Summary:
Make sure we are comparing the unknown instructions in the alias set and the instruction interested in.
I believe this is clearly a bug (missed opportunity). I can also add some test cases if desired.
Reviewers: hfinkel, davide, dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34597
llvm-svn: 306241
Summary:
This patch changes getRange to getRangeRef and returns a reference to the ConstantRange object stored inside the DenseMap caches. We then take advantage of that to add new helper methods that can return min/max value of a signed or unsigned ConstantRange using that reference without first copying the ConstantRange.
getRangeRef calls itself recursively and I believe the reference return is fine for those calls.
I've left getSignedRange and getUnsignedRange returning a ConstantRange object so they will make a copy now. This is to ensure safety since the reference will be invalidated if the DenseMap changes.
I'm sure there are still more places that can take advantage of the reference and I'll submit future patches as I find them.
Reviewers: sanjoy, davide
Reviewed By: sanjoy
Subscribers: zzheng, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D32978
llvm-svn: 306229
Summary:
m_CombineOr isn't very efficient. The code using it is also quite verbose.
This patch adds m_Shift and m_BitwiseLogic matchers to make the using code more concise and improve the match efficiency.
Reviewers: spatel, davide
Reviewed By: davide
Subscribers: davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D34593
llvm-svn: 306206
Summary: visitSwitchInst should not take INT_MAX when Cost is negative. Instead of INT_MAX , we also use a valid upperbound cost when overflow occurs in Cost.
Reviewers: hans, echristo, dmgreen
Reviewed By: dmgreen
Subscribers: mcrosier, javed.absar, llvm-commits, eraman
Differential Revision: https://reviews.llvm.org/D34436
llvm-svn: 306118
Currently JumpThreading can use LazyValueInfo to analyze an 'and' or 'or' of compare if the compare is fed by a livein of a basic block. This can be used to to prove the condition can't be met for some predecessor and the jump from that predecessor can be moved to the false path of the condition.
But if the compare is something that InstCombine turns into an add and a single compare, it can't be analyzed because the livein is now an input to the add and not the compare.
This patch adds a new method to LVI to get a ConstantRange on an edge. Then we teach jump threading to detect the add livein feeding a compare and to get the ConstantRange and propagate it.
Differential Revision: https://reviews.llvm.org/D33262
llvm-svn: 306085
Summary: LVI can reason about an AND of icmps on the true dest of a branch. I believe we can do similar for the false dest of ORs. This allows us to get the same answer for the demorganed versions of some of the AND test cases as you can see.
Reviewers: anna, reames
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34431
llvm-svn: 306076
This matches the checks done at the beginning of isKnownNonEqual that this code is partially emulating.
Without this we can get assertion failures due to the bit widths of the KnownBits not matching.
llvm-svn: 306044
Using various methods, BasicAA tries to determine whether two
GetElementPtr memory locations alias when its base pointers are known
to be equal. When none of its heuristics are applicable, it falls back
to PartialAlias to, according to a comment, protect TBAA making a wrong
decision in case of unions and malloc. PartialAlias is not correct,
because a PartialAlias result implies that some, but not all, bytes
overlap which is not necessarily the case here.
AAResults returns the first analysis result that is not MayAlias.
BasicAA is always the first alias analysis. When it returns
PartialAlias, no other analysis is queried to give a more exact result
(which was the intention of returning PartialAlias instead of MayAlias).
For instance, ScopedAA could return a more accurate result.
The PartialAlias hack was introduced in r131781 (and re-applied in
r132632 after some reverts) to fix llvm.org/PR9971 where TBAA returns a
wrong NoAlias result due to a union. A test case for the malloc case
mentioned in the comment was not provided and I don't think it is
affected since it returns an omnipotent char anyway.
Since r303851 (https://reviews.llvm.org/D33328) clang does emit specific
TBAA for unions anymore (but "omnipotent char" instead). Hence, the
PartialAlias workaround is not required anymore.
This patch passes the test-suite and check-llvm/check-clang of a
self-hoisted build on x64.
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D34318
llvm-svn: 305938
MulOpsInlineThreshold option of SCEV is defaulted to 1000, which is inadequately high.
When constructing SCEVs of expressions like:
x1 = a * a
x2 = x1 * x1
x3 = x2 * x2
...
We actually have huge SCEVs with max allowed amount of operands inlined.
Such expressions are easy to get from unrolling of loops looking like
x = a
for (i = 0; i < n; i++)
x = x * x
Or more tricky cases where big powers are involved. If some non-linear analysis
tries to work with a SCEV that has 1000 operands, it may lead to excessively long
compilation. The attached test does not pass within 1 minute with default threshold.
This patch decreases its default value to 32, which looks much more reasonable if we
use analyzes with complexity O(N^2) or O(N^3) working with SCEV.
Differential Revision: https://reviews.llvm.org/D34397
llvm-svn: 305882
The description of this option was copy-pasted from another one and does not
correspond to reality.
Differential Revision: https://reviews.llvm.org/D34390
llvm-svn: 305782
Current implementation of SCEVExpander demonstrates a very naive behavior when
it deals with power calculation. For example, a SCEV for x^8 looks like
(x * x * x * x * x * x * x * x)
If we try to expand it, it generates a very straightforward sequence of muls, like:
x2 = mul x, x
x3 = mul x2, x
x4 = mul x3, x
...
x8 = mul x7, x
This is a non-efficient way of doing that. A better way is to generate a sequence of
binary power calculation. In this case the expanded calculation will look like:
x2 = mul x, x
x4 = mul x2, x2
x8 = mul x4, x4
In some cases the code size reduction for such SCEVs is dramatic. If we had a loop:
x = a;
for (int i = 0; i < 3; i++)
x = x * x;
And this loop have been fully unrolled, we have something like:
x = a;
x2 = x * x;
x4 = x2 * x2;
x8 = x4 * x4;
The SCEV for x8 is the same as in example above, and if we for some reason
want to expand it, we will generate naively 7 multiplications instead of 3.
The BinPow expansion algorithm here allows to keep code size reasonable.
This patch teaches SCEV Expander to generate a sequence of BinPow multiplications
if we have repeating arguments in SCEVMulExpressions.
Differential Revision: https://reviews.llvm.org/D34025
llvm-svn: 305663
This is a fix for the test case in PR32314.
Basic Alias Analysis can ask if two nodes are known non-equal after looking through a phi node to find a GEP. isAddOfNonZero saw an add of a constant from the same phi and said that its output couldn't be equal. But Basic Alias Analysis was really asking about the value from the previous loop iteration.
This patch at least makes that case not happen anymore, I'm not sure if there were still other ways this can fail. As was discussed in the bug, it looks like fixing BasicAA would be difficult so this patch seemed like a possible workaround
Differential Revision: https://reviews.llvm.org/D33136
llvm-svn: 305481
This is a fix for PR33292 that shows a case of extremely long compilation
of a single .c file with clang, with most time spent within SCEV.
We have a mechanism of limiting recursion depth for getAddExpr to avoid
long analysis in SCEV. However, there are calls from getAddExpr to getMulExpr
and back that do not propagate the info about depth. As result of this, a chain
getAddExpr -> ... .> getAddExpr -> getMulExpr -> getAddExpr -> ... -> getAddExpr
can be extremely long, with every segment of getAddExpr's being up to max depth long.
This leads either to long compilation or crash by stack overflow. We face this situation while
analyzing big SCEVs in the test of PR33292.
This patch applies the same limit on max expression depth for getAddExpr and getMulExpr.
Differential Revision: https://reviews.llvm.org/D33984
llvm-svn: 305463
There's an early out that's trying to detect when we don't know any bits that make up the legal range of a shift. The code subtracts one from BitWidth which creates a mask in the lower bits for power of 2 bit widths. This is then ANDed with the known bits to see if any of those bits are known. If the bit width isn't a power of 2 this creates a non-sensical mask.
This patch corrects this by rounding up to a power of 2 before doing the subtract and mask.
Differential Revision: https://reviews.llvm.org/D34165
llvm-svn: 305400
Previously it was non-const reference named Result which would tend to make someone think that it was an outparam when really its an input.
llvm-svn: 305114
Summary:
Unless I'm mistaken, the special handling for EQ/NE should cover everything and there is no reason to fallthrough to the more complex code. For that matter I'm not sure there's any reason to special case EQ/NE other than avoiding creating temporary ConstantRanges.
This patch moves the complex code into an else so we only do it when we are handling a predicate other than EQ/NE.
Reviewers: anna, reames, resistor, Farhana
Reviewed By: anna
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34000
llvm-svn: 305086
This is to prepare to allow for dead stripping of globals in the
merged modules.
Differential Revision: https://reviews.llvm.org/D33921
llvm-svn: 305027
The zero heuristic assumes that integers are more likely positive than negative,
but this also has the effect of assuming that strcmp return values are more
likely positive than negative. Given that for nonzero strcmp return values it's
the ordering of arguments that determines the sign of the result there's no
reason to assume that's true.
Fix this by inspecting the LHS of the compare and using TargetLibraryInfo to
decide if it's strcmp-like, and if so only assume that nonzero is more likely
than zero i.e. strings are more often different than the same. This causes a
slight code generation change in the spec2006 benchmark 403.gcc, but with no
noticeable performance impact. The intent of this patch is to allow better
optimisation of dhrystone on Cortex-M cpus, but currently it won't as there are
also some changes that need to be made to if-conversion.
Differential Revision: https://reviews.llvm.org/D33934
llvm-svn: 304970
Summary:
Check that the first access before one being tested is valid.
Before this patch, if there was no definition prior to the Use being tested,
the first time Iter was deferenced, it hit the sentinel.
Reviewers: dberlin, gbiv
Subscribers: sanjoy, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D33950
llvm-svn: 304926
Seems like at least one reasonable interpretation of optnone is that the
optimizer never "looks inside" a function. This fix is consistent with
that interpretation.
Specifically this came up in the situation:
f3 calls f2 calls f1
f2 is always_inline
f1 is optnone
The application of readnone to f1 (& thus to f2) caused the inliner to
kill the call to f2 as being trivially dead (without even checking the
cost function, as it happens - not sure if that's also a bug).
llvm-svn: 304833
Summary:
LVIPrinter pass was previously relying on the LVICache. We now directly call the
the LVI functions which solves the value if the LVI information is not already
available in the cache. This has 2 benefits over the printing of LVI cache:
1. higher coverage (i.e. catches errors) in LVI code when cache value is
invalidated.
2. relies on the core functions, and not dependent on the LVI cache (which may
be scrapped at some point).
It would still catch any cache invalidation errors, since we first go through
the cache.
Reviewers: reames, dberlin, sanjoy
Reviewed by: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32135
llvm-svn: 304819
Summary:
Expanding the loop idiom test for memcpy to also recognize
unordered atomic memcpy. The only difference for recognizing
an unordered atomic memcpy and instead of a normal memcpy is
that the loads and/or stores involved are unordered atomic operations.
Background: http://lists.llvm.org/pipermail/llvm-dev/2017-May/112779.html
Patch by Daniel Neilson!
Reviewers: reames, anna, skatkov
Reviewed By: reames, anna
Subscribers: llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D33243
llvm-svn: 304806
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
isKnownNonEqual is called a little earlier in this function and can handle the case that we were checking here as well as more complex cases.
llvm-svn: 304775
This will be used by another commit to remove some code from InstSimplify that is redundant for scalars, but was needed for vectors due to this issue.
llvm-svn: 304774
This is actually NFC because the next case starts with the same if statement as this case did. So the result will be the same and it will fallthrough to the end of the switch. But there's no reason to rely on that so we should just break.
llvm-svn: 304680
Summary:
This is to enable the new switch inline cost heuristic (r301649) by removing the
old heuristic as well as the flag itself.
In my experiment for LLVM test suite and spec2000/2006, +17.82% performance and
8% code size reduce was observed in spec2000/vertex with O3 LTO in AArch64.
No significant code size / performance regression was found in O3/O2/Os. No
significant complain was reported from the llvm-dev thread.
Reviewers: hans, chandlerc, eraman, haicheng, mcrosier, bmakam, eastig, ddibyend, echristo
Reviewed By: echristo
Subscribers: javed.absar, kristof.beyls, echristo, aemerson, rengolin, mehdi_amini
Differential Revision: https://reviews.llvm.org/D32653
llvm-svn: 304594
Summary:
The constant folding code currently assumes that the constant expression will always be on the left and the simple null will be on the right. But that's not true at least on the path from InstSimplify.
This patch adds support to ConstantFolding to detect the reversed case.
Reviewers: spatel, dberlin, majnemer, davide, joey
Reviewed By: joey
Subscribers: joey, llvm-commits
Differential Revision: https://reviews.llvm.org/D33801
llvm-svn: 304559
Summary:
Reduce min percent required for indirect call promotion from 33% to 30%,
which matches gcc's threshold and catches the same hot opportunities.
Reviewers: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33798
llvm-svn: 304469
Replace GVFlags::LiveRoot with GVFlags::Live and use that instead of
all the DeadSymbols sets. This is refactoring in order to make
liveness information available in the RegularLTO pipeline.
llvm-svn: 304466
This patch does an inline expansion of memcmp.
It changes the memcmp library call into an inline expansion when the size is
known at compile time and is under a target specified threshold.
This expansion is implemented in CodeGenPrepare and expands into straight line
code. The target specifies a maximum load size and the expansion works by using
this size to load the two sources, compare, and exit early if a difference is
found. It also has a special case when the memcmp result is used in a compare
to zero equality.
Differential Revision: https://reviews.llvm.org/D28637
llvm-svn: 304313
Thanks to Galina Kistanova for finding the missing break!
When trying to make a test for this, I realized our logic for handling
extractvalue/insertvalue/... is somewhat broken. This makes constructing
a test-case for this missing break nontrivial.
llvm-svn: 304275
Params DT and LI are redundant, because these values are contained in fields anyways.
Differential Revision: https://reviews.llvm.org/D33668
llvm-svn: 304204
The optimistic delinearization implemented in LLVM detects array sizes by
looking for non-linear products between parameters and induction variables.
In OpenCL code, such products often look like:
A[get_global_id(0) * N + get_global_id(1)]
Hence, the IV is hidden in the get_global_id() call and consequently
delinearization would fail as no induction variable is available that helps
us to identify N as array size parameter.
We now use a very simple heuristic to change this. We assume that each parameter
that comes directly from a function call is a hidden induction variable. As
a result, we can delinearize the access above to:
A[get_global_id(0)][get_global_id(1]
llvm-svn: 304073
Summary:
This fixes introduction of an incorrect inttoptr/ptrtoint pair in
the included test case which makes use of non-integral pointers. I
suspect there are more cases like this left, but this takes care of
the one I was seeing at the moment.
Reviewers: sanjoy
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D33129
llvm-svn: 304058
Previously, we called simplifyPossiblyCastedAndOrOfICmps twice with the operands commuted, but the call to simplifyAndOrOfICmpsWithConstants further down already handles commuting and doesn't need to be called both ways.
This patch pushes double calls further down to just the individual routines that need to be called twice.
Differential Revision: https://reviews.llvm.org/D33603
llvm-svn: 304044
This code was replicated two additional times to handle commuted cases, but I think a commutable matcher can take care of it.
Differential Revision: https://reviews.llvm.org/D33585
llvm-svn: 304022
The tests here are have operands commuted to provide more coverage. I also commuted one of the instructions in the scalar tests so the 4 tests cover the 4 commuted variations
Differential Revision: https://reviews.llvm.org/D33599
llvm-svn: 304021
The patch rL303730 was reverted because test lsr-expand-quadratic.ll failed on
many non-X86 configs with this patch. The reason of this is that the patch
makes a correctless fix that changes optimizer's behavior for this test.
Without the change, LSR was making an overconfident simplification basing on a
wrong SCEV. Apparently it did not need the IV analysis to do this. With the
change, it chose a different way to simplify (that wasn't so confident), and
this way required the IV analysis. Now, following the right execution path,
LSR tries to make a transformation relying on IV Users analysis. This analysis
is target-dependent due to this code:
// LSR is not APInt clean, do not touch integers bigger than 64-bits.
// Also avoid creating IVs of non-native types. For example, we don't want a
// 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
uint64_t Width = SE->getTypeSizeInBits(I->getType());
if (Width > 64 || !DL.isLegalInteger(Width))
return false;
To make a proper transformation in this test case, the type i32 needs to be
legal for the specified data layout. When the test runs on some non-X86
configuration (e.g. pure ARM 64), opt gets confused by the specified target
and does not use it, rejecting the specified data layout as well. Instead,
it uses some default layout that does not treat i32 as a legal type
(currently the layout that is used when it is not specified does not have
legal types at all). As result, the transformation we expect to happen does
not happen for this test.
This re-enabling patch does not have any source code changes compared to the
original patch rL303730. The only difference is that the failing test is
moved to X86 directory and now has requirement of running on x86 only to comply
with the specified target triple and data layout.
Differential Revision: https://reviews.llvm.org/D33543
llvm-svn: 303971
having it internally allocate the loop.
This is a much more flexible API and necessary in the new loop unswitch
to reasonably support both new and old PMs in common code. It also just
seems like a cleaner separation of concerns.
NFC, this should just be a pure refactoring.
Differential Revision: https://reviews.llvm.org/D33528
llvm-svn: 303834
Summary: This code was migrated from InstCombine a few years ago. InstCombine had nearby code that would move Constants to the RHS for these, but InstSimplify doesn't have such code on this path.
Reviewers: spatel, majnemer, davide
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33473
llvm-svn: 303774
This continues the changes started when computeSignBit was replaced with this new version of computeKnowBits.
Differential Revision: https://reviews.llvm.org/D33431
llvm-svn: 303773
The loop vectorizer usually vectorizes any instruction it can and then
extracts the elements for a scalarized use. On SystemZ, all elements
containing addresses must be extracted into address registers (GRs). Since
this extraction is not free, it is better to have the address in a suitable
register to begin with. By forcing address arithmetic instructions and loads
of addresses to be scalar after vectorization, two benefits result:
* No need to extract the register
* LSR optimizations trigger (LSR isn't handling vector addresses currently)
Benchmarking show improvements on SystemZ with this new behaviour.
Any other target could try this by returning false in the new hook
prefersVectorizedAddressing().
Review: Renato Golin, Elena Demikhovsky, Ulrich Weigand
https://reviews.llvm.org/D32422
llvm-svn: 303744
When folding arguments of AddExpr or MulExpr with recurrences, we rely on the fact that
the loop of our base recurrency is the bottom-lost in terms of domination. This assumption
may be broken by an expression which is treated as invariant, and which depends on a complex
Phi for which SCEVUnknown was created. If such Phi is a loop Phi, and this loop is lower than
the chosen AddRecExpr's loop, it is invalid to fold our expression with the recurrence.
Another reason why it might be invalid to fold SCEVUnknown into Phi start value is that unlike
other SCEVs, SCEVUnknown are sometimes position-bound. For example, here:
for (...) { // loop
phi = {A,+,B}
}
X = load ...
Folding phi + X into {A+X,+,B}<loop> actually makes no sense, because X does not exist and cannot
exist while we are iterating in loop (this memory can be even not allocated and not filled by this moment).
It is only valid to make such folding if X is defined before the loop. In this case the recurrence {A+X,+,B}<loop>
may be existant.
This patch prohibits folding of SCEVUnknown (and those who use them) into the start value of an AddRecExpr,
if this instruction is dominated by the loop. Merging the dominating unknown values is still valid. Some tests that
relied on the fact that some SCEVUnknown should be folded into AddRec's are changed so that they no longer
expect such behavior.
llvm-svn: 303730
When presented with an icmp/select pair, we can end up asking what would happen
if we replaced one constant with another in an instruction. This is a mistake,
while non-constant Values could become a constant, constants cannot change and
trying to do so can lead to completely invalid IR (a GEP referencing a
non-existant field in the original case).
llvm-svn: 303580
This is a re-application of a r303497 that was reverted in r303498.
I thought it had broken a bot when it had not (the breakage did not
go away with the revert).
This change makes the split between the "exact" backedge taken count
and the "maximum" backedge taken count a bit more obvious. Both of
these are upper bounds on the number of times the loop header
executes (since SCEV does not account for most kinds of abnormal
control flow), but the latter is guaranteed to be a constant.
There were a few places where the max backedge taken count *was* a
non-constant; I've changed those to compute constants instead.
At this point, I'm not sure if the constant max backedge count can be
computed by calling `getUnsignedRange(Exact).getUnsignedMax()` without
losing precision. If it can, we can simplify even further by making
`getMaxBackedgeTakenCount` a thin wrapper around
`getBackedgeTakenCount` and `getUnsignedRange`.
llvm-svn: 303531
This change makes the split between the "exact" backedge taken count
and the "maximum" backedge taken count a bit more obvious. Both of
these are upper bounds on the number of times the loop header
executes (since SCEV does not account for most kinds of abnormal
control flow), but the latter is guaranteed to be a constant.
There were a few places where the max backedge taken count *was* a
non-constant; I've changed those to compute constants instead.
At this point, I'm not sure if the constant max backedge count can be
computed by calling `getUnsignedRange(Exact).getUnsignedMax()` without
losing precision. If it can, we can simplify even further by making
`getMaxBackedgeTakenCount` a thin wrapper around
`getBackedgeTakenCount` and `getUnsignedRange`.
llvm-svn: 303497
Summary: This allows pthread_self to be pulled out of a loop by LICM.
Reviewers: hfinkel, arsenm, davide
Reviewed By: davide
Subscribers: davide, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D32782
llvm-svn: 303495
Refactor the strlen optimization code to work for both strlen and wcslen.
This especially helps with programs in the wild where people pass
L"string"s to const std::wstring& function parameters and the wstring
constructor gets inlined.
This also fixes a lingerind API problem/bug in getConstantStringInfo()
where zeroinitializers would always give you an empty string (without a
length) back regardless of the actual length of the initializer which
did not work well in the TrimAtNul==false causing the PR mentioned
below.
Note that the fixed getConstantStringInfo() needed fixes to SelectionDAG
memcpy lowering and may lead to some cases for out-of-bounds
zeroinitializer accesses not getting optimized anymore. So some code
with UB may produce out of bound memory reads now instead of just
producing zeros.
The refactoring "accidentally" fixes http://llvm.org/PR32124
Differential Revision: https://reviews.llvm.org/D32839
llvm-svn: 303461
Summary:
Implements PR889
Removing the virtual table pointer from Value saves 1% of RSS when doing
LTO of llc on Linux. The impact on time was positive, but too noisy to
conclusively say that performance improved. Here is a link to the
spreadsheet with the original data:
https://docs.google.com/spreadsheets/d/1F4FHir0qYnV0MEp2sYYp_BuvnJgWlWPhWOwZ6LbW7W4/edit?usp=sharing
This change makes it invalid to directly delete a Value, User, or
Instruction pointer. Instead, such code can be rewritten to a null check
and a call Value::deleteValue(). Value objects tend to have their
lifetimes managed through iplist, so for the most part, this isn't a big
deal. However, there are some places where LLVM deletes values, and
those places had to be migrated to deleteValue. I have also created
llvm::unique_value, which has a custom deleter, so it can be used in
place of std::unique_ptr<Value>.
I had to add the "DerivedUser" Deleter escape hatch for MemorySSA, which
derives from User outside of lib/IR. Code in IR cannot include MemorySSA
headers or call the MemoryAccess object destructors without introducing
a circular dependency, so we need some level of indirection.
Unfortunately, no class derived from User may have any virtual methods,
because adding a virtual method would break User::getHungOffOperands(),
which assumes that it can find the use list immediately prior to the
User object. I've added a static_assert to the appropriate OperandTraits
templates to help people avoid this trap.
Reviewers: chandlerc, mehdi_amini, pete, dberlin, george.burgess.iv
Reviewed By: chandlerc
Subscribers: krytarowski, eraman, george.burgess.iv, mzolotukhin, Prazek, nlewycky, hans, inglorion, pcc, tejohnson, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D31261
llvm-svn: 303362
Replace two places that duplicate the code of isLoopInvariant method with
the invocation of this method.
Differential Revision: https://reviews.llvm.org/D33313
llvm-svn: 303336
The probability of edge coming to unreachable block should be as low as possible.
The change reduces the probability to minimal value greater than zero.
The bug https://bugs.llvm.org/show_bug.cgi?id=32214 show the example when
the probability of edge coming to unreachable block is greater than for edge
coming to out of the loop and it causes incorrect loop rotation.
Please note that with this change the behavior of unreachable heuristic is a bit different
than others. Specifically, before this change the sum of probabilities
coming to unreachable blocks have the same weight for all branches
(it was just split over all edges of this block coming to unreachable blocks).
With this change it might be slightly different but not to much due to probability of
taken branch to unreachable block is really small.
Reviewers: chandlerc, sanjoy, vsk, congh, junbuml, davidxl, dexonsmith
Reviewed By: chandlerc, dexonsmith
Subscribers: reames, llvm-commits
Differential Revision: https://reviews.llvm.org/D30633
llvm-svn: 303327
Summary:
There are several places in the codebase that try to calculate a maximum value in a Statistic object. We currently do this in one of two ways:
MaxNumFoo = std::max(MaxNumFoo, NumFoo);
or
MaxNumFoo = (MaxNumFoo > NumFoo) ? MaxNumFoo : NumFoo;
The first version reads from MaxNumFoo one time and uncontionally rwrites to it. The second version possibly reads it twice depending on the result of the first compare. But we have no way of knowing if the value was changed by another thread between the reads and the writes.
This patch adds a method to the Statistic object that can ensure that we only store if our value is the max and the previous max didn't change after we read it. If it changed we'll recheck if our value should still be the max or not and try again.
This spawned from an audit I'm trying to do of all places we uses the implicit conversion to unsigned on the Statistics objects. See my previous thread on llvm-dev https://groups.google.com/forum/#!topic/llvm-dev/yfvxiorKrDQ
Reviewers: dberlin, chandlerc, hfinkel, dblaikie
Reviewed By: chandlerc
Subscribers: llvm-commits, sanjoy
Differential Revision: https://reviews.llvm.org/D33301
llvm-svn: 303318
We already handled all of the new tests identically, but several
of those went through a lot of unnecessary processing before
getting folded.
Another motivation for grouping these cases together is that
InstCombine needs a similar fold. Currently, it handles the
'not' cases inefficiently which can lead to bugs as described
in the post-commit comments of:
https://reviews.llvm.org/D32143
llvm-svn: 303295
Sorting of AddRecExprs by loop nesting does not make sense since we only invoke
the CompareSCEVComplexity for AddRecExprs that are used by one SCEV. This
guarantees that there is always a dominance relationship between them. This
patch removes the sorting by nesting which is a dead code in current usage of
this function.
Reviewed By: sanjoy
Differential Revision: https://reviews.llvm.org/D33228
llvm-svn: 303235
We would eventually catch these via demanded bits and computing known bits in InstCombine,
but I think it's better to handle the simple cases as soon as possible as a matter of efficiency.
This fold allows further simplifications based on distributed ops transforms. eg:
%a = lshr i8 %x, 7
%b = or i8 %a, 2
%c = and i8 %b, 1
InstSimplify can directly fold this now:
%a = lshr i8 %x, 7
Differential Revision: https://reviews.llvm.org/D33221
llvm-svn: 303213
Update threshold based on callee's hotness only when BFI is not available.
Otherwise use only callsite's hotness. This makes it easier to reason about
hotness related threshold updates.
Differential revision: https://reviews.llvm.org/D33157
llvm-svn: 303210
ProfileSummaryInfo already checks whether the module has sample profile
in determining profile counts. This will also be useful in inliner to
clean up threshold updates.
llvm-svn: 303204
The existing sorting order in defined CompareSCEVComplexity sorts AddRecExprs
by loop depth, but does not pay attention to dominance of loops. This can
lead us to the following buggy situation:
for (...) { // loop1
op1 = {A,+,B}
}
for (...) { // loop2
op2 = {A,+,B}
S = add op1, op2
}
In this case there is no guarantee that in operand list of S the op2 comes
before op1 (loop depth is the same, so they will be sorted just
lexicographically), so we can incorrectly treat S as a recurrence of loop1,
which is wrong.
This patch changes the sorting logic so that it places the dominated recs
before the dominating recs. This ensures that when we pick the first recurrency
in the operands order, it will be the bottom-most in terms of domination tree.
The attached test set includes some tests that produce incorrect SCEV
estimations and crashes with oldlogic.
Reviewers: sanjoy, reames, apilipenko, anna
Reviewed By: sanjoy
Subscribers: llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D33121
llvm-svn: 303148
This function gives the wrong answer on some non-ELF platforms in some
cases. The function that does the right thing lives in Mangler.h. To try to
discourage people from using this function, give it a different name.
Differential Revision: https://reviews.llvm.org/D33162
llvm-svn: 303134
ARM Neon has native support for half-sized vector registers (64 bits). This
is beneficial for example for 2D and 3D graphics. This patch adds the option
to lower MinVecRegSize from 128 via a TTI in the SLP Vectorizer.
*** Performance Analysis
This change was motivated by some internal benchmarks but it is also
beneficial on SPEC and the LLVM testsuite.
The results are with -O3 and PGO. A negative percentage is an improvement.
The testsuite was run with a sample size of 4.
** SPEC
* CFP2006/482.sphinx3 -3.34%
A pretty hot loop is SLP vectorized resulting in nice instruction reduction.
This used to be a +22% regression before rL299482.
* CFP2000/177.mesa -3.34%
* CINT2000/256.bzip2 +6.97%
My current plan is to extend the fix in rL299482 to i16 which brings the
regression down to +2.5%. There are also other problems with the codegen in
this loop so there is further room for improvement.
** LLVM testsuite
* SingleSource/Benchmarks/Misc/ReedSolomon -10.75%
There are multiple small SLP vectorizations outside the hot code. It's a bit
surprising that it adds up to 10%. Some of this may be code-layout noise.
* MultiSource/Benchmarks/VersaBench/beamformer/beamformer -8.40%
The opt-viewer screenshot can be seen at F3218284. We start at a colder store
but the tree leads us into the hottest loop.
* MultiSource/Applications/lambda-0.1.3/lambda -2.68%
* MultiSource/Benchmarks/Bullet/bullet -2.18%
This is using 3D vectors.
* SingleSource/Benchmarks/Shootout-C++/Shootout-C++-lists +6.67%
Noise, binary is unchanged.
* MultiSource/Benchmarks/Ptrdist/anagram/anagram +4.90%
There is an additional SLP in the cold code. The test runs for ~1sec and
prints out over 2000 lines. This is most likely noise.
* MultiSource/Applications/aha/aha +1.63%
* MultiSource/Applications/JM/lencod/lencod +1.41%
* SingleSource/Benchmarks/Misc/richards_benchmark +1.15%
Differential Revision: https://reviews.llvm.org/D31965
llvm-svn: 303116
Summary:
Merge overflow computation for signed add,
appearing both in InstCombine and ValueTracking.
As part of the merge,
cleanup the interface for overflow checks in InstCombine.
Patch by Yoav Ben-Shalom.
Reviewers: craig.topper, majnemer
Reviewed By: craig.topper
Subscribers: takuto.ikuta, llvm-commits
Differential Revision: https://reviews.llvm.org/D32946
llvm-svn: 303029
This patch adds min/max population count, leading/trailing zero/one bit counting methods.
The min methods return answers based on bits that are known without considering unknown bits. The max methods give answers taking into account the largest count that unknown bits could give.
Differential Revision: https://reviews.llvm.org/D32931
llvm-svn: 302925
This is a follow up patch for https://reviews.llvm.org/rL300440
to address a comment.
To make implementation to be consistent with other cases we just
ignore the remainder after distribution of remaining probability between
reachable edges.
If we reduced the probability of some edges coming to unreachable
blocks we should distribute the remaining part across other edges
coming to reachable blocks to satisfy the condition that sum of all
probabilities should be equal to one. If this remaining part is not
divided by number of "reachable" edges then we get this remainder.
This remainder probability should be pretty small. Other cases just ignore
if the sum of probabilities is not equal to one so we do the same.
Reviewers: chandlerc, sanjoy, vsk, junbuml, reames
Reviewed By: reames
Subscribers: reames, llvm-commits
Differential Revision: https://reviews.llvm.org/D32124
llvm-svn: 302883
Summary:
Don't use the metadata on call instructions for determining hotness
unless we are in sample PGO mode, where it is needed because profile
counts are not accurate. In instrumentation mode this is not necessary
and does more harm than good when calls have VP metadata that hasn't
been properly scaled after transformations or dropped after constant
prop based devirtualization (both should be fixed, but we don't need
to do this in the first place for instrumentation PGO).
This required adjusting a number of tests to distinguish between sample
and instrumentation PGO handling, and to add in profile summary metadata
so that getProfileCount can get the summary.
Reviewers: davidxl, danielcdh
Subscribers: aemerson, rengolin, mehdi_amini, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D32877
llvm-svn: 302844
I ran the test-suite (including SPEC 2006) in PGO mode comparing cold
thresholds of 225 and 45. Here are some stats on the text size:
Out of 904 tests that ran, 197 see a change in text size. The average
text size reduction (of all the 904 binaries) is 1.07%. Of the 197
binaries, 19 see a text size increase, as high as 18%, but most of them
are small single source benchmarks. There are 3 multisource benchmarks
with a >0.5% size increase (0.7, 1.3 and 2.1 are their % increases). On
the other side of the spectrum, 31 benchmarks see >10% size reduction
and 6 of them are MultiSource.
I haven't run the test-suite with other values of inlinecold-threshold.
Since we have a cold callsite threshold of 45, I picked this value.
Differential revision: https://reviews.llvm.org/D33106
llvm-svn: 302829
This fixes a ubsan bot failure after r302597, which made getProfileCount
non-static, but ended up invoking it on a null ProfileSummaryInfo object
in some cases from buildModuleSummaryIndex.
Most testing passed because the non-static getProfileCount currently
doesn't access any member variables, but I found this when testing a
follow on patch (D32877) that adds a member variable access.
llvm-svn: 302705
This pass uses a new target hook to decide whether or not to expand a particular
intrinsic to the shuffevector sequence.
Differential Revision: https://reviews.llvm.org/D32245
llvm-svn: 302631
This change is required because the notion of count is different for
sample profiling and getProfileCount will need to determine the
underlying profile type.
Differential revision: https://reviews.llvm.org/D33012
llvm-svn: 302597
- This change allows targets to opt-in to using them instead of the log2
shufflevector algorithm.
- The SLP and Loop vectorizers have the common code to do shuffle reductions
factored out into LoopUtils, and now have a unified interface for generating
reductions regardless of the preference of the target. LoopUtils now uses TTI
to determine what kind of reductions the target wants to handle.
- For CodeGen, basic legalization support is added.
Differential Revision: https://reviews.llvm.org/D30086
llvm-svn: 302514
This patch uses KnownOnes of the input of ctlz/cttz to bound the value that can be returned from these intrinsics. This makes these intrinsics more similar to the handling for ctpop which already uses known bits to produce a similar bound.
Differential Revision: https://reviews.llvm.org/D32521
llvm-svn: 302444
This introduces a new interface for computeKnownBits that returns the KnownBits object instead of requiring it to be pre-constructed and passed in by reference.
This is a much more convenient interface as it doesn't require the caller to figure out the BitWidth to pre-construct the object. It's so convenient that I believe we can use this interface to remove the special ComputeSignBit flavor of computeKnownBits.
As a step towards that idea, this patch replaces all of the internal usages of ComputeSignBit with this new interface. As you can see from the patch there were a couple places where we called ComputeSignBit which really called computeKnownBits, and then called computeKnownBits again directly. I've reduced those places to only making one call to computeKnownBits. I bet there are probably external users that do it too.
A future patch will update the external users and remove the ComputeSignBit interface. I'll also working on moving more locations to the KnownBits returning interface for computeKnownBits.
Differential Revision: https://reviews.llvm.org/D32848
llvm-svn: 302437
Summary:
Minor refactoring of foldIdentityShuffles() which allows the removal of a
ConstantDataVector::get() in SimplifyShuffleVectorInstruction.
Reviewers: spatel
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32955
Conflicts:
lib/Analysis/InstructionSimplify.cpp
llvm-svn: 302433
Summary:
Following up on Sanjay's suggetion in D32955, move this functionality
into ShuffleVectornstruction.
Reviewers: spatel, RKSimon
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32956
llvm-svn: 302420