This is intended to be used for ThinLTO incremental build.
Differential Revision: http://reviews.llvm.org/D18213
This is a recommit of r265095 after fixing the Windows issues.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 265111
This changes some dllexport tests, to verify that some symbols that
should not be exported are not, in a way that improves the robustness
of CHECK-SAME interaction with CHECK-NOT.
We plan to enable dllimport/dllexport support for the PS4, and these
changes are for points we noticed in our internal testing.
Patch by Warren Ristow!
llvm-svn: 265106
This reverts commit r265096, r265095, and r265094.
Windows build is broken, and the validation does not pass.
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 265102
They're not necessary (since the stack pointer is trivially restored on
return), and the way LLVM inserts the stackrestore calls breaks the
IR (we get a stackrestore between the deoptimize call and the return).
llvm-svn: 265101
They're not necessary (since the lifetime of the alloca is trivially
over due to the return), and the way LLVM inserts the lifetime.end
markers breaks the IR (we get a lifetime end marker between the
deoptimize call and the return).
llvm-svn: 265100
Re-enable an assertion enabled by Justin Lebar in rL265092. rL265092
was breaking test/CodeGen/X86/deopt-intrinsic.ll because webkit_jscc
does not like non-i64 return types. Change the test case to not do
that.
llvm-svn: 265099
Previously, HandleLastUse would delete RegRef information for sub-registers
if they were dead even if their corresponding super-register were still live.
If the super-register were later renamed, then the definitions of the
sub-register would not be updated appropriately. This patch alters the
behavior so that RegInfo information for sub-registers is only deleted when
the sub-register and super-register are both dead.
This resolves PR26775. This is the mirror image of Hal's r227311 commit.
Author: Tom Jablin (tjablin)
Reviewers: kbarton uweigand nemanjai hfinkel
http://reviews.llvm.org/D18448
llvm-svn: 265097
This is intended to be used for ThinLTO incremental build.
Differential Revision: http://reviews.llvm.org/D18213
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 265095
Summary:
Previously the NVVMReflect pass would read its configuration from
command-line flags or a static configuration given to the pass at
instantiation time.
This doesn't quite work for clang's use-case. It needs to pass a value
for __CUDA_FTZ down on a per-module basis. We use a module flag for
this, so the NVVMReflect pass needs to be updated to read said flag.
Reviewers: tra, rnk
Subscribers: cfe-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D18672
llvm-svn: 265090
when compiling with LTO.
r244523 a new class DiagnosticInfoOptimizationRemarkAnalysisAliasing for
optimization analysis remarks related to pointer aliasing without
guarding it in isDiagnosticEnabled in LLVMContext.cpp. This caused the
diagnostic message to be printed unconditionally when compiling with
LTO.
This commit cleans up isDiagnosticEnabled and makes sure all the
vectorization optimization remarks are guarded.
rdar://problem/25382153
llvm-svn: 265084
This mostly cosmetic patch moves the DebugEmissionKind enum from DIBuilder
into DICompileUnit. DIBuilder is not the right place for this enum to live
in — a metadata consumer should not have to include DIBuilder.h.
I also added a Verifier check that checks that the emission kind of a
DICompileUnit is actually legal.
http://reviews.llvm.org/D18612
<rdar://problem/25427165>
llvm-svn: 265077
Print aliases in topological order, that is, for any alias a = b,
b must be printed before a. This is because on some targets (e.g. PowerPC)
linker expects aliases in such an order to generate correct TOC information.
GCC also prints aliases in topological order.
llvm-svn: 265064
"blockaddress" can not apply to an external function. All
blockaddress constant uses must belong to the same module as the
definition of the target function.
llvm-svn: 265061
This patch simply mirrors the attributes we give to @llvm.nvvm.reflect
to the __nvvm_reflect libdevice call. This shaves about 30% of the code
in libdevice away because of CSE opportunities. It's also helps us
figure out that libdevice implementations of transcendental functions
don't have side-effects.
llvm-svn: 265060
Summary:
This change will allow loads with imp-def to be clustered in machine-scheduler pass.
areMemAccessesTriviallyDisjoint() can also handle loads with imp-def.
Reviewers: mcrosier, jmolloy, t.p.northover
Subscribers: aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18665
llvm-svn: 265051
Chapter 3 of the QPX manual states that, "Scalar floating-point load
instructions, defined in the Power ISA, cause a replication of the source data
across all elements of the target register." Thus, if we have a load followed
by a QPX splat (from the first lane), the splat is redundant. This adds a late
MI-level pass to remove the redundant splats in some of these cases
(specifically when both occur in the same basic block).
This optimization is scheduled just prior to post-RA scheduling. It can't happen
before anything that might replace the load with some already-computed quantity
(i.e. store-to-load forwarding).
llvm-svn: 265047
We don't really support non-constant shuffle masks, but these tests are for cases where BUILD_VECTOR is made up from vector extracts (as well as undef/zero scalars).
llvm-svn: 265045
isBrImm should accept any non-constant immediate. Previously it was only accepting LanaiMCExpr ones which was wrong.
Differential Revision: http://reviews.llvm.org/D18571
llvm-svn: 265032
The test case added in r265023 is failing on ninja-x64-msvc-RA-centos6.
Update the test to make less specific assumptions on code generation.
llvm-svn: 265026
PPCSimplifyAddress contains this code:
IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context)
: Type::getInt64Ty(*Context));
to determine the type to be used for an index register, if one needs
to be created. However, the "VT" here is the type of the data being
loaded or stored, *not* the type of an address. This means that if
a data element of type i32 is accessed using an index that does not
not fit into 32 bits, a wrong address is computed here.
Note that PPCFastISel is only ever used on 64-bit currently, so the type
of an address is actually *always* MVT::i64. Other parts of the code,
even in this same PPCSimplifyAddress routine, already rely on that fact.
Thus, this patch changes the code to simply unconditionally use
Type::getInt64Ty(*Context) as OffsetTy.
llvm-svn: 265023
This patch corresponds to review:
http://reviews.llvm.org/D18032
This patch provides asm implementation for the following instructions:
lwat, ldat, stwat, stdat, ldmx, mcrxrx
llvm-svn: 265022
Summary:
This change will handle missing store pair opportunity where the first store
instruction stores zero followed by the non-zero store. For example, this change
will convert :
str wzr, [x8]
str w1, [x8, #4]
into:
stp wzr, w1, [x8]
Reviewers: jmolloy, t.p.northover, mcrosier
Subscribers: flyingforyou, aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18570
llvm-svn: 265021
The fast isel pass currently emits a COPY_TO_REGCLASS node to convert
from a F4RC to a F8RC register class during conversion of a
floating-point number to integer. There is actually no support in the
common code instruction printers to emit COPY_TO_REGCLASS nodes, so the
PowerPC back-end has special code there to simply ignore
COPY_TO_REGCLASS.
This is correct *if and only if* the source and destination registers of
COPY_TO_REGCLASS are the same (except for the different register class).
But nothing guarantees this to be the case, and if the register
allocator does end up allocating source and destination to different
registers after all, the back-end simply generates incorrect code. I've
included a test case that shows such incorrect code generation.
However, it seems that COPY_TO_REGCLASS is actually not intended to be
used at the MI layer at all. It is used during SelectionDAG, but always
lowered to a plain COPY before emitting MI. Other back-end's fast isel
passes never emit COPY_TO_REGCLASS at all. I suspect it is simply wrong
for the PowerPC back-end to emit it here.
This patch changes the PowerPC back-end to directly emit COPY instead of
COPY_TO_REGCLASS and removes the special handling in the instruction
printers.
Differential Revision: http://reviews.llvm.org/D18605
llvm-svn: 265020
Summary:
There are too many instructions to exhaustively test so addiu and lwc2 are
used as representative examples.
It should be noted that many memory instructions that should have simm16
range checking do not because it is also necessary to support the macro
of the same name which accepts simm32. The range checks for these occur in
the macro expansion.
Reviewers: vkalintiris
Subscribers: dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D18437
llvm-svn: 265019
Summary:
ldc2/sdc2 now emit slightly worse diagnostics for MIPS-I. The problem
is that they don't trigger the custom parser because all the candidates
are disabled by feature bits. On all other subtargets, the diagnostics are
accurate but are subject to the usual issues of needing to report multiple
ways to correct the code (e.g. smaller offset, enable a CPU feature) but
only being able to report one error.
Reviewers: vkalintiris
Subscribers: dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D18436
llvm-svn: 265018
Summary:
Also, made test_mi10.s formatting consistent with the majority of the
MC tests.
Reviewers: vkalintiris
Subscribers: dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D18435
llvm-svn: 265014
Summary:
The bug was that microMIPS's [ls]w[lr]e instructions claimed to support a
12-bit offset when it is only 9-bit.
Reviewers: vkalintiris
Subscribers: llvm-commits, dsanders
Differential Revision: http://reviews.llvm.org/D18434
llvm-svn: 265010
PPC has a vector popcount, this lets the vectorizer use the correct cost
for it. Tweak X86 test to use an intrinsic that's actually scalarized (we
have a somewhat efficient lowering for vector popcount using SSE, the
cost model finds that now).
llvm-svn: 265005
* LLVMDisposeMessage lives in llvm-c/Core.h, include this file where necessary
* LLVMAddTargetData has been removed, follow suit in the bindings
Differential Revision: http://reviews.llvm.org/D18633
llvm-svn: 265001
When dealing with complex<float>, and similar structures with two
single-precision floating-point numbers, especially when such things are being
passed around by value, we'll sometimes end up loading both float values by
extracting them from one 64-bit integer load. It looks like this:
t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
t16: i64 = srl t13, Constant:i32<32>
t17: i32 = truncate t16
t18: f32 = bitcast t17
t19: i32 = truncate t13
t20: f32 = bitcast t19
The problem, especially before the P8 where those bitcasts aren't legal (and
get expanded via the stack), is that it would have been better to use two
floating-point loads directly. Here we add a target-specific DAGCombine to do
just that. In short, we turn:
ld 3, 0(5)
stw 3, -8(1)
rldicl 3, 3, 32, 32
stw 3, -4(1)
lfs 3, -4(1)
lfs 0, -8(1)
into:
lfs 3, 4(5)
lfs 0, 0(5)
llvm-svn: 264988
The test case was defining and using a function 'notExported()', but
the FileCheck checks were checking for the name 'not_exported'. This
changes the test to use 'notExported' across the board. Also, the test
defined a function 'not_defined()', but doesn't have any checks related
to it. For consistency, this name is changed to 'notDefined'. A later
commit will add checks for 'notDefined'.
Patch by Warren Ristow!
llvm-svn: 264984
Summary:
As discussed on llvm-dev[1].
This change adds the basic boilerplate code around having this intrinsic
in LLVM:
- Changes in Intrinsics.td, and the IR Verifier
- A lowering pass to lower @llvm.experimental.guard to normal
control flow
- Inliner support
[1]: http://lists.llvm.org/pipermail/llvm-dev/2016-February/095523.html
Reviewers: reames, atrick, chandlerc, rnk, JosephTremoulet, echristo
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18527
llvm-svn: 264976
The size savings are significant, and from what I can tell, both ICC and GCC do this.
Differential Revision: http://reviews.llvm.org/D18573
llvm-svn: 264966
r264884 introduced a helper to escape the backslashes in the source file
path, but I since discovered an existing mechanism to escape strings.
llvm-svn: 264936
Widening a PHI requires us to insert a trunc.
The logical place for this trunc is in the same BB as the PHI.
This is not possible if the BB is terminated by a catchswitch.
This fixes PR27133.
llvm-svn: 264926
Fix for issue introduced D17297, where we were breaking early from the loop detecting consecutive loads which could leave us thinking a consecutive load with zeros was possible.
llvm-svn: 264922
The TailDup transform was removed in r138841 in 2011, along with most
of the tests for it. This test, however, was missed. Probably because
it had already been XFAIL'd for 3 years at that point (since r52243!)
and continued to fail when the opt flag for -tailduplicate stopped
being valid.
llvm-svn: 264916
This change prevents the loop vectorizer from vectorizing when all of the vector
types it generates will be scalarized. I've run into this problem on the PPC's QPX
vector ISA, which only holds floating-point vector types. The loop vectorizer
will, however, happily vectorize loops with purely integer computation. Here's
an example:
LV: The Smallest and Widest types: 32 / 32 bits.
LV: The Widest register is: 256 bits.
LV: Found an estimated cost of 0 for VF 1 For instruction: %indvars.iv25 = phi i64 [ 0, %entry ], [ %indvars.iv.next26, %for.body ]
LV: Found an estimated cost of 0 for VF 1 For instruction: %arrayidx = getelementptr inbounds [1600 x i32], [1600 x i32]* %a, i64 0, i64 %indvars.iv25
LV: Found an estimated cost of 0 for VF 1 For instruction: %2 = trunc i64 %indvars.iv25 to i32
LV: Found an estimated cost of 1 for VF 1 For instruction: store i32 %2, i32* %arrayidx, align 4
LV: Found an estimated cost of 1 for VF 1 For instruction: %indvars.iv.next26 = add nuw nsw i64 %indvars.iv25, 1
LV: Found an estimated cost of 1 for VF 1 For instruction: %exitcond27 = icmp eq i64 %indvars.iv.next26, 1600
LV: Found an estimated cost of 0 for VF 1 For instruction: br i1 %exitcond27, label %for.cond.cleanup, label %for.body
LV: Scalar loop costs: 3.
LV: Found an estimated cost of 0 for VF 2 For instruction: %indvars.iv25 = phi i64 [ 0, %entry ], [ %indvars.iv.next26, %for.body ]
LV: Found an estimated cost of 0 for VF 2 For instruction: %arrayidx = getelementptr inbounds [1600 x i32], [1600 x i32]* %a, i64 0, i64 %indvars.iv25
LV: Found an estimated cost of 0 for VF 2 For instruction: %2 = trunc i64 %indvars.iv25 to i32
LV: Found an estimated cost of 2 for VF 2 For instruction: store i32 %2, i32* %arrayidx, align 4
LV: Found an estimated cost of 1 for VF 2 For instruction: %indvars.iv.next26 = add nuw nsw i64 %indvars.iv25, 1
LV: Found an estimated cost of 1 for VF 2 For instruction: %exitcond27 = icmp eq i64 %indvars.iv.next26, 1600
LV: Found an estimated cost of 0 for VF 2 For instruction: br i1 %exitcond27, label %for.cond.cleanup, label %for.body
LV: Vector loop of width 2 costs: 2.
LV: Found an estimated cost of 0 for VF 4 For instruction: %indvars.iv25 = phi i64 [ 0, %entry ], [ %indvars.iv.next26, %for.body ]
LV: Found an estimated cost of 0 for VF 4 For instruction: %arrayidx = getelementptr inbounds [1600 x i32], [1600 x i32]* %a, i64 0, i64 %indvars.iv25
LV: Found an estimated cost of 0 for VF 4 For instruction: %2 = trunc i64 %indvars.iv25 to i32
LV: Found an estimated cost of 4 for VF 4 For instruction: store i32 %2, i32* %arrayidx, align 4
LV: Found an estimated cost of 1 for VF 4 For instruction: %indvars.iv.next26 = add nuw nsw i64 %indvars.iv25, 1
LV: Found an estimated cost of 1 for VF 4 For instruction: %exitcond27 = icmp eq i64 %indvars.iv.next26, 1600
LV: Found an estimated cost of 0 for VF 4 For instruction: br i1 %exitcond27, label %for.cond.cleanup, label %for.body
LV: Vector loop of width 4 costs: 1.
...
LV: Selecting VF: 8.
LV: The target has 32 registers
LV(REG): Calculating max register usage:
LV(REG): At #0 Interval # 0
LV(REG): At #1 Interval # 1
LV(REG): At #2 Interval # 2
LV(REG): At #4 Interval # 1
LV(REG): At #5 Interval # 1
LV(REG): VF = 8
The problem is that the cost model here is not wrong, exactly. Since all of
these operations are scalarized, their cost (aside from the uniform ones) are
indeed VF*(scalar cost), just as the model suggests. In fact, the larger the VF
picked, the lower the relative overhead from the loop itself (and the
induction-variable update and check), and so in a sense, picking the largest VF
here is the right thing to do.
The problem is that vectorizing like this, where all of the vectors will be
scalarized in the backend, isn't really vectorizing, but rather interleaving.
By itself, this would be okay, but then the vectorizer itself also interleaves,
and that's where the problem manifests itself. There's aren't actually enough
scalar registers to support the normal interleave factor multiplied by a factor
of VF (8 in this example). In other words, the problem with this is that our
register-pressure heuristic does not account for scalarization.
While we might want to improve our register-pressure heuristic, I don't think
this is the right motivating case for that work. Here we have a more-basic
problem: The job of the vectorizer is to vectorize things (interleaving aside),
and if the IR it generates won't generate any actual vector code, then
something is wrong. Thus, if every type looks like it will be scalarized (i.e.
will be split into VF or more parts), then don't consider that VF.
This is not a problem specific to PPC/QPX, however. The problem comes up under
SSE on x86 too, and as such, this change fixes PR26837 too. I've added Sanjay's
reduced test case from PR26837 to this commit.
Differential Revision: http://reviews.llvm.org/D18537
llvm-svn: 264904
Summary:
This results in higher register usage, but should make it easier for
the compiler to hide latency.
This pass is a prerequisite for some more scheduler improvements, and I
think the increase register usage with this patch is acceptable, because
when combined with the scheduler improvements, the total register usage
will decrease.
shader-db stats:
2382 shaders in 478 tests
Totals:
SGPRS: 48672 -> 49088 (0.85 %)
VGPRS: 34148 -> 34847 (2.05 %)
Code Size: 1285816 -> 1289128 (0.26 %) bytes
LDS: 28 -> 28 (0.00 %) blocks
Scratch: 492544 -> 573440 (16.42 %) bytes per wave
Max Waves: 6856 -> 6846 (-0.15 %)
Wait states: 0 -> 0 (0.00 %)
Depends on D18451
Reviewers: nhaehnle, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18452
llvm-svn: 264876
For compatability with GAS, nop and nopr are recognized as alises for
bc and bcr, respectively. A mask of 0 turns these instructions
effectively into no-operations.
Reviewed by Ulrich Weigand.
llvm-svn: 264875
This reverts commit r264869. I am seeing Windows bot failures due to the
"\" in the path being mishandled at some point (seems to be interpreted
wrongly at some point and llvm-as | llvm-dis is yielding some junk
characters). Need to investigate.
llvm-svn: 264871
XOP's VPPERM has some great 'permute operations' that it can do as well as part of shuffling the bytes of a 128-bit vector - in this case we use it to perform BITREVERSE in a single instruction.
llvm-svn: 264870
Summary:
This change serializes out and in the SourceFileName to LLVM assembly
so that it is preserved through "llvm-dis | llvm-as". This is
necessary to ensure that the global identifiers created for local values
in the module summary index are the same even if the bitcode is
streamed out and read back from LLVM assembly.
Serializing the summary itself to LLVM assembly is in progress.
Reviewers: joker.eph
Subscribers: llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D18588
llvm-svn: 264869
We are currently doing a REALLY bad job of packing results of vector comparisons into the legalized <X x i1> result equivalents - a mixture of PACKSS/PMOVMSKB would be much better here.
llvm-svn: 264867
We already try not to truncate PHIs in computeMinimalBitwidths. LoopVectorize can't handle it and we really don't need to, because both induction and reduction PHIs are truncated by other means.
However, we weren't bailing out in all the places we should have, and we ended up by returning a PHI to be truncated, which has caused PR27018.
This fixes PR17018.
llvm-svn: 264852
operations.
Specifically, we had code that tried to badly approximate reconstructing
all of the possible variations on addressing modes in two x86
instructions based on those in one pseudo instruction. This is not the
first bug uncovered with doing this, so stop doing it altogether.
Instead generically and pedantically copy every operand from the address
over to both new instructions, and strip kill flags from any register
operands.
This fixes a subtle bug seen in the wild where we would mysteriously
drop parts of the addressing mode, causing for example the index
argument in the added test case to just be completely ignored.
Hypothetically, this was an extremely bad miscompile because it actually
caused a predictable and leveragable write of a 64bit quantity to an
unintended offset (the first element of the array intead of whatever
other element was intended). As a consequence, in theory this could even
have introduced security vulnerabilities.
However, this was only something that could happen with an atomic
floating point add. No other operation could trigger this bug, so it
seems extremely unlikely to have occured widely in the wild.
But it did in fact occur, and frequently in scientific applications
which were using relaxed atomic updates of a floating point value after
adding a delta. Those would end up being quite badly miscompiled by
LLVM, which is how we found this. Of course, this often looks like
a race condition in the code, but it was actually a miscompile.
I suspect that this whole RELEASE_FADD thing was a complete mistake.
There is no such operation, and I worry that anything other than add
will get remarkably worse codegeneration. But that's not for this
change....
llvm-svn: 264845
Prior to this patch, the MemorySSA caching visitor would cache all
calls that it visited. When paired with phi optimization, this can be
problematic. Consider:
define void @foo() {
; 1 = MemoryDef(liveOnEntry)
call void @clobberFunction()
br i1 undef, label %if.end, label %if.then
if.then:
; MemoryUse(??)
call void @readOnlyFunction()
; 2 = MemoryDef(1)
call void @clobberFunction()
br label %if.end
if.end:
; 3 = MemoryPhi(...)
; MemoryUse(?)
call void @readOnlyFunction()
ret void
}
When optimizing MemoryUse(?), we visit defs 1 and 2, so we note to
cache them later. We ultimately end up not being able to optimize
passed the Phi, so we set MemoryUse(?) to point to the Phi. We then
cache the clobbering call for def 1 to be the Phi.
This commit changes this behavior so that we wipe out any calls
added to VisistedCalls while visiting the defs of a phi we couldn't
optimize.
Aside: With this patch, we now can bootstrap clang/LLVM without a
single MemorySSA verifier failure. Woohoo. :)
llvm-svn: 264820
This patch teaches the caching MemorySSA walker a few things:
1. Not to walk Phis we've walked before. It seems that we tried to do
this before, but it didn't work so well in cases like:
define void @foo() {
%1 = alloca i8
%2 = alloca i8
br label %begin
begin:
; 3 = MemoryPhi({%0,liveOnEntry},{%end,2})
; 1 = MemoryDef(3)
store i8 0, i8* %2
br label %end
end:
; MemoryUse(?)
load i8, i8* %1
; 2 = MemoryDef(1)
store i8 0, i8* %2
br label %begin
}
Because we wouldn't put Phis in Q.Visited until we tried to visit them.
So, when trying to optimize MemoryUse(?):
- We would visit 3 above
- ...Which would make us put {%0,liveOnEntry} in Q.Visited
- ...Which would make us visit {%0,liveOnEntry}
- ...Which would make us put {%end,2} in Q.Visited
- ...Which would make us visit {%end,2}
- ...Which would make us visit 3
- ...Which would realize we've already visited everything in 3
- ...Which would make us conservatively return 3.
In the added test-case, (@looped_visitedonlyonce) this behavior would
cause us to give incorrect results. Specifically, we'd visit 4 twice
in the same query, but on the second visit, we'd skip while.cond because
it had been visited, visit if.then/if.then2, and cache "1" as the
clobbering def on the way back.
2. If we try to walk the defs of a {Phi,MemLoc} and see it has been
visited before, just hand back the Phi we're trying to optimize.
I promise this isn't as terrible as it seems. :)
We now insert {Phi,MemLoc} pairs just before walking the Phi's upward
defs. So, we check the cache for the {Phi,MemLoc} pair before checking
if we've already walked the Phi.
The {Phi,MemLoc} pair is (almost?) always guaranteed to have a cache
entry if we've already fully walked it, because we cache as we go.
So, if the {Phi,MemLoc} pair isn't in cache, either:
(a) we must be in the process of visiting it (in which case, we can't
give a better answer in a cache-as-we-go DFS walker)
(b) we visited it, but didn't cache it on the way back (...which seems
to require `ModifyingAccess` to not dominate `StartingAccess`,
so I'm 99% sure that would be an error. If it's not an error, I
haven't been able to get it to happen locally, so I suspect it's
rare.)
- - - - -
As a consequence of this change, we no longer skip upward defs of phis,
so we can kill the `VisitedOnlyOne` check. This gives us better accuracy
than we had before, at the cost of potentially doing a bit more work
when we have a loop.
llvm-svn: 264814
This is effectively NFC, minus the renaming of the options
(-cyclone-prefetch-distance -> -prefetch-distance).
The change was requested by Tim in D17943.
llvm-svn: 264806
We have known races on profile counters, which can be reproduced by enabling
-fsanitize=thread and -fprofile-instr-generate simultaneously on a
multi-threaded program. This patch avoids reporting those races by not
instrumenting the reads and writes coming from the instruction profiler.
llvm-svn: 264805
During ADCE, track which debug info scopes still have live references
from the code, and delete debug info intrinsics for the dead ones.
These intrinsics describe the locations of variables (in registers or
stack slots). If there's no code left corresponding to a variable's
scope, then there's no way to reference the variable in the debugger and
it doesn't matter what its value is.
I add a DEBUG printout when the described location in an SSA register,
in case it helps some trying to track down why locations get lost.
However, we still delete these; the scope itself isn't attached to any
real code, so the ship has already sailed.
llvm-svn: 264800
1. Removed the run line for mingw32 and made the Darwin triples unknown.
This is a test of 32-bit vs. 64-bit platform and the underlying hardware.
We have other tests for checking behavioral differences of the OS platform.
2. Changed the CPU specifiers to the attributes they were meant to represent.
Any CPU that doesn't have SSE4.2 is assumed to have slow unaligned 16-byte accesses,
so it won't use those here.
3. Although the stores really could all be CHECK-DAG, I left them as CHECK-NEXT to
show the strange behavior of the instruction scheduler in the SLOW_32 case.
4. The odd-looking instructions are due to the use of a null pointer in the IR, so
we have integer immediate store addresses. Cute.
llvm-svn: 264796
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/nm.html .
1) For Mach-O files the code was not printing the values in hex as is the default.
2) The values printed had leading zeros which they should not have.
3) The address for undefined symbols was printed as spaces instead of 0.
4) With the -A option with posix output for an archive did not use square
brackets around the archive member name.
rdar://25311883 and rdar://25299678
llvm-svn: 264778
Add function soft attribute to the generation of Jump Tables in CodeGen
as initial step towards clang support of gcc's no-jump-table support
Reviewers: hans, echristo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18321
llvm-svn: 264756
Fixed fp_to_uint instruction selection on KNL.
One pattern was missing for <4 x double> to <4 x i32>
Differential Revision: http://reviews.llvm.org/D18512
llvm-svn: 264701
When eliminating or merging almost empty basic blocks, the existence of non-trivial PHI nodes
is currently used to recognize potential loops of which the block is the header and keep the block.
However, the current algorithm fails if the loops' exit condition is evaluated only with volatile
values hence no PHI nodes in the header. Especially when such a loop is an outer loop of a nested
loop, the loop is collapsed into a single loop which prevent later optimizations from being
applied (e.g., transforming nested loops into simplified forms and loop vectorization).
The patch augments the existing PHI node-based check by adding a pre-test if the BB actually
belongs to a set of loop headers and not eliminating it if yes.
llvm-svn: 264697
Instead of using two feature bits, one to indicate the availability of the
popcnt[dw] instructions, and another to indicate whether or not they're fast,
use a single enum. This allows more consistent control via target attribute
strings, and via Clang's command line.
llvm-svn: 264690
Minimum density for both optsize and non optsize are now options
-sparse-jump-table-density (default 10) for non optsize functions
-dense-jump-table-density (default 40) for optsize functions, which
matches the current default. This improves several benchmarks at google
at the cost of a small codesize increase. For code compiled with -Os,
the old behavior continues
llvm-svn: 264689
Personality is copied as part of copyFunctionAttributes, but it is
invalid on a declaration. Remove the personality attribute it the
function body is not cloned.
Also add a verifier run over output modules in the llvm-split tool.
llvm-svn: 264667
If all a BUILD_VECTOR's source elements are the same bit (AND/XOR/OR) operation type and each has one constant operand, lower to a pair of BUILD_VECTOR and just apply the bit operation to the vectors.
The constant operands will form a constant vector meaning that we still only have a single BUILD_VECTOR to lower and we will have replaced all the scalarized operations with a single SSE equivalent.
Its not in our interest to start make a general purpose vectorizer from this, but I'm seeing enough of these scalar bit operations from the later legalization/scalarization stages to support them at least.
Differential Revision: http://reviews.llvm.org/D18492
llvm-svn: 264666
Function names in ObjC can have spaces in them. This interacts poorly
with name compression, which uses spaces to separate PGO names. Fix the
issue by using a different separator and update a test.
I chose "\01" as the separator because 1) it's non-printable, 2) we
strip it from PGO names, and 3) it's the next natural choice once "\00"
is discarded (that one's overloaded).
What's changed since the original commit?
- I fixed up the covmap-V2 binary format tests using a linux VM.
- I weakened the CHECK lines in instrprof-comdat.h to account for the
fact that there have been bugfixes to clang coverage. These will be
fixed up in a follow-up.
- I added an assert to make sure we don't get bitten by this again.
- I constructed the c-general.profraw file without name compression
enabled to appease some bots.
Differential Revision: http://reviews.llvm.org/D18516
llvm-svn: 264658
A DICompileUnit that is not listed in llvm.dbg.cu will cause assertion
failures and/or crashes in the backend. The Verifier should reject this.
rdar://problem/25369499
llvm-svn: 264657
This is a fix for PR26941.
When there is both a section and a global definition with the same
name, the global wins.
Section symbols are not added to the symbol table; section references
are left undefined and fixed up in the object writer unless they've
been satisfied by some other definition.
llvm-svn: 264649
On OS X El Capitan and iOS 9, the linker supports a new section
attribute, live_support, which allows dead stripping to remove dead
globals along with the ASAN metadata about them.
With this change __asan_global structures are emitted in a new
__DATA,__asan_globals section on Darwin.
Additionally, there is a __DATA,__asan_liveness section with the
live_support attribute. Each entry in this section is simply a tuple
that binds together the liveness of a global variable and its ASAN
metadata structure. Thus the metadata structure will be alive if and
only if the global it references is also alive.
Review: http://reviews.llvm.org/D16737
llvm-svn: 264645
Function names in ObjC can have spaces in them. This interacts poorly
with name compression, which uses spaces to separate PGO names. Fix the
issue by using a different separator and update a test.
I chose "\01" as the separator because 1) it's non-printable, 2) we
strip it from PGO names, and 3) it's the next natural choice once "\00"
is discarded (that one's overloaded).
This reverts the revert commit beaf3d18. What's changed?
- I fixed up the covmap-V2 binary format tests using a linux VM.
- I updated the expected counts in instrprof-comdat.h to account for
the fact that there have been bugfixes to clang coverage.
- I added an assert to make sure we don't get bitten by this again.
Differential Revision: http://reviews.llvm.org/D18516
llvm-svn: 264641
They do have a def machine operand.
Fixing the definition is necessary for an upcoming patch.
Differential Revision: http://reviews.llvm.org/D18384
llvm-svn: 264607
The A2 cores support the popcntw/popcntd instructions, but they're microcoded,
and slower than our default software emulation. Specifically, popcnt[dw] take
approximately 74 cycles, whereas our software emulation takes only 24-28
cycles.
I've added a new target feature to indicate a slow popcnt[dw], instead of just
removing the existing target feature from the a2/a2q processor models, because:
1. This allows us to return more accurate information via the TTI interface
(I recognize that this currently makes no practical difference)
2. Is hopefully easier to understand (it allows the core's features to match
its manual while still having the desired effect).
llvm-svn: 264600
When eliminating or merging almost empty basic blocks, the existence of non-trivial PHI nodes
is currently used to recognize potential loops of which the block is the header and keep the block.
However, the current algorithm fails if the loops' exit condition is evaluated only with volatile
values hence no PHI nodes in the header. Especially when such a loop is an outer loop of a nested
loop, the loop is collapsed into a single loop which prevent later optimizations from being
applied (e.g., transforming nested loops into simplified forms and loop vectorization).
The patch augments the existing PHI node-based check by adding a pre-test if the BB actually
belongs to a set of loop headers and not eliminating it if yes.
llvm-svn: 264596
MachineFunctionProperties represents a set of properties that a MachineFunction
can have at particular points in time. Existing examples of this idea are
MachineRegisterInfo::isSSA() and MachineRegisterInfo::tracksLiveness() which
will eventually be switched to use this mechanism.
This change introduces the AllVRegsAllocated property; i.e. the property that
all virtual registers have been allocated and there are no VReg operands
left.
With this mechanism, passes can declare that they require a particular property
to be set, or that they set or clear properties by implementing e.g.
MachineFunctionPass::getRequiredProperties(). The MachineFunctionPass base class
verifies that the requirements are met, and handles the setting and clearing
based on the delcarations. Passes can also directly query and update the current
properties of the MF if they want to have conditional behavior.
This change annotates the target-independent post-regalloc passes; future
changes will also annotate target-specific ones.
Reviewers: qcolombet, hfinkel
Differential Revision: http://reviews.llvm.org/D18421
llvm-svn: 264593
Summary:
This helps prevent load clustering from drastically increasing register
pressure by trying to cluster 4 SMRDx8 loads together. The limit of 16
bytes was chosen, because it seems like that was the original intent
of setting the limit to 4 instructions, but more analysis could show
that a different limit is better.
This fixes yields small decreases in register usage with shader-db, but
also helps avoid a large increase in register usage when lane mask
tracking is enabled in the machine scheduler, because lane mask tracking
enables more opportunities for load clustering.
shader-db stats:
2379 shaders in 477 tests
Totals:
SGPRS: 49744 -> 48600 (-2.30 %)
VGPRS: 34120 -> 34076 (-0.13 %)
Code Size: 1282888 -> 1283184 (0.02 %) bytes
LDS: 28 -> 28 (0.00 %) blocks
Scratch: 495616 -> 492544 (-0.62 %) bytes per wave
Max Waves: 6843 -> 6853 (0.15 %)
Wait states: 0 -> 0 (0.00 %)
Reviewers: nhaehnle, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18451
llvm-svn: 264589
ICMP instruction selection fails on SKX and KNL for i1 operand.
I use XOR to resolve:
(A == B) is equivalent to (A xor B) == 0
Differential Revision: http://reviews.llvm.org/D18511
llvm-svn: 264566
Spiritually reapply commit r264409 (reverted in r264410), albeit with a
bit of a redesign.
Firstly, avoid splitting the big blob into multiple chunks of strings.
r264409 imposed an arbitrary limit to avoid a massive allocation on the
shared 'Record' SmallVector. The bug with that commit only reproduced
when there were more than "chunk-size" strings. A test for this would
have been useless long-term, since we're liable to adjust the chunk-size
in the future.
Thus, eliminate the motivation for chunk-ing by storing the string sizes
in the blob. Here's the layout:
vbr6: # of strings
vbr6: offset-to-blob
blob:
[vbr6]: string lengths
[char]: concatenated strings
Secondly, make the output of llvm-bcanalyzer readable.
I noticed when debugging r264409 that llvm-bcanalyzer was outputting a
massive blob all in one line. Past a small number, the strings were
impossible to split in my head, and the lines were way too long. This
version adds support in llvm-bcanalyzer for pretty-printing.
<STRINGS abbrevid=4 op0=3 op1=9/> num-strings = 3 {
'abc'
'def'
'ghi'
}
From the original commit:
Inspired by Mehdi's similar patch, http://reviews.llvm.org/D18342, this
should (a) slightly reduce bitcode size, since there is less record
overhead, and (b) greatly improve reading speed, since blobs are super
cheap to deserialize.
llvm-svn: 264551
The implementation is fairly obvious. This is preparation for using
some blobs in bitcode.
For clarity (and perhaps future-proofing?), I moved the call to
JumpToBit in BitstreamCursor::readRecord ahead of calling
MemoryObject::getPointer, since JumpToBit can theoretically (a) read
bytes, which (b) invalidates the blob pointer.
This isn't strictly necessary the two memory objects we have:
- The return of RawMemoryObject::getPointer is valid until the memory
object is destroyed.
- StreamingMemoryObject::getPointer is valid until the next chunk is
read from the stream. Since the JumpToBit call is only going ahead
to a word boundary, we'll never load another chunk.
However, reordering makes it clear by inspection that the blob returned
by BitstreamCursor::readRecord will be valid.
I added some tests for StreamingMemoryObject::getPointer and
BitstreamCursor::readRecord.
llvm-svn: 264549
Summary:
Add a statistic to count the number of imported functions. Also, add a
new -print-imports option to emit a trace of imported functions, that
works even for an NDEBUG build.
Note that emitOptimizationRemark does not work for the above printing as
it expects a Function object and DebugLoc, neither of which we have
with summary-based importing.
This is part 2 of D18487, the first part was committed separately as
r264536.
Reviewers: joker.eph
Subscribers: llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D18487
llvm-svn: 264537
Intrinsic::maxnum and Intrinsic::minnum, along with the associated libc
function calls (fmax[f], etc.) generally map to function calls after lowering.
For some vector types with QPX at least, however, we can legally lower these,
and we don't need to prohibit CTR-based loops on their account.
It turned out, however, that the logic that checked the opcodes associated with
intrinsics was broken (it would set the Opcode variable, but that variable was
later checked only if set for some otherwise-external function call.
This fixes the latter problem and adds the FMAX/MINNUM mappings.
llvm-svn: 264532
Reject the following IR as malformed (assuming that %entry, %next are
not in a loop):
next:
%y = phi i32 [ 0, %entry ]
%x = phi i32 [ %y, %entry ]
Such PHI nodes came up in PR26718. While there was no consensus on
whether or not this is valid IR, most opinions on that bug and in a
discussion on the llvm-dev mailing list tended towards a
"strict interpretation" (term by Joseph Tremoulet) of PHI node uses.
Also, the language reference explicitly states that "the use of each
incoming value is deemed to occur on the edge from the corresponding
predecessor block to the current block" and
`DominatorTree::dominates(Instruction*, Use&)` uses this definition as
well.
For the code mentioned in PR15384, clang does not compile to such PHIs
(anymore?). The test case still hangs when replacing `%tmp6` with `%tmp`
in revisions before r176366 (where PR15384 has been fixed). The
occurrence of %tmp6 therefore was probably unintentional. Its value is
not used except in other PHIs.
Reviewers: majnemer, reames, JosephTremoulet, bkramer, grosser, jdoerfert, kparzysz, sanjoy
Differential Revision: http://reviews.llvm.org/D18443
llvm-svn: 264528
If you're building dwps from other dwps, it can be hard to track down a
duplicate CU ID if it comes from two compilations of the same file in
different modes, etc. By including the .dwo path (which is hopefully
more unique than the file path) it can help track down where the
duplicates came from.
llvm-svn: 264520
Currently this is to mainly to prevent scalarization of integer division by constants.
Differential Revision: http://reviews.llvm.org/D18307
llvm-svn: 264511
Summary:
Now that the summary contains the full reference/call graph, we can
replace the existing function importer that loads and inspect the IR
to iteratively walk the call graph by a traversal based purely on the
summary information. Decouple the actual importing decision from any
IR manipulation.
Reviewers: tejohnson
Subscribers: llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D18343
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 264503
A release fence acts as a publication barrier for stores within the current thread to become visible to other threads which might observe the release fence. It does not require the current thread to observe stores performed on other threads. As a result, we can allow store-load and load-load forwarding across a release fence.
We choose to be much more conservative about stores. In theory, nothing prevents us from shifting a store from after a release fence to before it, and then eliminating the preceeding (previously fenced) store. Doing this without actually moving the second store is likely also legal, but we chose to be conservative at this time.
The LangRef indicates only atomic loads and stores are effected by fences. This patch chooses to be far more conservative then that.
This is the GVN companion to http://reviews.llvm.org/D11434 which applied the same logic in EarlyCSE and has been baking in tree for a while now.
Differential Revision: http://reviews.llvm.org/D11436
llvm-svn: 264472
When encountering instructions with regmasks, instead of cleaning up all the
elements in MaybeDeadCopies map, remove only the instructions erased. By keeping
more instruction in MaybeDeadCopies, this change will expose more dead copies
across instructions with regmasks.
llvm-svn: 264462
When merging stores in DAGCombiner, add check to ensure that no
dependenices exist that would cause the construction of a cycle in our
DAG. This may happen if one store has a data dependence on another
instruction (e.g. a load) which itself has a (chain) dependence on
another store being merged. These stores cannot be merged safely and
doing so results in a cycle that is discovered in LegalizeDAG.
This test is only done in cases where Antialias analysis is used (UseAA)
as non-AA store merge candidates will be merged logically after all
loads which have been checked to not alias.
Reviewers: ahatanak, spatel, niravd, arsenm, hfinkel, tstellarAMD, jyknight
Subscribers: llvm-commits, tberghammer, danalbert, srhines
Differential Revision: http://reviews.llvm.org/D18336
llvm-svn: 264461
I didn't notice any significant changes in the actual checks here;
all of these tests already used FileCheck, so a script can batch
update them in one shot.
This commit is just to show the value of automating this process:
We have uniform formatting as opposed to a mish-mash of check
structure that changes based on individual prefs and the current
fashion. This makes it simpler to update when we find a bug or
make an enhancement.
llvm-svn: 264457
This changes RS4GC to lower calls to ``@llvm.experimental.deoptimize``
to gc.statepoints wrapping ``__llvm_deoptimize``, and changes
``callsGCLeafFunction`` to recognize ``@llvm.experimental.deoptimize``
as a non GC leaf function.
I've had to hard code the ``"__llvm_deoptimize"`` name in
RewriteStatepointsForGC; since ``TargetLibraryInfo`` is available only
during codegen. This isn't without precedent in the codebase, so I'm
not overtly concerned.
llvm-svn: 264456
It is possible to have a fallthrough MBB prior to MBB placement. The original
addition of the BB would result in reordering the BB as not preceding the
successor. Because of the fallthrough nature of the BB, we could end up
executing incorrect code or even a constant pool island! Insert the spliced BB
into the same location to avoid that.
Thanks to Tim Northover for invaluable hints and Fiora for the discussion on
what may have been occurring!
llvm-svn: 264454
64-bit, 32-bit and 16-bit move-immediate instructions are 7, 6, and 5 bytes,
respectively, whereas and/or with 8-bit immediate is only three bytes.
Since these instructions imply an additional memory read (which the CPU could
elide, but we don't think it does), restrict these patterns to minsize functions.
Differential Revision: http://reviews.llvm.org/D18374
llvm-svn: 264440
Now register parameters that aren't saved to the stack or CSRs are
considered dead after the first call. Previously the debugger would show
whatever was in the register.
Fixes PR26589
Reviewers: aprantl
Differential Revision: http://reviews.llvm.org/D17211
llvm-svn: 264429
Optimize output of MDStrings in bitcode. This emits them in big blocks
(currently 1024) in a pair of records:
- BULK_STRING_SIZES: the sizes of the strings in the block, and
- BULK_STRING_DATA: a single blob, which is the concatenation of all
the strings.
Inspired by Mehdi's similar patch, http://reviews.llvm.org/D18342, this
should (a) slightly reduce bitcode size, since there is less record
overhead, and (b) greatly improve reading speed, since blobs are super
cheap to deserialize.
I needed to add support for blobs to streaming input to get the test
suite passing.
- StreamingMemoryObject::getPointer reads ahead and returns the
address of the blob.
- To avoid a possible reallocation of StreamingMemoryObject::Bytes,
BitstreamCursor::readRecord needs to move the call to JumpToEnd
forward so that getPointer is the last bitstream operation.
llvm-svn: 264409
This is the same as r255936, with added logic for avoiding clobbering of the
red zone (PR26023).
Differential Revision: http://reviews.llvm.org/D18246
llvm-svn: 264375
Remove logic to upgrade !llvm.loop by changing the MDString tag
directly. This old logic would check (and change) arbitrary strings
that had nothing to do with loop metadata. Instead, check !llvm.loop
attachments directly, and change which strings get attached.
Rather than updating the assembly-based upgrade, drop it entirely. It
has been quite a while since we supported upgrading textual IR.
llvm-svn: 264373
We did not have an explicit branch to the continuation BB. When the check was
hoisted, this could permit control follow to fall through into the division
trap. Add the explicit branch to the continuation basic block to ensure that
code execution is correct.
llvm-svn: 264370
It is incorrect to get the corresponding MBB for a ReturnInst before
SelectAllBasicBlocks since SelectAllBasicBlocks can change the
correspondence between a ReturnInst and the MBB it is in.
PR27062
llvm-svn: 264358
Earlier we were ignoring varargs in LowerCallSiteWithDeoptBundle because
populateCallLoweringInfo does not set CallLoweringInfo::IsVarArg.
llvm-svn: 264354
Going to be reading the DW_AT_GNU_dwo_name shortly as well, and there
was already enough duplication here that it was worth refactoring
rather than adding even more.
llvm-svn: 264350
We try to hoist the insertion point as high as possible to encourage
sharing. However, we must be careful not to hoist into a catchswitch as
it is both an EHPad and a terminator.
llvm-svn: 264344
Summary:
Only adds support for "naked" calls to llvm.experimental.deoptimize.
Support for round-tripping through RewriteStatepointsForGC will come
as a separate patch (should be simpler than this one).
Reviewers: reames
Subscribers: sanjoy, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D18429
llvm-svn: 264329
In PIC mode, the registers R14, R15 and R28 are reserved for use by
the PLT handling code. This causes all functions to clobber these
registers. While this is not new for regular function calls, it does
also apply to save/restore functions, which do not follow the standard
ABI conventions with respect to the volatile/non-volatile registers.
Patch by Jyotsna Verma.
llvm-svn: 264324
Given that StatepointLowering now uniques derived pointers before
putting them in the per-statepoint spill map, we may end up with missing
entries for derived pointers when we visit a gc.relocate on a pointer
that was de-duplicated away.
Fix this by keeping two maps, one mapping gc pointers to their
de-duplicated values, and one mapping a de-duplicated value to the slot
it is spilled in.
llvm-svn: 264320
When multiple DWP files are merged together and duplicate DWO IDs are
found it's currently difficult to give an actionable error message - the
DW_AT_name of the CU could be provided, but might be identical (if the
same source file is built into two different configurations), which
doesn't help the user identify the problem.
When no intermediate DWP files are generated, the path to the two DWO
files could be provided - but is lost once the DWOs are merged into a
DWP.
So, include the name of the DWO (dwo_name) in the split file so that
collissions involving a source CU from a DWP can be better diagnosed.
(improvements to llvm-dwp using this to come shortly)
llvm-svn: 264316
isDependenceDistanceOfOne asserts that the store and the load access
through the same type. This function is also used by
removeDependencesFromMultipleStores so we need to make sure we filter
out mismatching types before reaching this point.
Now we do this when the initial candidates are gathered.
This is a refinement of the fix made in r262267.
Fixes PR27048.
llvm-svn: 264313
The `MipsMCInstrAnalysis` class overrides the `evaluateBranch` method
and calculates target addresses for branch and calls instructions.
That allows llvm-objdump to print functions' names in branch instructions
in the disassemble mode.
Differential Revision: http://reviews.llvm.org/D18209
llvm-svn: 264309
The patch supports common STV_xxx visibility flags and MIPS specific
STO_MIPS_xxx flags.
Differential Revision: http://reviews.llvm.org/D18447
llvm-svn: 264300
KTEST instruction may be used instead of TEST in this case:
%int_sel3 = bitcast <8 x i1> %sel3 to i8
%res = icmp eq i8 %int_sel3, zeroinitializer
br i1 %res, label %L2, label %L1
Differential Revision: http://reviews.llvm.org/D18444
llvm-svn: 264298
If the operation's type has been promoted during type legalization, we
need to account for the fact that the high bits of the comparison
operand are likely unspecified.
The LHS is usually zero-extended, but MIPS sign extends it, so we have
to be slightly careful.
Patch by Simon Dardis.
llvm-svn: 264296
After comdat processing, the symbols still go through regular symbol
resolution.
We were not doing it for linkonce symbols since they are lazy linked.
This fixes pr27044.
llvm-svn: 264288
Summary:
Some target lowerings of FP_TO_FP16, for instance ARM's vcvtb.f16.f32
instruction, do not guarantee that the top 16 bits are zeroed out.
Remove the unsafe AssertZext and add tests to exercise this.
Reviewers: jmolloy, sbaranga, kristof.beyls, aadg
Subscribers: llvm-commits, srhines, aemerson
Differential Revision: http://reviews.llvm.org/D18426
llvm-svn: 264285
This patch corresponds to review:
http://reviews.llvm.org/D17711
It disables direct moves on these operations in 32-bit mode since the patterns
assume 64-bit registers. The final patch is slightly different from the
Phabricator review as the bitcast operations needed to be disabled in 32-bit
mode as well. This fixes PR26617.
llvm-svn: 264282
This patch begins adding support for lowering to the XOP VPPERM instruction - adding the X86ISD::VPPERM opcode.
Differential Revision: http://reviews.llvm.org/D18189
llvm-svn: 264260
We used to only allow SCEVAddRecExpr for pointer expressions in order to
be able to compute the bounds. However this is also trivially possible
for loop-invariant addresses (scUnknown) since then the bounds are the
address itself.
Interestingly, we used allow this for the special case when the
loop-invariant address happens to also be an SCEVAddRecExpr (in an outer
loop).
There are a couple more loops that are vectorized in SPEC after this.
My guess is that the main reason we don't see more because for example a
loop-invariant load is vectorized into a splat vector with several
vector-inserts. This is likely to make the vectorization unprofitable.
I.e. we don't notice that a later LICM will move all of this out of the
loop so the cost estimate should really be 0.
llvm-svn: 264243
We need the "return address" of a noreturn call to be within the
bounds of the calling function; TrapUnreachable turns 'unreachable'
into a 'ud2' instruction, which has that desired effect.
Differential Revision: http://reviews.llvm.org/D18414
llvm-svn: 264224
If not for lazy linking of linkonce GVs, comdats are just a
preprocessing before symbol resolution.
Lazy linking complicates it since when we pick a visible member of
comdat, we have to make sure the rest of it passes symbol resolution
too.
llvm-svn: 264223
Strengthen tests of storing frame indices.
Right now this just creates irrelevant scheduling changes.
We don't want to have multiple frame index operands
on an instruction. There seem to be various assumptions
that at least the same frame index will not appear twice
in the LocalStackSlotAllocation pass.
There's no reason to have this happen, and it just
makes it easy to introduce bugs where the immediate
offset is appplied to the storing instruction when it should
really be applied to the value being stored as a separate
add.
This might not be sufficient. It might still be problematic
to have an add fi, fi situation, but that's even less unlikely
to happen in real code.
llvm-svn: 264200
Currently, AnalyzeBranch() fails non-equality comparison between floating points
on X86 (see https://llvm.org/bugs/show_bug.cgi?id=23875). This is because this
function can modify the branch by reversing the conditional jump and removing
unconditional jump if there is a proper fall-through. However, in the case of
non-equality comparison between floating points, this can turn the branch
"unanalyzable". Consider the following case:
jne.BB1
jp.BB1
jmp.BB2
.BB1:
...
.BB2:
...
AnalyzeBranch() will reverse "jp .BB1" to "jnp .BB2" and then "jmp .BB2" will be
removed:
jne.BB1
jnp.BB2
.BB1:
...
.BB2:
...
However, AnalyzeBranch() cannot analyze this branch anymore as there are two
conditional jumps with different targets. This may disable some optimizations
like block-placement: in this case the fall-through behavior is enforced even if
the fall-through block is very cold, which is suboptimal.
Actually this optimization is also done in block-placement pass, which means we
can remove this optimization from AnalyzeBranch(). However, currently
X86::COND_NE_OR_P and X86::COND_NP_OR_E are not reversible: there is no defined
negation conditions for them.
In order to reverse them, this patch defines two new CondCode X86::COND_E_AND_NP
and X86::COND_P_AND_NE. It also defines how to synthesize instructions for them.
Here only the second conditional jump is reversed. This is valid as we only need
them to do this "unconditional jump removal" optimization.
Differential Revision: http://reviews.llvm.org/D11393
llvm-svn: 264199
If a comdat is dropped, all symbols in it are dropped.
If a comdat is kept, the symbols survive to pass regular symbol
resolution.
With this patch we do that for all global symbols.
The added test is a copy of test/tools/gold/X86/comdat.ll that we now
pass.
llvm-svn: 264192
in the test suite. While this is not really an interesting tool and option to run
on a Mach-O file to show the symbol table in a generic libObject format
it shouldn’t crash.
The reason for the crash was in MachOObjectFile::getSymbolType() when it was
calling MachOObjectFile::getSymbolSection() without checking its return value
for the error case.
What makes this fix require a fair bit of diffs is that the method getSymbolType() is
in the class ObjectFile defined without an ErrorOr<> so I needed to add that all
the sub classes. And all of the uses needed to be updated and the return value
needed to be checked for the error case.
The MachOObjectFile version of getSymbolType() “can” get an error in trying to
come up with the libObject’s internal SymbolRef::Type when the Mach-O symbol
symbol type is an N_SECT type because the code is trying to select from the
SymbolRef::ST_Data or SymbolRef::ST_Function values for the SymbolRef::Type.
And it needs the Mach-O section to use isData() and isBSS to determine if
it will return SymbolRef::ST_Data.
One other possible fix I considered is to simply return SymbolRef::ST_Other
when MachOObjectFile::getSymbolSection() returned an error. But since in
the past when I did such changes that “ate an error in the libObject code” I
was asked instead to push the error out of the libObject code I chose not
to implement the fix this way.
As currently written both the COFF and ELF versions of getSymbolType()
can’t get an error. But if isReservedSectionNumber() wanted to check for
the two known negative values rather than allowing all negative values or
the code wanted to add the same check as in getSymbolAddress() to use
getSection() and check for the error then these versions of getSymbolType()
could return errors.
At the end of the day the error printed now is the generic “Invalid data was
encountered while parsing the file” for object_error::parse_failed. In the
future when we thread Lang’s new TypedError for recoverable error handling
though libObject this will improve. And where the added // Diagnostic(…
comment is, it would be changed to produce and error message
like “bad section index (42) for symbol at index 8” for this case.
llvm-svn: 264187
There are a few bugs in the walker that this patch addresses.
Primarily:
- Caching can break when we have multiple BBs without phis
- We weren't optimizing some phis properly
- Because of how the DFS iterator works, there were times where we
wouldn't cache any results of our DFS
I left the test cases with FIXMEs in, because I'm not sure how much
effort it will take to get those to work (read: We'll probably
ultimately have to end up redoing the walker, or we'll have to come up
with some creative caching tricks), and more test coverage = better.
Differential Revision: http://reviews.llvm.org/D18065
llvm-svn: 264180
If we can't handle a relocation type, report it as an error in the source,
rather than asserting. I've added a more descriptive message and a test for the
only cases of this that I've been able to trigger.
Differential Revision: http://reviews.llvm.org/D18388
llvm-svn: 264156
Summary:
I've completed my audit of all the code that looks at noduplicate and
added handling of convergent where appropriate, so we no longer need
noduplicate on these intrinsics.
Reviewers: jholewinski
Subscribers: llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D18168
llvm-svn: 264107
A really unfortunate design of llvm-link and related libraries is that
they operate one module at a time.
This means they can copy a GV to the destination module that should not
be there in the final result because a later bitcode file takes
precedence.
We already handled cases like a strong GV replacing a weak for example.
One case that is not currently handled is a comdat replacing another.
This doesn't happen in ELF, but with COFF largest selection kind it is
possible.
In "llvm-link a.ll b.ll" if the selected comdat was from a.ll,
everything will work and we will not copy the comdat from b.ll.
But if we run "llvm-link b.ll a.ll", we fail to delete the already
copied comdat from b.ll. This patch fixes that.
llvm-svn: 264103
CGP modifies the domtree in some cases, so saying that it preserves the
domtree is a lie. We'll be able to selectively preserve it with the new
pass manager.
Differential Revision: http://reviews.llvm.org/D16893
llvm-svn: 264099
We were just completely ignoring the types when determining whether we could
safely emit a libcall as a tail call. This is clearly wrong.
Theoretically, we could dig deeper looking for incidental matches (much like
the generic code in Analysis.cpp does), but it's probably not worth it for the
few libcalls that exist.
llvm-svn: 264084
When you have multiple LCSSA (single-operand) PHIs that are converted
into two-operand PHIs due to versioning, only assert that the PHI
currently being converted has a single operand. I.e. we don't want to
check PHIs that were converted earlier in the loop.
Fixes PR27023.
Thanks to Karl-Johan Karlsson for the minimized testcase!
llvm-svn: 264081
Improve vector extension of vectors on hardware without dedicated VSEXT/VZEXT instructions.
We already convert these to SIGN_EXTEND_VECTOR_INREG/ZERO_EXTEND_VECTOR_INREG but can further improve this by using the legalizer instead of prematurely splitting into legal vectors in the combine as this only properly helps for lowering to VSEXT/VZEXT.
Removes a lot of unnecessary any_extend + mask pattern - (Fix for PR25718).
Reapplied with a fix for PR26953 (missing vector widening legalization).
Differential Revision: http://reviews.llvm.org/D17932
llvm-svn: 264062
Summary:
Also renamed li_simm7 to li16_imm since it's not a simm7 and has an unusual
encoding (it's a uimm7 except that 0x7f represents -1).
Reviewers: vkalintiris
Subscribers: dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D18145
llvm-svn: 264056
Summary:
We can't check the error message for this one because there's another lw/sw
available that covers a larger range. We therefore check the transition
between the two sizes.
Reviewers: vkalintiris
Subscribers: llvm-commits, dsanders
Differential Revision: http://reviews.llvm.org/D18144
llvm-svn: 264054
It's a bug fix.
For rerolled loops SE trip count remains unchanged. It leads to incorrect work of the next passes.
My patch just resets SE info for rerolled loop forcing SE to re-evaluate it next time it requested.
I also added a verifier call in the exisitng test to be sure no invalid SE data remain. Without my fix this test would fail with -verify-scev.
Differential Revision: http://reviews.llvm.org/D18316
llvm-svn: 264051
Adding support for section names with special characters in them (e.g. "/").
GCC successfully compiles such section names.
This also fixes PR24520.
Differential Revision: http://reviews.llvm.org/D15678
llvm-svn: 264038
Summary:
After this change, deopt operand bundles can be lowered directly by
SelectionDAG into STATEPOINT instructions (which are then lowered to a
call or sequence of nop, with an associated __llvm_stackmaps entry0.
This obviates the need to round-trip deoptimization state through
gc.statepoint via RewriteStatepointsForGC.
Reviewers: reames, atrick, majnemer, JosephTremoulet, pgavlin
Subscribers: sanjoy, mcrosier, majnemer, llvm-commits
Differential Revision: http://reviews.llvm.org/D18257
llvm-svn: 264015
If we have a BB with only MemoryDefs, live-in calculations will ignore
it. This means we get results like this:
define void @foo(i8* %p) {
; 1 = MemoryDef(liveOnEntry)
store i8 0, i8* %p
br i1 undef, label %if.then, label %if.end
if.then:
; 2 = MemoryDef(1)
store i8 1, i8* %p
br label %if.end
if.end:
; 3 = MemoryDef(1)
store i8 2, i8* %p
ret void
}
...When there should be a MemoryPhi in the `if.end` BB.
This patch fixes that behavior.
llvm-svn: 263991
Summary:
Whole quad mode is already enabled for pixel shaders that compute
derivatives, but it must be suspended for instructions that cause a
shader to have side effects (i.e. stores and atomics).
This pass addresses the issue by storing the real (initial) live mask
in a register, masking EXEC before instructions that require exact
execution and (re-)enabling WQM where required.
This pass is run before register coalescing so that we can use
machine SSA for analysis.
The changes in this patch expose a problem with the second machine
scheduling pass: target independent instructions like COPY implicitly
use EXEC when they operate on VGPRs, but this fact is not encoded in
the MIR. This can lead to miscompilation because instructions are
moved past changes to EXEC.
This patch fixes the problem by adding use-implicit operands to
target independent instructions. Some general codegen passes are
relaxed to work with such implicit use operands.
Reviewers: arsenm, tstellarAMD, mareko
Subscribers: MatzeB, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18162
llvm-svn: 263982
In executable and shared object ELF files, relocations in the file contain the final virtual address rather than section offset so this is adjusted to display section offset.
Differential revision: http://reviews.llvm.org/D15965
llvm-svn: 263971
Summary:
When control flow is implemented using the exec mask, the compiler will
insert branch instructions to skip over the masked section when exec is
zero if the section contains more than a certain number of instructions.
The previous code would only count instructions in successor blocks,
and this patch modifies the code to start counting instructions in all
blocks between the start and end of the branch.
Reviewers: nhaehnle, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18282
llvm-svn: 263969
This introduces a custom lowering for ISD::SETCCE (introduced in r253572)
that allows us to emit a short code sequence for 64-bit compares.
Before:
push {r7, lr}
cmp r0, r2
mov.w r0, #0
mov.w r12, #0
it hs
movhs r0, #1
cmp r1, r3
it ge
movge.w r12, #1
it eq
moveq r12, r0
cmp.w r12, #0
bne .LBB1_2
@ BB#1: @ %bb1
bl f
pop {r7, pc}
.LBB1_2: @ %bb2
bl g
pop {r7, pc}
After:
push {r7, lr}
subs r0, r0, r2
sbcs.w r0, r1, r3
bge .LBB1_2
@ BB#1: @ %bb1
bl f
pop {r7, pc}
.LBB1_2: @ %bb2
bl g
pop {r7, pc}
Saves around 80KB in Chromium's libchrome.so.
Some notes on this patch:
- I don't much like the ARMISD::BRCOND and ARMISD::CMOV combines I
introduced (nothing else needs them). However, they are necessary in
order to avoid poor codegen, and they seem similar to existing combines
in other backends (e.g. X86 combines (brcond (cmp (setcc Compare))) to
(brcond Compare)).
- No support for Thumb-1. This is in principle possible, but we'd need
to implement ARMISD::SUBE for Thumb-1.
Differential Revision: http://reviews.llvm.org/D15256
llvm-svn: 263962
Summary:
replaceCongruentIVs can break LCSSA when trying to replace IV increments
since it tries to replace all uses of a phi node with another phi node
while both of the phi nodes are not necessarily in the processed loop.
This will cause an assert in IndVars.
To fix this, we add a check to make sure that the replacement maintains
LCSSA.
Reviewers: sanjoy
Subscribers: mzolotukhin, llvm-commits
Differential Revision: http://reviews.llvm.org/D18266
llvm-svn: 263941
Summary:
extract_vector_elt can cause an implicit any_ext if the types don't
match. When processing the following pattern:
(and (extract_vector_elt (load ([non_ext|any_ext|zero_ext] V))), c)
DAGCombine was ignoring the possible extend, and sometimes removing
the AND even though it was required to maintain some of the bits
in the result to 0, resulting in a miscompile.
This change fixes the issue by limiting the transformation only to
cases where the extract_vector_elt doesn't perform the implicit
extend.
Reviewers: t.p.northover, jmolloy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18247
llvm-svn: 263935
Summary:
The old address space inference pass (NVPTXFavorNonGenericAddrSpaces) is unable
to convert the address space of a pointer induction variable. This patch adds a
new pass called NVPTXInferAddressSpaces that overcomes that limitation using a
fixed-point data-flow analysis (see the file header comments for details).
The new pass is experimental and not enabled by default. Users can turn
it on by setting the -nvptx-use-infer-addrspace flag of llc.
Reviewers: jholewinski, tra, jlebar
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D17965
llvm-svn: 263916
Improve computeZeroableShuffleElements to be able to peek through bitcasts to extract zero/undef values from BUILD_VECTOR nodes of different element sizes to the shuffle mask.
Differential Revision: http://reviews.llvm.org/D14261
llvm-svn: 263906
Summary: Also expose getters and setters in the C API, so that the change can be tested.
Reviewers: nhaehnle, axw, joker.eph
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18260
From: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
llvm-svn: 263886
The sinpi/cospi can be replaced with sincospi to remove unnecessary
computations. However, we need to make sure that the calls are within
the same function!
This fixes PR26993.
llvm-svn: 263875
Summary:
ThinLTO is relying on linkInModule to import selected function.
However a lot of "magic" was hidden in linkInModule and the IRMover,
who would rename and promote global variables on the fly.
This is moving to an approach where the steps are decoupled and the
client is reponsible to specify the list of globals to import.
As a consequence some test are changed because they were relying on
the previous behavior which was importing the definition of *every*
single global without control on the client side.
Now the burden is on the client to decide if a global has to be imported
or not.
Reviewers: tejohnson
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D18122
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 263863
On Rafael's suggestion!
(also fix a discrepancy between this error message format and the others)
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 263860
We need to be careful on which registers can be explicitly handled
via copies. Prologue, Epilogue use physical registers and if one belongs
to the set of CSRsViaCopy, it will no longer be CSRed, since PEI overwrites
it after the explicit copies.
llvm-svn: 263857
While not strictly necessary, since we don't support large integer
types, this avoids bugs due to silent truncation from uint64_t to a
32-bit unsigned (e.g. DL.isLegalInteger(DL.getTypeSizeInBits(Ty) )
This fixes PR26972.
Differential Revision: http://reviews.llvm.org/D18258
llvm-svn: 263850
The loop on IVOperand's incoming values assumes IVOperand to be an
induction variable on the loop over which `S Pred X` is invariant;
otherwise loop invariant incoming values to IVOperand are not guaranteed
to dominate the comparision.
This fixes PR26973.
llvm-svn: 263827
This patch adds unscaled loads and sign-extend loads to the TII
getMemOpBaseRegImmOfs API, which is used to control clustering in the MI
scheduler. This is done to create more opportunities for load pairing. I've
also added the scaled LDRSWui instruction, which was missing from the scaled
instructions. Finally, I've added support in shouldClusterLoads for clustering
adjacent sext and zext loads that too can be paired by the load/store optimizer.
Differential Revision: http://reviews.llvm.org/D18048
llvm-svn: 263819
Summary:
Allow the selection of BUFFER_LOAD_FORMAT_x and _XY. Do this now before
the frontend patches land in Mesa. Eventually, we may want to automatically
reduce the size of loads at the LLVM IR level, which requires such overloads,
and in some cases Mesa can generate them directly.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18255
llvm-svn: 263792
Summary:
These intrinsics expose the BUFFER_ATOMIC_* instructions and will be used
by Mesa to implement atomics with buffer semantics. The intrinsic interface
matches that of buffer.load.format and buffer.store.format, except that the
GLC bit is not exposed (it is automatically deduced based on whether the
return value is used).
The change of hasSideEffects is required for TableGen to accept the pattern
that matches the intrinsic.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm, rivanvx, llvm-commits
Differential Revision: http://reviews.llvm.org/D18151
llvm-svn: 263791
Summary:
We cannot easily deduce that an offset is in an SGPR, but the Mesa frontend
cannot easily make use of an explicit soffset parameter either. Furthermore,
it is likely that in the future, LLVM will be in a better position than the
frontend to choose an SGPR offset if possible.
Since there aren't any frontend uses of these intrinsics in upstream
repositories yet, I would like to take this opportunity to change the
intrinsic signatures to a single offset parameter, which is then selected
to immediate offsets or voffsets using a ComplexPattern.
Reviewers: arsenm, tstellarAMD, mareko
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18218
llvm-svn: 263790
Summary:
It can hurt performance to prefetch ahead too much. Be conservative for
now and don't prefetch ahead more than 3 iterations on Cyclone.
Reviewers: hfinkel
Subscribers: llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D17949
llvm-svn: 263772