Remove the assertion that disallowed the combination, since
RF_IgnoreMissingLocals should have no effect on globals. As it happens,
RF_NullMapMissingGlobalValues asserted in MapValue(Constant*,...), so I
also changed a cast to a cast_or_null to get my test passing.
llvm-svn: 265633
Start treating LocalAsMetadata similarly to function-local members of
the Value hierarchy in MapValue and MapMetadata.
- Don't memoize them.
- Return nullptr if they are missing.
This also cleans up ConstantAsMetadata to stop listening to the
RF_IgnoreMissingLocals flag.
llvm-svn: 265631
Clarify what this RemapFlag actually means.
- Change the flag name to match its intended behaviour.
- Clearly document that it's not supposed to affect globals.
- Add a host of FIXMEs to indicate how to fix the behaviour to match
the intent of the flag.
RF_IgnoreMissingLocals should only affect the behaviour of
RemapInstruction for function-local operands; namely, for operands of
type Argument, Instruction, and BasicBlock. Currently, it is *only*
passed into RemapInstruction calls (and the transitive MapValue calls
that it makes).
When I split Metadata from Value I didn't understand the flag, and I
used it in a bunch of places for "global" metadata.
This commit doesn't have any functionality change, but prepares to
cleanup MapMetadata and MapValue.
llvm-svn: 265628
Updating dominators for exit-blocks of the unrolled loops is not enough,
as shown in PR27157. The proper way is to update dominators for all
dominance-children of original loop blocks.
llvm-svn: 265605
Summary:
In the context of http://wg21.link/lwg2445 C++ uses the concept of
'stronger' ordering but doesn't define it properly. This should be fixed
in C++17 barring a small question that's still open.
The code currently plays fast and loose with the AtomicOrdering
enum. Using an enum class is one step towards tightening things. I later
also want to tighten related enums, such as clang's
AtomicOrderingKind (which should be shared with LLVM as a 'C++ ABI'
enum).
This change touches a few lines of code which can be improved later, I'd
like to keep it as NFC for now as it's already quite complex. I have
related changes for clang.
As a follow-up I'll add:
bool operator<(AtomicOrdering, AtomicOrdering) = delete;
bool operator>(AtomicOrdering, AtomicOrdering) = delete;
bool operator<=(AtomicOrdering, AtomicOrdering) = delete;
bool operator>=(AtomicOrdering, AtomicOrdering) = delete;
This is separate so that clang and LLVM changes don't need to be in sync.
Reviewers: jyknight, reames
Subscribers: jyknight, llvm-commits
Differential Revision: http://reviews.llvm.org/D18775
llvm-svn: 265602
1. Add FullUnrollMaxCount option that works like MaxCount, but also limits
the unroll count for fully unrolled loops. So if a loop has an iteration
count over this, it won't fully unroll.
2. Add CLI options for MaxCount and the new option, so they can be tested
(plus a test).
3. Make partial unrolling obey MaxCount.
An example use-case (the out of tree one this is originally designed for) is
a target’s TTI can analyze a loop and decide on a max unroll count separate
from the size threshold, e.g. based on register pressure, then constrain
LoopUnroll to not exceed that, regardless of the size of the unrolled loop.
llvm-svn: 265562
Summary:
When the backedge taken codition is computed from an icmp, SCEV can
deduce the backedge taken count only if one of the sides of the icmp
is an AddRecExpr. However, due to sign/zero extensions, we sometimes
end up with something that is not an AddRecExpr.
However, we can use SCEV predicates to produce a 'guarded' expression.
This change adds a method to SCEV to get this expression, and the
SCEV predicate associated with it.
In HowManyGreaterThans and HowManyLessThans we will now add a SCEV
predicate associated with the guarded backedge taken count when the
analyzed SCEV expression is not an AddRecExpr. Note that we only do
this as an alternative to returning a 'CouldNotCompute'.
We use new feature in Loop Access Analysis and LoopVectorize to analyze
and transform more loops.
Reviewers: anemet, mzolotukhin, hfinkel, sanjoy
Subscribers: flyingforyou, mcrosier, atrick, mssimpso, sanjoy, mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D17201
llvm-svn: 265535
r265273 added Mapper::mapBlockAddress, which delays mapping a
blockaddress value until the function has a body. The condition was
backwards, and should be checking Function::empty instead of
GlobalValue::isDeclaration.
llvm-svn: 265508
Don't emit a gc.result for a statepoint lowered from
@llvm.experimental.deoptimize since the call into __llvm_deoptimize is
effectively noreturn. Instead follow the corresponding gc.statepoint
with an "unreachable".
llvm-svn: 265485
Add a common parent class for ConstantArray, ConstantVector, and
ConstantStruct called ConstantAggregate. These are the aggregate
subclasses of Constant that take operands.
This is mainly a cleanup, adding common `isa` target and removing
duplicated code. However, it also simplifies caching which constants
point transitively at `GlobalValue` (a possible future direction).
llvm-svn: 265466
This commit completely rewrites Mapper::mapMetadata (the implementation
of llvm::MapMetadata) using an iterative algorithm. The guts of the new
algorithm are in MDNodeMapper::map, the entry function in a new class.
Previously, Mapper::mapMetadata performed a recursive exploration of the
graph with eager "just in case there's a reason" malloc traffic.
The new algorithm has these benefits:
- New nodes and temporaries are not created eagerly.
- Uniquing cycles are not duplicated (see new unit test).
- No recursion.
Given a node to map, it does this:
1. Use a worklist to perform a post-order traversal of the transitively
referenced unmapped nodes.
2. Track which nodes will change operands, and which will have new
addresses in the mapped scheme. Propagate the changes through the
POT until fixed point, to pick up uniquing cycles that need to
change.
3. Map all the distinct nodes without touching their operands. If
RF_MoveDistinctMetadata, they get mapped to themselves; otherwise,
they get mapped to clones.
4. Map the uniqued nodes (bottom-up), lazily creating temporaries for
forward references as needed.
5. Remap the operands of the distinct nodes.
Mehdi helped me out by profiling this with -flto=thin. On his workload
(importing/etc. for opt.cpp), MapMetadata sped up by 15%, contributed
about 50% less to persistent memory, and made about 100x fewer calls to
malloc. The speedup is less than I'd hoped. The profile mainly blames
DenseMap lookups; perhaps there's a way to reduce them (e.g., by
disallowing remapping of MDString).
It would be nice to break the strange remaining recursion on the Value
side: MapValue => materializeInitFor => RemapInstruction => MapValue. I
think we could do this by having materializeInitFor return a worklist of
things to be remapped.
llvm-svn: 265456
Direct callees' that are cast to other function prototypes,
show up in the Call/Invoke instructions as ConstantExpr's.
Currently llvm::CallSite's getCalledFunction() fails
to return the callees in such expressions as direct calls.
Value profiling should avoid instrumenting such cases. Mostly NFC.
llvm-svn: 265330
Summary:
To aid in debugging, dump out the correlation between value names and
GUID for each source module when it is materialized. This will make it
easier to comprehend the earlier summary-based function importing debug
trace which only has access to and prints the GUIDs.
Reviewers: joker.eph
Subscribers: llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D18556
llvm-svn: 265326
Remove a few old FIXMEs from the original commit of the Metadata/Value
split in r223802. These are commented out assertions to the effect that
calls between mapValue and mapMetadata never return nullptr.
(The only behaviour change is that Mapper::mapSimpleMetadata memoizes
the nullptr return.)
When I originally rewrote the mapping code, I thought we could be
stricter in the new metadata hierarchy and never return nullptr when
RF_NullMapMissingGlobalValues was off. It's still not entirely clear to
me why these assertions failed (a few months ago, I had a theory that I
forgot to write down, but that's helping no one).
Understood or not, I no longer see how these commented-out assertions
would be useful. I'm relegating them to the annals of source control
before making significant changes to ValueMapper.cpp.
llvm-svn: 265282
This adds an assertion to maintain the property from r265273. When
Mapper::mapSimpleMetadata calls Mapper::mapValue, it should not find its
way back to mapMetadataImpl. This guarantees that mapSimpleMetadata is
not involved in any recursion.
Since Mapper::mapValue calls out to arbitrary materializers, we need to
save a bit on the ValueMap to make this assertion effective.
There should be no functionality change here. This co-recursion should
already have been impossible.
llvm-svn: 265276
The main change is to delay materializing GlobalValue initializers from
Mapper::mapValue until Mapper::~Mapper. This effectively removes all
recursion from mapSimplifiedMetadata, as promised in r265270.
mapSimplifiedMetadata calls mapValue for ConstantAsMetadata nodes to
find the mapped constant, and now it shouldn't be possible for mapValue
to indirectly re-invoke mapMetadata. I'll add an assertion to that
effect in a follow-up (separated so that the assertion can easily be
reverted independently, if it comes to that).
This a step toward a broader goal: converting Mapper::mapMetadataImpl
from a recursive to an iterative algorithm.
When a BlockAddress points at a BasicBlock inside an unmaterialized
function body, we need to delay it until the function body is
materialized in Mapper::~Mapper. This commit creates a temporary
BasicBlock and returns a new BlockAddress, then RAUWs the BasicBlock
once it is known. This situation should be extremely rare since a
BlockAddress is usually used from within the function it's referencing
(and BlockAddress itself is rare).
There should be no observable functionality change.
llvm-svn: 265273
Split out a helper for mapping metadata without operands. This is any
metadata that is not an MDNode, and any MDNode where the answer is known
without looking at operands.
Through some weird twists, this function is co-recursive:
mapSimpleMetadata
=> MapValue
=> materializeInitFor
=> linkFunctionBody
=> RemapInstructions
=> MapMetadata
=> mapSimpleMetadata
I plan to break the recursion in a follow-up.
llvm-svn: 265270
We already skip optimizations if the return value
of printf() is used, so CI->use_empty() is always
true.
Differential Revision: http://reviews.llvm.org/D18656
llvm-svn: 265253
Instead of checking live during MapMetadata whether a subprogram is
needed, seed the ValueMap with `nullptr` up-front.
There is a small hypothetical functionality change. Previously, calling
MapMetadataOp on a node whose "scope:" chain led to an unneeded
subprogram would return nullptr. However, if that were ever called,
then the subprogram would be needed; a situation that the IRMover is
supposed to avoid a priori!
Besides cleaning up the code a little, this restores a nice property:
MapMetadataOp returns the same as MapMetadata.
llvm-svn: 265229
Support seeding a ValueMap with nullptr for Metadata entries, a
situation I didn't consider in the Metadata/Value split.
I added a ValueMapper::getMappedMD accessor that returns an
Optional<Metadata*> with the mapped (possibly null) metadata. IRMover
needs to use this to avoid modifying the map when it's checking for
unneeded subprograms. I updated a call from bugpoint since I find the
new code clearer.
llvm-svn: 265228
Summary: This should make the code more readable, especially all the map declarations.
Reviewers: tejohnson
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18721
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 265215
Use a helper function to find all the direct-calls-sites in a function.
Also split the code into a separated file as this will be use by
indirect-call-promotion transformation.
Differential Revision: http://reviews.llvm.org/D18704
llvm-svn: 265199
A catchswitch cannot be preceded by another instruction in the same
basic block (other than a PHI node).
Instead, insert the extract element right after the materialization of
the vectorized value. This isn't optimal but is a reasonable compromise
given the constraints of WinEH.
This fixes PR27163.
llvm-svn: 265157
Refactor the code that gets and creates PGOFuncName meta data so that it can be
used in clang's value profile annotation.
Differential Revision: http://reviews.llvm.org/D18623
llvm-svn: 265149
This is intended to be used for ThinLTO incremental build.
Differential Revision: http://reviews.llvm.org/D18213
This is a recommit of r265095 after fixing the Windows issues.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 265111
This reverts commit r265096, r265095, and r265094.
Windows build is broken, and the validation does not pass.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 265102
They're not necessary (since the stack pointer is trivially restored on
return), and the way LLVM inserts the stackrestore calls breaks the
IR (we get a stackrestore between the deoptimize call and the return).
llvm-svn: 265101
They're not necessary (since the lifetime of the alloca is trivially
over due to the return), and the way LLVM inserts the lifetime.end
markers breaks the IR (we get a lifetime end marker between the
deoptimize call and the return).
llvm-svn: 265100
This is intended to be used for ThinLTO incremental build.
Differential Revision: http://reviews.llvm.org/D18213
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 265095
"blockaddress" can not apply to an external function. All
blockaddress constant uses must belong to the same module as the
definition of the target function.
llvm-svn: 265061
This patch simply mirrors the attributes we give to @llvm.nvvm.reflect
to the __nvvm_reflect libdevice call. This shaves about 30% of the code
in libdevice away because of CSE opportunities. It's also helps us
figure out that libdevice implementations of transcendental functions
don't have side-effects.
llvm-svn: 265060
Summary:
As discussed on llvm-dev[1].
This change adds the basic boilerplate code around having this intrinsic
in LLVM:
- Changes in Intrinsics.td, and the IR Verifier
- A lowering pass to lower @llvm.experimental.guard to normal
control flow
- Inliner support
[1]: http://lists.llvm.org/pipermail/llvm-dev/2016-February/095523.html
Reviewers: reames, atrick, chandlerc, rnk, JosephTremoulet, echristo
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18527
llvm-svn: 264976
Commit r260791 contained an error in that it would introduce a cross-module
reference in the old module. It also introduced O(N^2) complexity in the
module cloner by requiring the entire module to be visited for each function.
Fix both of these problems by avoiding use of the CloneDebugInfoMetadata
function (which is only designed to do intra-module cloning) and cloning
function-attached metadata in the same way that we clone all other metadata.
Differential Revision: http://reviews.llvm.org/D18583
llvm-svn: 264935
Widening a PHI requires us to insert a trunc.
The logical place for this trunc is in the same BB as the PHI.
This is not possible if the BB is terminated by a catchswitch.
This fixes PR27133.
llvm-svn: 264926
Summary:
This gives callers flexibility to pass lambdas with captures, which lets
callers avoid the C-style void*-ptr closure style. (Currently, callers
in clang store state in the PassManagerBuilderBase arg.)
No functional change, and the new API is backwards-compatible.
Reviewers: chandlerc
Subscribers: joker.eph, cfe-commits
Differential Revision: http://reviews.llvm.org/D18613
llvm-svn: 264918
This change prevents the loop vectorizer from vectorizing when all of the vector
types it generates will be scalarized. I've run into this problem on the PPC's QPX
vector ISA, which only holds floating-point vector types. The loop vectorizer
will, however, happily vectorize loops with purely integer computation. Here's
an example:
LV: The Smallest and Widest types: 32 / 32 bits.
LV: The Widest register is: 256 bits.
LV: Found an estimated cost of 0 for VF 1 For instruction: %indvars.iv25 = phi i64 [ 0, %entry ], [ %indvars.iv.next26, %for.body ]
LV: Found an estimated cost of 0 for VF 1 For instruction: %arrayidx = getelementptr inbounds [1600 x i32], [1600 x i32]* %a, i64 0, i64 %indvars.iv25
LV: Found an estimated cost of 0 for VF 1 For instruction: %2 = trunc i64 %indvars.iv25 to i32
LV: Found an estimated cost of 1 for VF 1 For instruction: store i32 %2, i32* %arrayidx, align 4
LV: Found an estimated cost of 1 for VF 1 For instruction: %indvars.iv.next26 = add nuw nsw i64 %indvars.iv25, 1
LV: Found an estimated cost of 1 for VF 1 For instruction: %exitcond27 = icmp eq i64 %indvars.iv.next26, 1600
LV: Found an estimated cost of 0 for VF 1 For instruction: br i1 %exitcond27, label %for.cond.cleanup, label %for.body
LV: Scalar loop costs: 3.
LV: Found an estimated cost of 0 for VF 2 For instruction: %indvars.iv25 = phi i64 [ 0, %entry ], [ %indvars.iv.next26, %for.body ]
LV: Found an estimated cost of 0 for VF 2 For instruction: %arrayidx = getelementptr inbounds [1600 x i32], [1600 x i32]* %a, i64 0, i64 %indvars.iv25
LV: Found an estimated cost of 0 for VF 2 For instruction: %2 = trunc i64 %indvars.iv25 to i32
LV: Found an estimated cost of 2 for VF 2 For instruction: store i32 %2, i32* %arrayidx, align 4
LV: Found an estimated cost of 1 for VF 2 For instruction: %indvars.iv.next26 = add nuw nsw i64 %indvars.iv25, 1
LV: Found an estimated cost of 1 for VF 2 For instruction: %exitcond27 = icmp eq i64 %indvars.iv.next26, 1600
LV: Found an estimated cost of 0 for VF 2 For instruction: br i1 %exitcond27, label %for.cond.cleanup, label %for.body
LV: Vector loop of width 2 costs: 2.
LV: Found an estimated cost of 0 for VF 4 For instruction: %indvars.iv25 = phi i64 [ 0, %entry ], [ %indvars.iv.next26, %for.body ]
LV: Found an estimated cost of 0 for VF 4 For instruction: %arrayidx = getelementptr inbounds [1600 x i32], [1600 x i32]* %a, i64 0, i64 %indvars.iv25
LV: Found an estimated cost of 0 for VF 4 For instruction: %2 = trunc i64 %indvars.iv25 to i32
LV: Found an estimated cost of 4 for VF 4 For instruction: store i32 %2, i32* %arrayidx, align 4
LV: Found an estimated cost of 1 for VF 4 For instruction: %indvars.iv.next26 = add nuw nsw i64 %indvars.iv25, 1
LV: Found an estimated cost of 1 for VF 4 For instruction: %exitcond27 = icmp eq i64 %indvars.iv.next26, 1600
LV: Found an estimated cost of 0 for VF 4 For instruction: br i1 %exitcond27, label %for.cond.cleanup, label %for.body
LV: Vector loop of width 4 costs: 1.
...
LV: Selecting VF: 8.
LV: The target has 32 registers
LV(REG): Calculating max register usage:
LV(REG): At #0 Interval # 0
LV(REG): At #1 Interval # 1
LV(REG): At #2 Interval # 2
LV(REG): At #4 Interval # 1
LV(REG): At #5 Interval # 1
LV(REG): VF = 8
The problem is that the cost model here is not wrong, exactly. Since all of
these operations are scalarized, their cost (aside from the uniform ones) are
indeed VF*(scalar cost), just as the model suggests. In fact, the larger the VF
picked, the lower the relative overhead from the loop itself (and the
induction-variable update and check), and so in a sense, picking the largest VF
here is the right thing to do.
The problem is that vectorizing like this, where all of the vectors will be
scalarized in the backend, isn't really vectorizing, but rather interleaving.
By itself, this would be okay, but then the vectorizer itself also interleaves,
and that's where the problem manifests itself. There's aren't actually enough
scalar registers to support the normal interleave factor multiplied by a factor
of VF (8 in this example). In other words, the problem with this is that our
register-pressure heuristic does not account for scalarization.
While we might want to improve our register-pressure heuristic, I don't think
this is the right motivating case for that work. Here we have a more-basic
problem: The job of the vectorizer is to vectorize things (interleaving aside),
and if the IR it generates won't generate any actual vector code, then
something is wrong. Thus, if every type looks like it will be scalarized (i.e.
will be split into VF or more parts), then don't consider that VF.
This is not a problem specific to PPC/QPX, however. The problem comes up under
SSE on x86 too, and as such, this change fixes PR26837 too. I've added Sanjay's
reduced test case from PR26837 to this commit.
Differential Revision: http://reviews.llvm.org/D18537
llvm-svn: 264904
PGOFuncNames are used as the key to retrieve the Function definition from the
MD5 stored in the profile. For internal linkage function, we prefix the source
file name to the PGOFuncNames. LTO's internalization privatizes many global linkage
symbols. This happens after value profile annotation, but those internal
linkage functions should not have a source prefix. To differentiate compiler
generated internal symbols from original ones, PGOFuncName meta data are
created and attached to the original internal symbols in the value profile
annotation step. If a symbol does not have the meta data, its original linkage
must be non-internal.
Also add a new map that maps PGOFuncName's MD5 value to the function definition.
Differential Revision: http://reviews.llvm.org/D17895
llvm-svn: 264902
These checks are redundant and can be removed
Reviewers: hans
Subscribers: llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D18564
llvm-svn: 264872
Prior to this patch, the MemorySSA caching visitor would cache all
calls that it visited. When paired with phi optimization, this can be
problematic. Consider:
define void @foo() {
; 1 = MemoryDef(liveOnEntry)
call void @clobberFunction()
br i1 undef, label %if.end, label %if.then
if.then:
; MemoryUse(??)
call void @readOnlyFunction()
; 2 = MemoryDef(1)
call void @clobberFunction()
br label %if.end
if.end:
; 3 = MemoryPhi(...)
; MemoryUse(?)
call void @readOnlyFunction()
ret void
}
When optimizing MemoryUse(?), we visit defs 1 and 2, so we note to
cache them later. We ultimately end up not being able to optimize
passed the Phi, so we set MemoryUse(?) to point to the Phi. We then
cache the clobbering call for def 1 to be the Phi.
This commit changes this behavior so that we wipe out any calls
added to VisistedCalls while visiting the defs of a phi we couldn't
optimize.
Aside: With this patch, we now can bootstrap clang/LLVM without a
single MemorySSA verifier failure. Woohoo. :)
llvm-svn: 264820
This patch teaches the caching MemorySSA walker a few things:
1. Not to walk Phis we've walked before. It seems that we tried to do
this before, but it didn't work so well in cases like:
define void @foo() {
%1 = alloca i8
%2 = alloca i8
br label %begin
begin:
; 3 = MemoryPhi({%0,liveOnEntry},{%end,2})
; 1 = MemoryDef(3)
store i8 0, i8* %2
br label %end
end:
; MemoryUse(?)
load i8, i8* %1
; 2 = MemoryDef(1)
store i8 0, i8* %2
br label %begin
}
Because we wouldn't put Phis in Q.Visited until we tried to visit them.
So, when trying to optimize MemoryUse(?):
- We would visit 3 above
- ...Which would make us put {%0,liveOnEntry} in Q.Visited
- ...Which would make us visit {%0,liveOnEntry}
- ...Which would make us put {%end,2} in Q.Visited
- ...Which would make us visit {%end,2}
- ...Which would make us visit 3
- ...Which would realize we've already visited everything in 3
- ...Which would make us conservatively return 3.
In the added test-case, (@looped_visitedonlyonce) this behavior would
cause us to give incorrect results. Specifically, we'd visit 4 twice
in the same query, but on the second visit, we'd skip while.cond because
it had been visited, visit if.then/if.then2, and cache "1" as the
clobbering def on the way back.
2. If we try to walk the defs of a {Phi,MemLoc} and see it has been
visited before, just hand back the Phi we're trying to optimize.
I promise this isn't as terrible as it seems. :)
We now insert {Phi,MemLoc} pairs just before walking the Phi's upward
defs. So, we check the cache for the {Phi,MemLoc} pair before checking
if we've already walked the Phi.
The {Phi,MemLoc} pair is (almost?) always guaranteed to have a cache
entry if we've already fully walked it, because we cache as we go.
So, if the {Phi,MemLoc} pair isn't in cache, either:
(a) we must be in the process of visiting it (in which case, we can't
give a better answer in a cache-as-we-go DFS walker)
(b) we visited it, but didn't cache it on the way back (...which seems
to require `ModifyingAccess` to not dominate `StartingAccess`,
so I'm 99% sure that would be an error. If it's not an error, I
haven't been able to get it to happen locally, so I suspect it's
rare.)
- - - - -
As a consequence of this change, we no longer skip upward defs of phis,
so we can kill the `VisitedOnlyOne` check. This gives us better accuracy
than we had before, at the cost of potentially doing a bit more work
when we have a loop.
llvm-svn: 264814
This is effectively NFC, minus the renaming of the options
(-cyclone-prefetch-distance -> -prefetch-distance).
The change was requested by Tim in D17943.
llvm-svn: 264806
We have known races on profile counters, which can be reproduced by enabling
-fsanitize=thread and -fprofile-instr-generate simultaneously on a
multi-threaded program. This patch avoids reporting those races by not
instrumenting the reads and writes coming from the instruction profiler.
llvm-svn: 264805
During ADCE, track which debug info scopes still have live references
from the code, and delete debug info intrinsics for the dead ones.
These intrinsics describe the locations of variables (in registers or
stack slots). If there's no code left corresponding to a variable's
scope, then there's no way to reference the variable in the debugger and
it doesn't matter what its value is.
I add a DEBUG printout when the described location in an SSA register,
in case it helps some trying to track down why locations get lost.
However, we still delete these; the scope itself isn't attached to any
real code, so the ship has already sailed.
llvm-svn: 264800
Since we have moved to a model where functions are imported in bulk from
each source module after making summary-based importing decisions, there
is no longer a need to link metadata as a postpass, and all users have
been removed.
This essentially reverts r255909 and follow-on fixes.
llvm-svn: 264763
When eliminating or merging almost empty basic blocks, the existence of non-trivial PHI nodes
is currently used to recognize potential loops of which the block is the header and keep the block.
However, the current algorithm fails if the loops' exit condition is evaluated only with volatile
values hence no PHI nodes in the header. Especially when such a loop is an outer loop of a nested
loop, the loop is collapsed into a single loop which prevent later optimizations from being
applied (e.g., transforming nested loops into simplified forms and loop vectorization).
The patch augments the existing PHI node-based check by adding a pre-test if the BB actually
belongs to a set of loop headers and not eliminating it if yes.
llvm-svn: 264697
Personality is copied as part of copyFunctionAttributes, but it is
invalid on a declaration. Remove the personality attribute it the
function body is not cloned.
Also add a verifier run over output modules in the llvm-split tool.
llvm-svn: 264667
On OS X El Capitan and iOS 9, the linker supports a new section
attribute, live_support, which allows dead stripping to remove dead
globals along with the ASAN metadata about them.
With this change __asan_global structures are emitted in a new
__DATA,__asan_globals section on Darwin.
Additionally, there is a __DATA,__asan_liveness section with the
live_support attribute. Each entry in this section is simply a tuple
that binds together the liveness of a global variable and its ASAN
metadata structure. Thus the metadata structure will be alive if and
only if the global it references is also alive.
Review: http://reviews.llvm.org/D16737
llvm-svn: 264645
When eliminating or merging almost empty basic blocks, the existence of non-trivial PHI nodes
is currently used to recognize potential loops of which the block is the header and keep the block.
However, the current algorithm fails if the loops' exit condition is evaluated only with volatile
values hence no PHI nodes in the header. Especially when such a loop is an outer loop of a nested
loop, the loop is collapsed into a single loop which prevent later optimizations from being
applied (e.g., transforming nested loops into simplified forms and loop vectorization).
The patch augments the existing PHI node-based check by adding a pre-test if the BB actually
belongs to a set of loop headers and not eliminating it if yes.
llvm-svn: 264596
Don't set the function hotness attribute on the fly. This changes the CFG
branch probability of the caller function, which leads to inconsistent BB
ordering. This patch moves the attribute setting to a separated loop after
the counts in all functions are populated.
Fixes PR27024 - PGO instrumentation profile data is not reflected in correct
basic blocks.
Differential Revision: http://reviews.llvm.org/D18491
llvm-svn: 264594
Summary:
Add a statistic to count the number of imported functions. Also, add a
new -print-imports option to emit a trace of imported functions, that
works even for an NDEBUG build.
Note that emitOptimizationRemark does not work for the above printing as
it expects a Function object and DebugLoc, neither of which we have
with summary-based importing.
This is part 2 of D18487, the first part was committed separately as
r264536.
Reviewers: joker.eph
Subscribers: llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D18487
llvm-svn: 264537
With r264503, aliases are now being added to the GlobalsToImport set
even when their aliasees can't be imported due to their linkage type.
While the importing worked correctly (the aliases imported as
declarations) due to the logic in doImportAsDefinition, there is no
point to adding them to the GlobalsToImport set.
Additionally, with D18487 it was resulting in incorrectly printing a
message indicating that the alias was imported.
To avoid this, delay adding aliases to the GlobalsToImport set until
after the linkage type of the aliasee is checked.
This patch is part of D18487.
llvm-svn: 264536
Summary:
Now that the summary contains the full reference/call graph, we can
replace the existing function importer that loads and inspect the IR
to iteratively walk the call graph by a traversal based purely on the
summary information. Decouple the actual importing decision from any
IR manipulation.
Reviewers: tejohnson
Subscribers: llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D18343
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 264503
This changes RS4GC to lower calls to ``@llvm.experimental.deoptimize``
to gc.statepoints wrapping ``__llvm_deoptimize``, and changes
``callsGCLeafFunction`` to recognize ``@llvm.experimental.deoptimize``
as a non GC leaf function.
I've had to hard code the ``"__llvm_deoptimize"`` name in
RewriteStatepointsForGC; since ``TargetLibraryInfo`` is available only
during codegen. This isn't without precedent in the codebase, so I'm
not overtly concerned.
llvm-svn: 264456
We try to hoist the insertion point as high as possible to encourage
sharing. However, we must be careful not to hoist into a catchswitch as
it is both an EHPad and a terminator.
llvm-svn: 264344
isDependenceDistanceOfOne asserts that the store and the load access
through the same type. This function is also used by
removeDependencesFromMultipleStores so we need to make sure we filter
out mismatching types before reaching this point.
Now we do this when the initial candidates are gathered.
This is a refinement of the fix made in r262267.
Fixes PR27048.
llvm-svn: 264313
There are a few bugs in the walker that this patch addresses.
Primarily:
- Caching can break when we have multiple BBs without phis
- We weren't optimizing some phis properly
- Because of how the DFS iterator works, there were times where we
wouldn't cache any results of our DFS
I left the test cases with FIXMEs in, because I'm not sure how much
effort it will take to get those to work (read: We'll probably
ultimately have to end up redoing the walker, or we'll have to come up
with some creative caching tricks), and more test coverage = better.
Differential Revision: http://reviews.llvm.org/D18065
llvm-svn: 264180
When you have multiple LCSSA (single-operand) PHIs that are converted
into two-operand PHIs due to versioning, only assert that the PHI
currently being converted has a single operand. I.e. we don't want to
check PHIs that were converted earlier in the loop.
Fixes PR27023.
Thanks to Karl-Johan Karlsson for the minimized testcase!
llvm-svn: 264081
It's a bug fix.
For rerolled loops SE trip count remains unchanged. It leads to incorrect work of the next passes.
My patch just resets SE info for rerolled loop forcing SE to re-evaluate it next time it requested.
I also added a verifier call in the exisitng test to be sure no invalid SE data remain. Without my fix this test would fail with -verify-scev.
Differential Revision: http://reviews.llvm.org/D18316
llvm-svn: 264051
Summary:
Without tree pruning clang has 2,667,552 points.
Wiht only dominators pruning: 1,515,586.
With both dominators & predominators pruning: 1,340,534.
Resubmit of r262103.
Differential Revision: http://reviews.llvm.org/D18341
llvm-svn: 264003
If we have a BB with only MemoryDefs, live-in calculations will ignore
it. This means we get results like this:
define void @foo(i8* %p) {
; 1 = MemoryDef(liveOnEntry)
store i8 0, i8* %p
br i1 undef, label %if.then, label %if.end
if.then:
; 2 = MemoryDef(1)
store i8 1, i8* %p
br label %if.end
if.end:
; 3 = MemoryDef(1)
store i8 2, i8* %p
ret void
}
...When there should be a MemoryPhi in the `if.end` BB.
This patch fixes that behavior.
llvm-svn: 263991