Summary: Add support for resolving `R_RISCV_32_PCREL` relocations. Those aren't
actually resolved AFAIK, but support is still needed to avoid llvm-dwarfdump
errors. The use of these relocations was introduced in D66419 but the
corresponding resolving wasn't added then. The test adds a check that should
catch future unresolved relocations.
Reviewers: asb, lenary
Reviewed By: asb
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70204
DwarfExpression::addMachineReg() knows how to build a larger register
that isn't expressible in DWARF by combining multiple
subregisters. However, if the entire value fits into just one
subregister, it would still emit the other subregisters, leading to
all sorts of inconsistencies down the line.
This patch fixes that by moving an already existing(!) check whether
the subregister's offset is before the end of the value to the right
place.
rdar://problem/57294211
Differential Revision: https://reviews.llvm.org/D70508
Currently, clang emits subprograms for declared functions when the
target debugger or DWARF standard is known to support entry values
(DW_OP_entry_value & the GNU equivalent).
Treat DW_AT_tail_call the same way to allow debuggers to follow cross-TU
tail calls.
Pre-patch debug session with a cross-TU tail call:
```
* frame #0: 0x0000000100000fa4 main`target at b.c:4:3 [opt]
frame #1: 0x0000000100000f99 main`main at a.c:8:10 [opt]
```
Post-patch (note that the tail-calling frame, "helper", is visible):
```
* frame #0: 0x0000000100000fa4 main`target at b.c:4:3 [opt]
frame #1: 0x0000000100000f80 main`helper [opt] [artificial]
frame #2: 0x0000000100000f99 main`main at a.c:8:10 [opt]
```
This was reverted in 5b9a072c because it attached declaration
subprograms to inlinable builtin calls, which interacted badly with the
MergeICmps pass. The fix is to not attach declarations to builtins.
rdar://46577651
Differential Revision: https://reviews.llvm.org/D69743
A call site parameter description of a memory operand needs to
unambiguously convey the size of the operand to prevent incorrect entry
value evaluation.
Thanks for David Stenberg for pointing this issue out!
Summary:
Assert in getFunctionLocalOffsetAfterInsn() fails when processing a call
MachineInstr inside a bundle and compiling with debug info. This is
because labels are added by DwarfDebug::beginInstruction() which is
called for each top-level MI by EmitFunctionBody()'s for-loop iteration
but constructCallSiteEntryDIEs() which calls
getFunctionLocalOffsetAfterInsn() iterates over all MIs.
This commit modifies constructCallSiteEntryDIEs() to get the associated
bundle MI for call MIs inside a bundle and use that to when calling
getFunctionLocalOffsetAfterInsn() and getLabelAfterInsn(). It also skips
loop iterations for bundle MIs since the loop statements are concerned
with debug info for each physical instructions and bundles represent a
group of instructions. It also fix the comment about PCAddr since the
code is getting the return address and not the call address.
Reviewers: dstenb, vsk, aprantl, djtodoro, dblaikie, NikolaPrica
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70293
This reapplies c0f6ad7d1f with an
additional fix in test/DebugInfo/X86/constant-loclist.ll, which had a
slightly different output on windows targets. The test now accounts for
this difference.
The original commit message follows.
Summary:
As discussed in D70081, this adds the ability to dump section
names/indices to the location list dumper. It does this by moving the
range specific logic from DWARFDie.cpp:dumpRanges into the
DWARFAddressRange class.
The trickiest part of this patch is the backflip in the meanings of the
two dump flags for the location list sections.
The dumping of "raw" location list data is now controlled by
"DisplayRawContents" flag. This frees up the "Verbose" flag to be used
to control whether we print the section index. Additionally, the
DisplayRawContents flag is set for section-based dumps whenever the
--verbose option is passed, but this is not done for the "inline" dumps.
Also note that the index dumping currently does not work for the DWARF
v5 location lists, as the parser does not fill out the appropriate
fields. This will be done in a separate patch.
Reviewers: dblaikie, probinson, JDevlieghere, SouraVX
Subscribers: sdardis, hiraditya, jrtc27, atanasyan, arphaman, aprantl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70227
Summary:
As discussed in D70081, this adds the ability to dump section
names/indices to the location list dumper. It does this by moving the
range specific logic from DWARFDie.cpp:dumpRanges into the
DWARFAddressRange class.
The trickiest part of this patch is the backflip in the meanings of the
two dump flags for the location list sections.
The dumping of "raw" location list data is now controlled by
"DisplayRawContents" flag. This frees up the "Verbose" flag to be used
to control whether we print the section index. Additionally, the
DisplayRawContents flag is set for section-based dumps whenever the
--verbose option is passed, but this is not done for the "inline" dumps.
Also note that the index dumping currently does not work for the DWARF
v5 location lists, as the parser does not fill out the appropriate
fields. This will be done in a separate patch.
Reviewers: dblaikie, probinson, JDevlieghere, SouraVX
Subscribers: sdardis, hiraditya, jrtc27, atanasyan, arphaman, aprantl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70227
This patch, adds support for DW_AT_alignment[DWARF5] attribute, to be emitted with typdef DIE.
When explicit alignment is specified.
Patch by Awanish Pandey <Awanish.Pandey@amd.com>
Reviewers: aprantl, dblaikie, jini.susan.george, SouraVX, alok,
deadalinx
Differential Revision: https://reviews.llvm.org/D70111
Summary:
This adds a visitLocationList function to the DWARF v4 location lists,
similar to what already exists for DWARF v5. It follows the approach
outlined in previous patches (D69672), where the parsed form is always
stored in the DWARF v5 format, which makes it easier for generic code to
be built on top of that. v4 location lists are "upgraded" during
parsing, and then this upgrade is undone while dumping.
Both "inline" and section-based dumping is rewritten to reuse the
existing "generic" location list dumper. This means that the output
format is consistent for all location lists (the only thing one needs to
implement is the function which prints the "raw" form of a location
list), and that debug_loc dumping correctly processes base address
selection entries, etc.
The previous existing debug_loc functionality (e.g.,
parseOneLocationList) is rewritten on top of the new API, but it is not
removed as there is still code which uses them. This will be done in
follow-up patches, after I build the API to access the "interpreted"
location lists in a generic way (as that is what those users really
want).
Reviewers: dblaikie, probinson, JDevlieghere, aprantl, SouraVX
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69847
Allow call site paramter descriptions to reference spill slots. Spill
slots are not visible to high-level LLVM IR, so they can safely be
referenced during entry value evaluation (as they cannot be clobbered by
some other function).
This gives a 5% increase in the number of call site parameter DIEs in an
LTO x86_64 build of the xnu kernel.
This reverts commit eb4c98ca3d (
[DebugInfo] Exclude memory location values as parameter entry values),
effectively reintroducing the portion of D60716 which dealt with memory
locations (authored by Djordje, Nikola, Ananth, and Ivan).
This partially addresses llvm.org/PR43343. However, not all memory
operands forwarded to callees live in spill slots. In the xnu build, it
may be possible to use an escape analysis to increase the number of call
site parameter by another 15% (more details in PR43343).
Differential Revision: https://reviews.llvm.org/D70254
Summary: Removes CFI CFA directives that could incorrectly propagate
beyond the basic block they were inteded for. Specifically it removes
the epilogue CFI directives. See the branch_and_tail_call test for an
example of the issue. Should fix the stack unwinding issues caused by
the incorrect directives.
Reviewers: asb, lenary, shiva0217
Reviewed By: lenary
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69723
Summary:
This removes the use of zero as a base address in section-based dumping.
Although this will often be true for (unlinked) object files with a
single compile unit, it is not true in general. This means that
section-based dumping will not be able to resolve entries referencing
the base address (DW_LLE_offset_pair) -- it wasn't able to do that
correctly before either, but now it will be more explicit about it. One
exception to that is if the location list contains an explicit
DW_LLE_base_address entry -- in this case the dumper will pick it up,
and resolve subsequent entries normally.
The patch also removes the fallback to zero in the "inline" dumping in
case the compile unit does not contain a base address.
Reviewers: dblaikie, probinson, JDevlieghere, aprantl, SouraVX
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70115
Summary:
Entry values are considered for parameters that have register-described
DBG_VALUEs in the entry block (along with other conditions).
If a parameter's value has been propagated from the caller to the
callee, then the parameter's DBG_VALUE in the entry block may be
described using a register defined by some instruction, and entry values
should not be emitted for the parameter, which can currently occur.
One such case was seen in the attached test case, in which the second
parameter, which is described by a redefinition of the first parameter's
register, would incorrectly get an entry value using the first
parameter's register. This commit intends to solve such cases by keeping
track of register defines, and ignoring DBG_VALUEs in the entry block
that are described by such registers.
In a RelWithDebInfo build of clang-8, the average size of the set was
27, and in a RelWithDebInfo+ASan build it was 30.
Reviewers: djtodoro, NikolaPrica, aprantl, vsk
Reviewed By: djtodoro, vsk
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D69889
Summary:
This patch extracts the logic for computing the "absolute" locations,
which was partially present in the debug_loclists dumper, completes it,
and moves it into a separate function. This makes it possible to later
reuse the same logic for uses other than dumping.
The dumper is changed to reuse the location list interpreter, and its
format is changed somewhat. In "verbose" mode it prints the "raw" value
of a location list, the interpreted location (if available) and the
expression itself. In non-verbose mode it prints only one of the
location forms: it prefers the interpreted form, but falls back to the
"raw" format if interpretation is not possible (for instance, because we
were not given a base address, or the resolution of indirect addresses
failed).
This patch also undos some of the changes made in D69672, namely the
part about making all functions static. The main reason for this is that
I learned that the original approach (dumping only fully resolved
locations) meant that it was impossible to rewrite one of the existing
tests. To make that possible (and make the "inline location" dump work
in more cases), I now reuse the same dumping mechanism as is used for
section-based dumping. As this required having more objects know about
the various location lists classes, it seemed like a good idea to create
an interface abstracting the difference between them.
Therefore, I now create a DWARFLocationTable class, which will serve as
a base class for the location list classes. DWARFDebugLoclists is made
to inherit from that. DWARFDebugLoc will follow.
Another positive effect of this change is that section-based dumping
code will not need to use templates (as originally) envisioned, and that
the argument lists of the dumping functions become shorter.
Reviewers: dblaikie, probinson, JDevlieghere, aprantl, SouraVX
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70081
This was arbitrarily appearing in only the last section emitted - which
made tests more sensitive than they needed to be (removing the last
section - like the macinfo section change that's coming after this)
would, surprisingly, move the blank line to the previous section.
The macinfo support was broken for LTO situations, by terminating
macinfo lists only once - multiple macinfo contributions were correctly
labeled, but they all continued/flowed into later contributions until
only one terminator appeared at the end of the section.
Correctly terminate each contribution & fix the parsing to handle this
situation too. The parsing fix is also necessary for dumping linked
binaries - the previous code would stop at the end of the first
contribution - missing all later contributions in a linked binary.
It'd be nice to improve the dumping to print the offsets of each
contribution so it'd be easier to know which CU AT_macro_info refers to
which macinfo contribution.
This triggered asserts in the Chromium build, see https://crbug.com/1022729 for
details and reproducer.
> Without this change, when a nested tag type of any kind (enum, class,
> struct, union) is used as a variable type, it is emitted without
> emitting the parent type. In CodeView, parent types point to their inner
> types, and inner types do not point back to their parents. We already
> walk over all of the parent scopes to build the fully qualified name.
> This change simply requests their type indices as we go along to enusre
> they are all emitted.
>
> Fixes PR43905
>
> Reviewers: akhuang, amccarth
>
> Differential Revision: https://reviews.llvm.org/D69924
Without this change, when a nested tag type of any kind (enum, class,
struct, union) is used as a variable type, it is emitted without
emitting the parent type. In CodeView, parent types point to their inner
types, and inner types do not point back to their parents. We already
walk over all of the parent scopes to build the fully qualified name.
This change simply requests their type indices as we go along to enusre
they are all emitted.
Fixes PR43905
Reviewers: akhuang, amccarth
Differential Revision: https://reviews.llvm.org/D69924
This caused Chromium builds to fail with "inlinable function call in a function
with debug info must have a !dbg location" errors. See
https://bugs.chromium.org/p/chromium/issues/detail?id=1022296#c1 for a
reproducer.
> Currently, clang emits subprograms for declared functions when the
> target debugger or DWARF standard is known to support entry values
> (DW_OP_entry_value & the GNU equivalent).
>
> Treat DW_AT_tail_call the same way to allow debuggers to follow cross-TU
> tail calls.
>
> Pre-patch debug session with a cross-TU tail call:
>
> ```
> * frame #0: 0x0000000100000fa4 main`target at b.c:4:3 [opt]
> frame #1: 0x0000000100000f99 main`main at a.c:8:10 [opt]
> ```
>
> Post-patch (note that the tail-calling frame, "helper", is visible):
>
> ```
> * frame #0: 0x0000000100000fa4 main`target at b.c:4:3 [opt]
> frame #1: 0x0000000100000f80 main`helper [opt] [artificial]
> frame #2: 0x0000000100000f99 main`main at a.c:8:10 [opt]
> ```
>
> rdar://46577651
>
> Differential Revision: https://reviews.llvm.org/D69743
Summary:
This patch stems from the discussion D68270 (including some offline
talks). The idea is to provide an "incremental" api for parsing location
lists, which will avoid caching or materializing parsed data. An
additional goal is to provide a high level location list api, which
abstracts the differences between different encoding schemes, and can be
used by users which don't care about those (such as LLDB).
This patch implements the first part. It implements a call-back based
"visitLocationList" api. This function parses a single location list,
calling a user-specified callback for each entry. This is going to be
the base api, which other location list functions (right now, just the
dumping code) are going to be based on.
Future patches will do something similar for the v4 location lists, and
add a mechanism to translate raw entries into concrete address ranges.
Reviewers: dblaikie, probinson, JDevlieghere, aprantl, SouraVX
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69672
Currently, clang emits subprograms for declared functions when the
target debugger or DWARF standard is known to support entry values
(DW_OP_entry_value & the GNU equivalent).
Treat DW_AT_tail_call the same way to allow debuggers to follow cross-TU
tail calls.
Pre-patch debug session with a cross-TU tail call:
```
* frame #0: 0x0000000100000fa4 main`target at b.c:4:3 [opt]
frame #1: 0x0000000100000f99 main`main at a.c:8:10 [opt]
```
Post-patch (note that the tail-calling frame, "helper", is visible):
```
* frame #0: 0x0000000100000fa4 main`target at b.c:4:3 [opt]
frame #1: 0x0000000100000f80 main`helper [opt] [artificial]
frame #2: 0x0000000100000f99 main`main at a.c:8:10 [opt]
```
rdar://46577651
Differential Revision: https://reviews.llvm.org/D69743
This reverts commit f5e1b718a6.
PR43855 reports a performance regression with commit ee50590e. This commit
depends on the faulty one, so has to come out too.
From SelectionDAGs point of view, debug variable locations specified with
dbg.declare and dbg.addr are indirect -- they specify the address of
something. But calling conventions might mean that a Value is placed on
the stack somewhere, and this too is indirection. Previously this was
mixed up in the "IsIndirect" field of DBG_VALUE insts; this patch
separates them by encoding the indirection in a DIExpression.
If we have a dbg.declare or dbg.addr, then the expression produces an
address that then becomes a DWARF memory location. We can represent
this by putting a DW_OP_deref on the _end_ of the expression. If a Value
has been placed on the stack, then we need to put a DW_OP_deref on the
_start_ of the expression, to load the Value from the stack and have
the rest of the expression operate on it.
Differential Revision: https://reviews.llvm.org/D69028
This is a follow-up to D67448.
Split live intervals with multiple dead defs during the initial
execution of the live interval analysis, but do it outside of the
function createAndComputeVirtRegInterval.
Differential Revision: https://reviews.llvm.org/D68666
Extend the describeLoadedValue() with support for target specific ARM and
AArch64 instructions interpretation. The patch provides specialization for
ADD and SUB operations that include a register and an immediate/offset
operand. Some of the instructions can operate with global string addresses
or constant pool indexes but such cases are omitted since we currently lack
flexible support for processing such operands at DWARF production stage.
Patch by Nikola Prica
Differential Revision: https://reviews.llvm.org/D67556
This patch adds support for deleted C++ special member functions in
clang and llvm. Also added Defaulted member encodings for future
support for defaulted member functions.
Patch by Sourabh Singh Tomar!
Differential Revision: https://reviews.llvm.org/D69215
llvm/test/DebugInfo/MIR/X86/live-debug-values-reg-copy.mir failed with
EXPENSIVE_CHECKS enabled, causing the patch to be reverted in
rG2c496bb5309c972d59b11f05aee4782ddc087e71.
This patch relands the patch with a proper fix to the
live-debug-values-reg-copy.mir tests, by ensuring the MIR encodes the
callee-saves correctly so that the CalleeSaved info is taken from MIR
directly, rather than letting it be recalculated by the PEI pass. I've
done this by running `llc -stop-before=prologepilog` on the LLVM
IR as captured in the test files, adding the extra MOV instructions
that were manually added in the original test file, then running `llc
-run-pass=prologepilog` and finally re-added the comments for the MOV
instructions.
In the Pre-RA machine sinker, previously we were relying on all DBG_VALUEs
being immediately after the instruction that defined their operands. This
isn't a valid assumption, as a variable location change doesn't
necessarily correspond to where the value is computed. In this patch, we
collect DBG_VALUEs that might need sinking as we walk through a block,
and sink all of them if their defining instruction is sunk.
This patch adds some copy propagation too, so that if we sink a copy inst,
the now non-dominated paths can use the copy source for the variable
location.
Differential Revision: https://reviews.llvm.org/D58386
When we sink DBG_VALUEs between blocks, we simply move the DBG_VALUE
instruction to below the sunk instruction. However, we should also mark
the variable as being undef at the original location, to terminate any
earlier variable location. This patch does that -- plus, if the
instruction being sunk is a copy, it attempts to propagate the copy
through the DBG_VALUE, replacing the destination with the source.
Differential Revision: https://reviews.llvm.org/D58238
Summary:
The default implementation of the describeLoadedValue() hook uses the
MoveImm property to determine if an instruction moves an immediate. If
an instruction has that property the function returns the second
operand, assuming that that is the immediate value the instruction
moves. As far as I can tell, the MoveImm property does not imply that
the second operand is the immediate value, nor that any other operand
necessarily holds the immediate value; it just means that the
instruction moves some immediate value.
One example where the second operand is not the immediate is SystemZ's
LZER instruction, which moves a zero immediate implicitly: $f0S = LZER.
That case triggered an out-of-bound assertion when getting the operand.
I have added a test case for that instruction.
Another example is ARM's MVN instruction, which holds the logical
bitwise NOT'd value of the immediate that is moved. For the following
reproducer:
extern void foo(int);
int main() { foo(-11); }
an incorrect call site value would be emitted:
$ clang --target=arm foo.c -O1 -g -Xclang -femit-debug-entry-values \
-c -o - | ./build/bin/llvm-dwarfdump - | \
grep -A2 call_site_parameter
0x00000058: DW_TAG_GNU_call_site_parameter
DW_AT_location (DW_OP_reg0 R0)
DW_AT_GNU_call_site_value (DW_OP_lit10)
Another example is the A2_combineii instruction on Hexagon which moves
two immediates to a super-register: $d0 = A2_combineii 20, 10.
Perhaps these are rare exceptions, and most MoveImm instructions hold
the immediate in the second operand, but in my opinion the default
implementation of the hook should only describe values that it can, by
some contract, guarantee are safe to describe, rather than leaving it up
to the targets to override the exceptions, as that can silently result
in incorrect call site values.
This patch adds X86's relevant move immediate instructions to the
target's hook implementation, so this commit should be a NFC for that
target. We need to do the same for ARM and AArch64.
Reviewers: djtodoro, NikolaPrica, aprantl, vsk
Reviewed By: vsk
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D69109
Commit message from D66935:
This patch fixes a bug exposed by D65653 where a subsequent invocation
of `determineCalleeSaves` ends up with a different size for the callee
save area, leading to different frame-offsets in debug information.
In the invocation by PEI, `determineCalleeSaves` tries to determine
whether it needs to spill an extra callee-saved register to get an
emergency spill slot. To do this, it calls 'estimateStackSize' and
manually adds the size of the callee-saves to this. PEI then allocates
the spill objects for the callee saves and the remaining frame layout
is calculated accordingly.
A second invocation in LiveDebugValues causes estimateStackSize to return
the size of the stack frame including the callee-saves. Given that the
size of the callee-saves is added to this, these callee-saves are counted
twice, which leads `determineCalleeSaves` to believe the stack has
become big enough to require spilling an extra callee-save as emergency
spillslot. It then updates CalleeSavedStackSize with a larger value.
Since CalleeSavedStackSize is used in the calculation of the frame
offset in getFrameIndexReference, this leads to incorrect offsets for
variables/locals when this information is recalculated after PEI.
This patch fixes the lldb unit tests in `functionalities/thread/concurrent_events/*`
Changes after D66935:
Ensures AArch64FunctionInfo::getCalleeSavedStackSize does not return
the uninitialized CalleeSavedStackSize when running `llc` on a specific
pass where the MIR code has already been expected to have gone through PEI.
Instead, getCalleeSavedStackSize (when passed the MachineFrameInfo) will try
to recalculate the CalleeSavedStackSize from the CalleeSavedInfo. In debug
mode, the compiler will assert the recalculated size equals the cached
size as calculated through a call to determineCalleeSaves.
This fixes two tests:
test/DebugInfo/AArch64/asan-stack-vars.mir
test/DebugInfo/AArch64/compiler-gen-bbs-livedebugvalues.mir
that otherwise fail when compiled using msan.
Reviewed By: omjavaid, efriedma
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68783
llvm-svn: 375425
Summary:
Internally in LLVM's metadata we use DW_OP_entry_value operations with
the same semantics as DWARF; that is, its operand specifies the number
of bytes that the entry value covers.
At the time of emitting entry values we don't know the emitted size of
the DWARF expression that the entry value will cover. Currently the size
is hardcoded to 1 in DIExpression, and other values causes the verifier
to fail. As the size is 1, that effectively means that we can only have
valid entry values for registers that can be encoded in one byte, which
are the registers with DWARF numbers 0 to 31 (as they can be encoded as
single-byte DW_OP_reg0..DW_OP_reg31 rather than a multi-byte
DW_OP_regx). It is a bit confusing, but it seems like llvm-dwarfdump
will print an operation "correctly", even if the byte size is less than
that, which may make it seem that we emit correct DWARF for registers
with DWARF numbers > 31. If you instead use readelf for such cases, it
will interpret the number of specified bytes as a DWARF expression. This
seems like a limitation in llvm-dwarfdump.
As suggested in D66746, a way forward would be to add an internal
variant of DW_OP_entry_value, DW_OP_LLVM_entry_value, whose operand
instead specifies the number of operations that the entry value covers,
and we then translate that into the byte size at the time of emission.
In this patch that internal operation is added. This patch keeps the
limitation that a entry value can only be applied to simple register
locations, but it will fix the issue with the size operand being
incorrect for DWARF numbers > 31.
Reviewers: aprantl, vsk, djtodoro, NikolaPrica
Reviewed By: aprantl
Subscribers: jyknight, fedor.sergeev, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67492
llvm-svn: 374881
This patch kills off a significant user of the "IsIndirect" field of
DBG_VALUE machine insts. Brought up in in PR41675, IsIndirect is
techncally redundant as it can be expressed by the DIExpression of a
DBG_VALUE inst, and it isn't helpful to have two ways of expressing
things.
Rather than setting IsIndirect, have DBG_VALUE creators add an extra deref
to the insts DIExpression. There should now be no appearences of
IsIndirect=True from isel down to LiveDebugVariables / VirtRegRewriter,
which is ensured by an assertion in LDVImpl::handleDebugValue. This means
we also get to delete the IsIndirect handling in LiveDebugVariables. Tests
can be upgraded by for example swapping the following IsIndirect=True
DBG_VALUE:
DBG_VALUE $somereg, 0, !123, !DIExpression(DW_OP_foo)
With one where the indirection is in the DIExpression, by _appending_
a deref:
DBG_VALUE $somereg, $noreg, !123, !DIExpression(DW_OP_foo, DW_OP_deref)
Which both mean the same thing.
Most of the test changes in this patch are updates of that form; also some
changes in how the textual assembly printer handles these insts.
Differential Revision: https://reviews.llvm.org/D68945
llvm-svn: 374877
Summary:
This addresses a bug in collectCallSiteParameters() where call site
immediates would be truncated from int64_t to unsigned.
This fixes PR43525.
Reviewers: djtodoro, NikolaPrica, aprantl, vsk
Reviewed By: aprantl
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D68869
llvm-svn: 374770
Unify the range and loc emission (for both DWARFv4 and DWARFv5 style lists) and take advantage of that unification to use strategic base addresses for loclists.
Differential Revision: https://reviews.llvm.org/D68620
llvm-svn: 374600
Summary:
Visual Studio doesn't like it while stepping. It kicks you out of the
source view of the file being stepped through and tries to fall back to
the disassembly view.
Fixes PR43530
The fix is incomplete, because it's possible to have a basic block with
no source locations at all. In this case, we don't emit a .cv_loc, but
that will result in wrong stepping behavior in the debugger if the
layout predecessor of the location-less BB has an unrelated source
location. We could try harder to find a valid location that dominates or
post-dominates the current BB, but in general it's a dataflow problem,
and one still might not exist. I left a FIXME about this.
As an alternative, we might want to consider having the middle-end check
if its emitting codeview and get it to stop using line zero.
Reviewers: akhuang
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68747
llvm-svn: 374267
Summary:
This is necessary and sufficient to get simple cases of multiple
return working with multivalue enabled. More complex cases will
require block and loop signatures to be generalized to potentially be
type indices as well.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68684
llvm-svn: 374235