, dtemirbulatov
Subscribers: hiraditya, phosek, rnk, rcorcs, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60897
llvm-svn: 364964
Summary:
If LTOUnit splitting is disabled, the module summary analysis computes
the summary information necessary to perform single implementation
devirtualization during the thin link with the index and no IR. The
information collected from the regular LTO IR in the current hybrid WPD
algorithm is summarized, including:
1) For vtable definitions, record the function pointers and their offset
within the vtable initializer (subsumes the information collected from
IR by tryFindVirtualCallTargets).
2) A record for each type metadata summarizing the vtable definitions
decorated with that metadata (subsumes the TypeIdentiferMap collected
from IR).
Also added are the necessary bitcode records, and the corresponding
assembly support.
The follow-on index-based WPD patch is D55153.
Depends on D53890.
Reviewers: pcc
Subscribers: mehdi_amini, Prazek, inglorion, eraman, steven_wu, dexonsmith, arphaman, llvm-commits
Differential Revision: https://reviews.llvm.org/D54815
llvm-svn: 364960
I was actually wondering if there was some nicer way than m_Value()+cast,
but apparently what i was really "subconsciously" thinking about
was correctness issue.
hasNoUnsignedWrap()/hasNoUnsignedWrap() exist for Instruction,
not for BinaryOperator, so let's just use m_Instruction(),
thus both avoiding a cast, and a crash.
Fixes https://bugs.llvm.org/show_bug.cgi?id=42484,
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=15587
llvm-svn: 364915
Extends the transform from:
rL364341
...to include another (more common?) pattern that tests whether a
value is a power-of-2 (including or excluding zero).
llvm-svn: 364856
Summary:
To be noted, this pattern is not unhandled by instcombine per-se,
it is somehow does end up being folded when one runs opt -O3,
but not if it's just -instcombine. Regardless, that fold is
indirect, depends on some other folds, and is thus blind
when there are extra uses.
This does address the regression being exposed in D63992.
https://godbolt.org/z/7DGltUhttps://rise4fun.com/Alive/EPO0
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=42459 | PR42459 ]]
Reviewers: spatel, nikic, huihuiz
Reviewed By: spatel
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63993
llvm-svn: 364792
Summary:
Given pattern:
`icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0`
we should move shifts to the same hand of 'and', i.e. rewrite as
`icmp eq/ne (and (x shift (Q+K)), y), 0` iff `(Q+K) u< bitwidth(x)`
It might be tempting to not restrict this to situations where we know
we'd fold two shifts together, but i'm not sure what rules should there be
to avoid endless combine loops.
We pick the same shift that was originally used to shift the variable we picked to shift:
https://rise4fun.com/Alive/6x1v
Should fix [[ https://bugs.llvm.org/show_bug.cgi?id=42399 | PR42399]].
Reviewers: spatel, nikic, RKSimon
Reviewed By: spatel
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63829
llvm-svn: 364791
This is the opposite direction of D62158 (we have to choose 1 form or the other).
Now that we have FMF on the select, this becomes more palatable. And the benefits
of having a single IR instruction for this operation (less chances of missing folds
based on extra uses, etc) overcome my previous comments about the potential advantage
of larger pattern matching/analysis.
Differential Revision: https://reviews.llvm.org/D62414
llvm-svn: 364721
What we want to know here is whether we're already using this value
for the loop condition, so make the query about that. We can extend
this to a more general "based-on" relationship, rather than a direct
icmp use later.
llvm-svn: 364715
This transform came up in D62414, but we should deal with it first.
We have LLVM intrinsics that correspond exactly to libm calls (unlike
most libm calls, these libm calls never set errno).
This holds without any fast-math-flags, so we should always canonicalize
to those intrinsics directly for better optimization.
Currently, we convert to fcmp+select only when we have FMF (nnan) because
fcmp+select does not preserve the semantics of the call in the general case.
Differential Revision: https://reviews.llvm.org/D63214
llvm-svn: 364714
The whole indvars pass works on loops in simplified form, so there
is always a unique latch. Convert the condition into an assertion
in needsLFTR (though we also assert this in later LFTR functions).
Additionally update the comment on getLoopTest() now that we are
dealing with multiple exits.
llvm-svn: 364713
Fixes https://bugs.llvm.org/show_bug.cgi?id=41998. Usually when we
have a truncated exit count we'll truncate the IV when comparing
against the limit, in which case exit count overflow in post-inc
form doesn't matter. However, for pointer IVs we don't do that, so
we have to be careful about incrementing the IV in the wide type.
I'm fixing this by removing the IVCount variable (which was
ExitCount or ExitCount+1) and replacing it with a UsePostInc flag,
and then moving the actual limit adjustment to the individual cases
(which are: pointer IV where we add to the wide type, integer IV
where we add to the narrow type, and constant integer IV where we
add to the wide type).
Differential Revision: https://reviews.llvm.org/D63686
llvm-svn: 364709
This shaves an instruction (and a GOT entry in PIC code) off prologues of
functions with stack variables.
Differential Revision: https://reviews.llvm.org/D63472
llvm-svn: 364608
This patch introduces a new function attribute, willreturn, to indicate
that a call of this function will either exhibit undefined behavior or
comes back and continues execution at a point in the existing call stack
that includes the current invocation.
This attribute guarantees that the function does not have any endless
loops, endless recursion, or terminating functions like abort or exit.
Patch by Hideto Ueno (@uenoku)
Reviewers: jdoerfert
Subscribers: mehdi_amini, hiraditya, steven_wu, dexonsmith, lebedev.ri, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62801
llvm-svn: 364555
FunctionComparator attempts to produce a stable comparison of two Function
instances by looking at all available properties. Since ByVal attributes now
contain a Type pointer, they are not trivially ordered and FunctionComparator
should use its own Type comparison logic to sort them.
llvm-svn: 364523
Summary: This patch introduces a new heuristic for guiding operand reordering. The new "look-ahead" heuristic can look beyond the immediate predecessors. This helps break ties when the immediate predecessors have identical opcodes (see lit test for an example).
Reviewers: RKSimon, ABataev, dtemirbulatov, Ayal, hfinkel, rnk
Reviewed By: RKSimon, dtemirbulatov
Subscribers: rnk, rcorcs, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60897
llvm-svn: 364478
Summary:
This diff enables address sanitizer on Emscripten.
On Emscripten, real memory starts at the value passed to --global-base.
All memory before this is used as shadow memory, and thus the shadow mapping
function is simply dividing by 8.
Reviewers: tlively, aheejin, sbc100
Reviewed By: sbc100
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D63742
llvm-svn: 364468
This allows later passes (in particular InstCombine) to optimize more
cases.
One that's important to us is `memcmp(p, q, constant) < 0` and memcmp(p, q, constant) > 0.
llvm-svn: 364412
This patch generalizes the UnrollLoop utility to support loops that exit
from the header instead of the latch. Usually, LoopRotate would take care
of must of those cases, but in some cases (e.g. -Oz), LoopRotate does
not kick in.
Codesize impact looks relatively neutral on ARM64 with -Oz + LTO.
Program master patch diff
External/S.../CFP2006/447.dealII/447.dealII 629060.00 627676.00 -0.2%
External/SPEC/CINT2000/176.gcc/176.gcc 1245916.00 1244932.00 -0.1%
MultiSourc...Prolangs-C/simulator/simulator 86100.00 86156.00 0.1%
MultiSourc...arks/Rodinia/backprop/backprop 66212.00 66252.00 0.1%
MultiSourc...chmarks/Prolangs-C++/life/life 67276.00 67312.00 0.1%
MultiSourc...s/Prolangs-C/compiler/compiler 69824.00 69788.00 -0.1%
MultiSourc...Prolangs-C/assembler/assembler 86672.00 86696.00 0.0%
Reviewers: efriedma, vsk, paquette
Reviewed By: paquette
Differential Revision: https://reviews.llvm.org/D61962
llvm-svn: 364398
This follows up the transform from rL363956 to use the ctpop intrinsic when checking for power-of-2-or-zero.
This is matching the isPowerOf2() patterns used in PR42314:
https://bugs.llvm.org/show_bug.cgi?id=42314
But there's at least 1 instcombine follow-up needed to match the alternate form:
(v & (v - 1)) == 0;
We should have all of the backend expansions handled with:
rL364319
(x86-specific changes still needed for optimal code based on subtarget)
And the larger patterns to exclude zero as a power-of-2 are joining with this change after:
rL364153 ( D63660 )
rL364246
Differential Revision: https://reviews.llvm.org/D63777
llvm-svn: 364341
This is the Demorgan'd 'not' of the pattern handled in:
D63660 / rL364153
This is another intermediate IR step towards solving PR42314:
https://bugs.llvm.org/show_bug.cgi?id=42314
We can test if a value is not a power-of-2 using ctpop(X) > 1,
so combining that with an is-zero check of the input is the
same as testing if not exactly 1 bit is set:
(X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1
llvm-svn: 364246
Inference of nowrap flags in CVP has been disabled, because it
triggered a bug in LFTR (https://bugs.llvm.org/show_bug.cgi?id=31181).
This issue has been fixed in D60935, so we should be able to reenable
nowrap flag inference now.
Differential Revision: https://reviews.llvm.org/D62776
llvm-svn: 364228
Prefer the more exact intrinsic to remove a use of the input value
and possibly make further transforms easier (we will still need
to match patterns with funnel-shift of wider types as pieces of
bswap, especially if we want to canonicalize to funnel-shift with
constant shift amount). Discussed in D46760.
llvm-svn: 364187
In rL364135, I taught IndVars to fold exiting branches in loops with a zero backedge taken count (i.e. loops that only run one iteration). This extends that to eliminate the dead comparison left around.
llvm-svn: 364155
This is another intermediate IR step towards solving PR42314:
https://bugs.llvm.org/show_bug.cgi?id=42314
We can test if a value is power-of-2-or-0 using ctpop(X) < 2,
so combining that with a non-zero check of the input is the
same as testing if exactly 1 bit is set:
(X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1
Differential Revision: https://reviews.llvm.org/D63660
llvm-svn: 364153
This turned out to be surprisingly effective. I was originally doing this just for completeness sake, but it seems like there are a lot of cases where SCEV's exit count reasoning is stronger than it's isKnownPredicate reasoning.
Once this is in, I'm thinking about trying to build on the same infrastructure to eliminate provably untaken checks. There may be something generally interesting here.
Differential Revision: https://reviews.llvm.org/D63618
llvm-svn: 364135
The VM layout on iOS is not stable between releases. On 64-bit iOS and
its derivatives we use a dynamic shadow offset that enables ASan to
search for a valid location for the shadow heap on process launch rather
than hardcode it.
This commit extends that approach for 32-bit iOS plus derivatives and
their simulators.
rdar://50645192
rdar://51200372
rdar://51767702
Reviewed By: delcypher
Differential Revision: https://reviews.llvm.org/D63586
llvm-svn: 364105
This patch introduces a new heuristic for guiding operand reordering. The new "look-ahead" heuristic can look beyond the immediate predecessors. This helps break ties when the immediate predecessors have identical opcodes (see lit test for an example).
Committed on behalf of @vporpo (Vasileios Porpodas)
Differential Revision: https://reviews.llvm.org/D60897
llvm-svn: 364084
Summary:
The motivation for this was to propagate fast-math flags like nnan and
ninf on vector floating point operations to the corresponding scalar
operations to take advantage of follow-on optimizations. But I think
the same argument applies to all of our IR flags: if they apply to the
vector operation then they also apply to all the individual scalar
operations, and they might enable follow-on optimizations.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63593
llvm-svn: 364051
Also, add a FIXME for the unsafe transform on a unary FNeg. A unary FNeg can only be transformed to a FMul by -1.0 when the nnan flag is present. The unary FNeg project is a WIP, so the unsafe transformation is acceptable until that work is complete.
The bogus assert with introduced in D63445.
llvm-svn: 363998
Currently, many profiling tests on Solaris FAIL like
Command Output (stderr):
--
Undefined first referenced
symbol in file
__llvm_profile_register_names_function /tmp/lit_tmp_Nqu4eh/infinite_loop-9dc638.o
__llvm_profile_register_function /tmp/lit_tmp_Nqu4eh/infinite_loop-9dc638.o
Solaris 11.4 ld supports the non-standard GNU ld extension of adding
__start_SECNAME and __stop_SECNAME labels to sections whose names are valid
as C identifiers. Given that we already use Solaris 11.4-only features
like ld -z gnu-version-script-compat and fully working .preinit_array
support in compiler-rt, we don't need to worry about older versions of
Solaris ld.
The patch documents that support (although the comment in
lib/Transforms/Instrumentation/InstrProfiling.cpp
(needsRuntimeRegistrationOfSectionRange) is quite cryptic what it's
actually about), and adapts the affected testcase not to expect the
alternativeq __llvm_profile_register_functions and __llvm_profile_init.
It fixes all affected tests.
Tested on amd64-pc-solaris2.11.
Differential Revision: https://reviews.llvm.org/D41111
llvm-svn: 363984
Summary:
The getClobberingMemoryAccess API checks for clobbering accesses in a loop by walking the backedge. This may check if a memory access is being
clobbered by the loop in a previous iteration, depending how smart AA got over the course of the updates in MemorySSA (it does not occur when built from scratch).
If no clobbering access is found inside the loop, it will optimize to an access outside the loop. This however does not mean that access is safe to sink.
Given:
```
for i
load a[i]
store a[i]
```
The access corresponding to the load can be optimized to outside the loop, and the load can be hoisted. But it is incorrect to sink it.
In order to sink the load, we'd need to check no Def clobbers the Use in the same iteration. With this patch we currently restrict sinking to either
Defs not existing in the loop, or Defs preceding the load in the same block. An easy extension is to ensure the load (Use) post-dominates all Defs.
Caught by PR42294.
This issue also shed light on the converse problem: hoisting stores in this same scenario would be illegal. With this patch we restrict
hoisting of stores to the case when their corresponding Defs are dominating all Uses in the loop.
Reviewers: george.burgess.iv
Subscribers: jlebar, Prazek, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63582
llvm-svn: 363982
I can't actually come up with a test case this triggers on without an out of tree change, but in theory, it's a bug in the recently added multiple exit LFTR support. The root issue is that an exiting block common to two loops can (in theory) have computable exit counts for both loops. Rewriting the exit of an inner loop in terms of the outer loops IV would cause the inner loop to either a) run forever, or b) terminate on the first iteration.
In practice, we appear to get lucky and not have the exit count computable for the outer loop, except when it's trivially zero. Given we bail on zero exit counts, we don't appear to ever trigger this. But I can't come up with a reason we *can't* compute an exit count for the outer loop on the common exiting block, so this may very well be triggering in some cases.
llvm-svn: 363964
The form that compares against 0 is better because:
1. It removes a use of the input value.
2. It's the more standard form for this pattern: https://graphics.stanford.edu/~seander/bithacks.html#DetermineIfPowerOf2
3. It results in equal or better codegen (tested with x86, AArch64, ARM, PowerPC, MIPS).
This is a root cause for PR42314, but probably doesn't completely answer the codegen request:
https://bugs.llvm.org/show_bug.cgi?id=42314
Alive proof:
https://rise4fun.com/Alive/9kG
Name: is power-of-2
%neg = sub i32 0, %x
%a = and i32 %neg, %x
%r = icmp eq i32 %a, %x
=>
%dec = add i32 %x, -1
%a2 = and i32 %dec, %x
%r = icmp eq i32 %a2, 0
Name: is not power-of-2
%neg = sub i32 0, %x
%a = and i32 %neg, %x
%r = icmp ne i32 %a, %x
=>
%dec = add i32 %x, -1
%a2 = and i32 %dec, %x
%r = icmp ne i32 %a2, 0
llvm-svn: 363956
Teach IndVarSimply's LinearFunctionTestReplace transform to handle multiple exit loops. LFTR does two key things 1) it rewrites (all) exit tests in terms of a common IV potentially eliminating one in the process and 2) it moves any offset/indexing/f(i) style logic out of the loop.
This turns out to actually be pretty easy to implement. SCEV already has all the information we need to know what the backedge taken count is for each individual exit. (We use that when computing the BE taken count for the loop as a whole.) We basically just need to iterate through the exiting blocks and apply the existing logic with the exit specific BE taken count. (The previously landed NFC makes this super obvious.)
I chose to go ahead and apply this to all loop exits instead of only latch exits as originally proposed. After reviewing other passes, the only case I could find where LFTR form was harmful was LoopPredication. I've fixed the latch case, and guards aren't LFTRed anyways. We'll have some more work to do on the way towards widenable_conditions, but that's easily deferred.
I do want to note that I added one bit after the review. When running tests, I saw a new failure (no idea why didn't see previously) which pointed out LFTR can rewrite a constant condition back to a loop varying one. This was theoretically possible with a single exit, but the zero case covered it in practice. With multiple exits, we saw this happening in practice for the eliminate-comparison.ll test case because we'd compute a ExitCount for one of the exits which was guaranteed to never actually be reached. Since LFTR ran after simplifyAndExtend, we'd immediately turn around and undo the simplication work we'd just done. The solution seemed obvious, so I didn't bother with another round of review.
Differential Revision: https://reviews.llvm.org/D62625
llvm-svn: 363883
(Recommit of r363293 which was reverted when a dependent patch was.)
As pointed out by Nikita in D62625, BackedgeTakenCount is generally used to refer to the backedge taken count of the loop. A conditional backedge taken count - one which only applies if a particular exit is taken - is called a ExitCount in SCEV code, so be consistent here.
llvm-svn: 363875
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024
The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:
A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.
In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.
I have set up a separate review D61933 for a fix which is required for this patch.
Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel, jmorse
Reviewed By: hfinkel, jmorse
Subscribers: jmorse, javed.absar, eraman, kcc, bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D60831
> llvm-svn: 363046
llvm-svn: 363786
[SROA] Enhance SROA to handle `addrspacecast`ed allocas
- Fix typo in original change
- Add additional handling to ensure all return pointers are properly
casted.
Summary:
- After `addrspacecast` is allowed to be eliminated in SROA, the
adjusting of storage pointer (from `alloca) needs to handle the
potential different address spaces between the storage pointer (from
alloca) and the pointer being used.
Reviewers: arsenm
Subscribers: wdng, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63501
llvm-svn: 363743
Summary:
CoroSplit depends on CallGraphWrapperPass, but it was not explicitly adding it as a pass dependency.
This missing dependency can trigger errors / assertions / crashes in PMTopLevelManager::schedulePass() under certain configurations.
Author: ben-clayton
Reviewers: GorNishanov
Reviewed By: GorNishanov
Subscribers: capn, EricWF, modocache, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63144
llvm-svn: 363727
Summary:
- After `addrspacecast` is allowed to be eliminated in SROA, the
adjusting of storage pointer (from `alloca) needs to handle the
potential different address spaces between the storage pointer (from
alloca) and the pointer being used.
Reviewers: arsenm
Subscribers: wdng, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63501
llvm-svn: 363711
Using the new SwitchInstProfUpdateWrapper this patch
simplifies 3 places of prof branch_weights handling.
Differential Revision: https://reviews.llvm.org/D62123
llvm-svn: 363652
This saves roughly 32 bytes of instructions per function with stack objects
and causes us to preserve enough information that we can recover the original
tags of all stack variables.
Now that stack tags are deterministic, we no longer need to pass
-hwasan-generate-tags-with-calls during check-hwasan. This also means that
the new stack tag generation mechanism is exercised by check-hwasan.
Differential Revision: https://reviews.llvm.org/D63360
llvm-svn: 363636
The goal is to improve hwasan's error reporting for stack use-after-return by
recording enough information to allow the specific variable that was accessed
to be identified based on the pointer's tag. Currently we record the PC and
lower bits of SP for each stack frame we create (which will eventually be
enough to derive the base tag used by the stack frame) but that's not enough
to determine the specific tag for each variable, which is the stack frame's
base tag XOR a value (the "tag offset") that is unique for each variable in
a function.
In IR, the tag offset is most naturally represented as part of a location
expression on the llvm.dbg.declare instruction. However, the presence of the
tag offset in the variable's actual location expression is likely to confuse
debuggers which won't know about tag offsets, and moreover the tag offset
is not required for a debugger to determine the location of the variable on
the stack, so at the DWARF level it is represented as an attribute so that
it will be ignored by debuggers that don't know about it.
Differential Revision: https://reviews.llvm.org/D63119
llvm-svn: 363635
This patch really contains two pieces:
Teach SCEV how to fold a phi in the header of a loop to the value on the backedge when a) the backedge is known to execute at least once, and b) the value is safe to use globally within the scope dominated by the original phi.
Teach IndVarSimplify's rewriteLoopExitValues to allow loop invariant expressions which already exist (and thus don't need new computation inserted) even in loops where we can't optimize away other uses.
Differential Revision: https://reviews.llvm.org/D63224
llvm-svn: 363619
Recommit r363289 with a bug fix for crash identified in pr42279. Issue was that a loop exit test does not have to be an icmp, leading to a null dereference crash when new logic was exercised for that case. Test case previously committed in r363601.
Original commit comment follows:
This contains fixes for two cases where we might invalidate inbounds and leave it stale in the IR (a miscompile). Case 1 is when switching to an IV with no dynamically live uses, and case 2 is when doing pre-to-post conversion on the same pointer type IV.
The basic scheme used is to prove that using the given IV (pre or post increment forms) would have to already trigger UB on the path to the test we're modifying. As such, our potential UB triggering use does not change the semantics of the original program.
As was pointed out in the review thread by Nikita, this is defending against a separate issue from the hasConcreteDef case. This is about poison, that's about undef. Unfortunately, the two are different, see Nikita's comment for a fuller explanation, he explains it well.
(Note: I'm going to address Nikita's last style comment in a separate commit just to minimize chance of subtle bugs being introduced due to typos.)
Differential Revision: https://reviews.llvm.org/D62939
llvm-svn: 363613
Summary:
Update compare normalization in SimpleValue hashing to break ties (when
the same value is being compared to itself) by switching to the swapped
predicate if it has a lower numerical value. This brings the hashing in
line with isEqual, which already recognizes the self-compares with
swapped predicates as equal.
Fixes PR 42280.
Reviewers: spatel, efriedma, nikic, fhahn, uabelho
Reviewed By: nikic
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63349
llvm-svn: 363598
When considering a loop containing nontemporal stores or loads for
vectorization, suppress the vectorization if the corresponding
vectorized store or load with the aligment of the original scaler
memory op is not supported with the nontemporal hint on the target.
This adds two new functions:
bool isLegalNTStore(Type *DataType, unsigned Alignment) const;
bool isLegalNTLoad(Type *DataType, unsigned Alignment) const;
to TTI, leaving the target independent default implementation as
returning true, but with overriding implementations for X86 that
check the legality based on available Subtarget features.
This fixes https://llvm.org/PR40759
Differential Revision: https://reviews.llvm.org/D61764
llvm-svn: 363581
Summary:
There is PHINode::getBasicBlockIndex() and PHINode::setIncomingValue()
but no function to replace incoming value for a specified BasicBlock*
predecessor.
Clearly, there are a lot of places that could use that functionality.
Reviewer: craig.topper, lebedev.ri, Meinersbur, kbarton, fhahn
Reviewed By: Meinersbur, fhahn
Subscribers: fhahn, hiraditya, zzheng, jsji, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D63338
llvm-svn: 363566
If an addrspacecast needed to be inserted again, this was creating a
clone of the original cast for each user. Just use the original, which
also saves losing the value name.
llvm-svn: 363562
Summary:
Avoid that loop vectorizer creates loads/stores of vectors
with "irregular" types when interleaving. An example of
an irregular type is x86_fp80 that is 80 bits, but that
may have an allocation size that is 96 bits. So an array
of x86_fp80 is not bitcast compatible with a vector
of the same type.
Not sure if interleavedAccessCanBeWidened is the best
place for this check, but it solves the problem seen
in the added test case. And it is the same kind of check
that already exists in memoryInstructionCanBeWidened.
Reviewers: fhahn, Ayal, craig.topper
Reviewed By: fhahn
Subscribers: hiraditya, rkruppe, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63386
llvm-svn: 363547
Third time's the charm.
This was reverted in r363220 due to being suspected of an internal benchmark
regression and a test failure, none of which turned out to be caused by this.
llvm-svn: 363529
SimplifyCFG has a bug that results in inconsistent prof branch_weights metadata
if unreachable switch cases are removed. This patch fixes this bug by making use
of the newly introduced SwitchInstProfUpdateWrapper class (see patch D62122).
A new test is created.
Differential Revision: https://reviews.llvm.org/D62186
llvm-svn: 363527
If we can detect that saturating math that depends on an IV cannot
overflow, replace it with simple math. This is similar to the CVP
optimization from D62703, just based on a different underlying
analysis (SCEV vs LVI) that catches different cases.
Differential Revision: https://reviews.llvm.org/D62792
llvm-svn: 363489
with 'objc_arc_inert'
Those calls are no-ops, so they can be safely deleted.
rdar://problem/49839633
Differential Revision: https://reviews.llvm.org/D62433
llvm-svn: 363468