In DwarfDebug::collectEntityInfo(), if the label entity is processed in
DbgLabels list, it means the label is not optimized out. There is no
need to generate debug info for it with null position.
llvm-svn: 341513
There are two forms for label debug information in DWARF format.
1. Labels in a non-inlined function:
DW_TAG_label
DW_AT_name
DW_AT_decl_file
DW_AT_decl_line
DW_AT_low_pc
2. Labels in an inlined function:
DW_TAG_label
DW_AT_abstract_origin
DW_AT_low_pc
We will collect label information from DBG_LABEL. Before every DBG_LABEL,
we will generate a temporary symbol to denote the location of the label.
The symbol could be used to get DW_AT_low_pc afterwards. So, we create a
mapping between 'inlined label' and DBG_LABEL MachineInstr in DebugHandlerBase.
The DBG_LABEL in the mapping is used to query the symbol before it.
The AbstractLabels in DwarfCompileUnit is used to process labels in inlined
functions.
We also keep a mapping between scope and labels in DwarfFile to help to
generate correct tree structure of DIEs.
It also generates label debug information under global isel.
Differential Revision: https://reviews.llvm.org/D45556
llvm-svn: 340039
In cases where the debugger load time is a worthwhile tradeoff (or less
costly - such as loading from a DWP instead of a variety of DWOs
(possibly over a high-latency/distributed filesystem)) against object
file size, it can be reasonable to disable pubnames and corresponding
gdb-index creation in the linker.
A backend-flag version of this was implemented for NVPTX in
D44385/r327994 - which was fine for NVPTX which wouldn't mix-and-match
CUs. Now that it's going to be a user-facing option (likely powered by
"-gno-pubnames", the same as GCC) it should be encoded in the
DICompileUnit so it can vary per-CU.
After this, likely the NVPTX support should be migrated to the metadata
& the previous flag implementation should be removed.
Reviewers: aprantl
Differential Revision: https://reviews.llvm.org/D50213
llvm-svn: 339939
There are two forms for label debug information in DWARF format.
1. Labels in a non-inlined function:
DW_TAG_label
DW_AT_name
DW_AT_decl_file
DW_AT_decl_line
DW_AT_low_pc
2. Labels in an inlined function:
DW_TAG_label
DW_AT_abstract_origin
DW_AT_low_pc
We will collect label information from DBG_LABEL. Before every DBG_LABEL,
we will generate a temporary symbol to denote the location of the label.
The symbol could be used to get DW_AT_low_pc afterwards. So, we create a
mapping between 'inlined label' and DBG_LABEL MachineInstr in DebugHandlerBase.
The DBG_LABEL in the mapping is used to query the symbol before it.
The AbstractLabels in DwarfCompileUnit is used to process labels in inlined
functions.
We also keep a mapping between scope and labels in DwarfFile to help to
generate correct tree structure of DIEs.
It also generates label debug information under global isel.
Differential Revision: https://reviews.llvm.org/D45556
llvm-svn: 339676
This revision implements support for generating DWARFv5 .debug_addr section.
The implementation is pretty straight-forward: we just check the dwarf version
and emit section header if needed.
Reviewers: aprantl, dblaikie, probinson
Reviewed by: dblaikie
Differential Revision: https://reviews.llvm.org/D50005
llvm-svn: 338487
There are two forms for label debug information in DWARF format.
1. Labels in a non-inlined function:
DW_TAG_label
DW_AT_name
DW_AT_decl_file
DW_AT_decl_line
DW_AT_low_pc
2. Labels in an inlined function:
DW_TAG_label
DW_AT_abstract_origin
DW_AT_low_pc
We will collect label information from DBG_LABEL. Before every DBG_LABEL,
we will generate a temporary symbol to denote the location of the label.
The symbol could be used to get DW_AT_low_pc afterwards. So, we create a
mapping between 'inlined label' and DBG_LABEL MachineInstr in DebugHandlerBase.
The DBG_LABEL in the mapping is used to query the symbol before it.
The AbstractLabels in DwarfCompileUnit is used to process labels in inlined
functions.
We also keep a mapping between scope and labels in DwarfFile to help to
generate correct tree structure of DIEs.
It also generates label debug information under global isel.
Differential Revision: https://reviews.llvm.org/D45556
llvm-svn: 338390
The test failure was caused by the compiler not emitting a __debug_ranges section with DWARF 4 and
earlier when no ranges are needed. The test checks for the existence regardless.
llvm-svn: 338081
There are two forms for label debug information in DWARF format.
1. Labels in a non-inlined function:
DW_TAG_label
DW_AT_name
DW_AT_decl_file
DW_AT_decl_line
DW_AT_low_pc
2. Labels in an inlined function:
DW_TAG_label
DW_AT_abstract_origin
DW_AT_low_pc
We will collect label information from DBG_LABEL. Before every DBG_LABEL,
we will generate a temporary symbol to denote the location of the label.
The symbol could be used to get DW_AT_low_pc afterwards. So, we create a
mapping between 'inlined label' and DBG_LABEL MachineInstr in DebugHandlerBase.
The DBG_LABEL in the mapping is used to query the symbol before it.
The AbstractLabels in DwarfCompileUnit is used to process labels in inlined
functions.
We also keep a mapping between scope and labels in DwarfFile to help to
generate correct tree structure of DIEs.
Differential Revision: https://reviews.llvm.org/D45556
Patch by Hsiangkai Wang.
llvm-svn: 337799
Summary:
Each of the four methods had a dozen lines and was doing almost exactly
the same thing: get the appropriate accelerator table kind and insert an
entry into it. I move this common logic to a helper function and make
these methods delegate to it.
This came up in the context of D49493, where I've needed to make adding
a string to a string pool slightly more complicated, and it seemed to
make sense to do it in one place instead of five.
To make this work I've needed to unify the interface of the AccelTable
data types, as some used to store DIE& and others DIE*. I chose to unify
to a reference as that's what the caller uses.
This technically isn't NFC, because it changes the StringPool used for
apple tables in the DWO case (now it uses the main file like DWARF v5
instead of the DWO file). However, that shouldn't matter, as DWO is not
a thing on apple targets (clang frontend simply ignores -gsplit-dwarf).
Reviewers: JDevlieghere, aprantl, probinson
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49542
llvm-svn: 337562
Summary:
This patch makes us generate the debug_names section in response to some
user-facing commands (previously it was only generated if explicitly
selected via the -accel-tables option).
My goal was to make this work for DWARF>=5 (as it's an official part of
that standard), and also, as an extension, for DWARF<5 if one is
explicitly tuning for lldb as a debugger (because it brings a large
performance improvement there).
This is slightly complicated by the fact that the debug_names tables are
incompatible with the DWARF v4 type units (they assume that the type
units are in the debug_info section), and unfortunately, right now we
generate DWARF v4-style type units even for -gdwarf-5. For this reason,
I disable all accelerator tables if the user requested type unit
generation. I do this even for apple tables, as they have the same
problem (in fact generating type units for apple targets makes us crash
even before we get around to emitting the accelerator tables).
Reviewers: JDevlieghere, aprantl, dblaikie, echristo, probinson
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49420
llvm-svn: 337544
and no use of DW_FORM_rnglistx with the DW_AT_ranges attribute.
Reviewer: aprantl
Differential Revision: https://reviews.llvm.org/D49214
llvm-svn: 336927
Summary:
.debug_loc section is not supported for NVPTX target. If there is an
object whose location can change during its lifetime, we do not generate
debug location info for this variable.
Reviewers: echristo
Subscribers: jholewinski, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D48730
llvm-svn: 335976
Summary:
Previously we crashed for the combination of the two features because we
tried to reference the dwo CU from the main object file. The fix
consists of two items:
- reference the skeleton CU from the name index (the consumer is
expected to use the skeleton CU to find the real data).
- use the main object file string pool for the strings in the index
Reviewers: JDevlieghere, aprantl, dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45566
llvm-svn: 330249
Some compilers do not like having an enum type and a variable with the
same name (AccelTableKind). I rename the variable to TheAccelTableKind.
Suggestions for a better name welcome.
llvm-svn: 329202
- MSVC was not OK with a static_assert referencing a non-static member
variable, even though it was just in a sizeof(expression). I move the
assert into the emit function, where it is probably more useful.
- Tests were failing in builds which did not have the X86 target
configured. Since this functionality is not target-specific, I have
removed the target specifiers from the .ll files.
llvm-svn: 329201
Summary:
This patch adds a DwarfAccelTableEmitter class, which generates an
accelerator table, as specified in DWARF v5 standard. At the moment it
only generates a DIE offset column and (if we are indexing more than one
compile unit) a CU column.
Indexing type units is not currently supported, as we don't even have
the ability to generate DWARF v5-compatible compile units.
The implementation is not data-source agnostic like the one generating
apple tables. This was not necessary as we currently only have one user
of this code, and without a second user it was not obvious to me how to
best abstract this. (The difference between these tables and the apple
ones is that they need a lot more metadata about the debug info they are
indexing).
The generation is triggered by the --accel-tables argument, which
supersedes the --dwarf-accel-tables arg -- the latter was a simple
on-off switch, but not we can choose between two kinds of accelerator
tables we can generate.
This is tested by parsing the generated tables with llvm-dwarfdump and
the DWARFVerifier, and I've also checked that GNU readelf is able to
make sense of the tables.
Differential Revision: https://reviews.llvm.org/D43286
llvm-svn: 329179
If a given split type unit does not have source locations, don't have
it refer to the split line table.
If no split type unit refers to the split line table, don't emit the
line table at all.
This will save a little space on rare occasions, but also refactors
things a bit to improve which class is responsible for what.
Responding to review comments on r326395.
Differential Revision: https://reviews.llvm.org/D44220
llvm-svn: 328670
Summary:
Some targets does not support labels inside debug sections, but support
references in form `section+offset`. Patch adds initial support
for this.
Reviewers: echristo, probinson, jlebar
Subscribers: llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D43943
llvm-svn: 328314
Summary:
Added a flag -no-dwarf-pub-sections, which allows to disable
emission of DWARF public sections.
Reviewers: probinson, echristo
Subscribers: aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D44385
llvm-svn: 327994
Summary:
Some targets does not support labels inside debug sections, but support
references in form `section +|- offset`. Patch adds initial support
for this. Also, this patch disables emission of all additional debug
sections that may have labels inside of it (like pub sections and
string tables).
Reviewers: probinson, echristo
Subscribers: JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D43627
llvm-svn: 326328
Summary:
This commit separates the abstract accelerator table data structure
from the code for writing out an on-disk representation of a specific
accelerator table format. The idea is that former (now called
AccelTable<T>) can be reused for the DWARF v5 accelerator tables
as-is, without any further customizations.
Some bits of the emission code (now living in the EmissionContext class)
can be reused for DWARF v5 as well, but the subtle differences in the
layout of various subtables mean the sharing is not always possible.
(Also, the individual emit*** functions are fairly simple so there's a
tradeoff between making a bigger general-purpose function, and two
smaller targeted functions.)
Another advantage of this setup is that more of the serialization logic
can be hidden in the .cpp file -- I have moved declarations of the
header and all the emission functions there.
Reviewers: JDevlieghere, aprantl, probinson, dblaikie
Subscribers: echristo, clayborg, vleschuk, llvm-commits
Differential Revision: https://reviews.llvm.org/D43285
llvm-svn: 325516
This patch renames DwarfAccelTable.{h,cpp} to AccelTable.{h,cpp} and
moves the header to the include dir so it is accessible by the
dsymutil implementation.
Differential revision: https://reviews.llvm.org/D42529
llvm-svn: 323654
This patch refactors the way data is stored in the accelerator table and
makes them truly generic. There have been several attempts to do this in
the past:
- D8215 & D8216: Using a union and partial hardcoding.
- D11805: Using inheritance.
- D42246: Using a callback.
In the end I didn't like either of them, because for some reason or
another parts of it felt hacky or decreased runtime performance. I
didn't want to completely rewrite them as I was hoping that we could
reuse parts for the successor in the DWARF standard. However, it seems
less and less likely that there will be a lot of opportunities for
sharing code and/or an interface.
Originally I choose to template the whole class, because it introduces
no performance overhead compared to the original implementation.
We ended up settling on a hybrid between a templated method and a
virtual call to emit the data. The motivation is that we don't want to
increase code size for a feature that should soon be superseded by the
DWARFv5 accelerator tables. While the code will continue to be used for
compatibility, it won't be on the hot path. Furthermore this does not
regress performance compared to Apple's internal implementation that
already uses virtual calls for this.
A quick summary for why these changes are necessary: dsymutil likes to
reuse the current implementation of the Apple accelerator tables.
However, LLDB expects a slightly different interface than what is
currently emitted. Additionally, in dsymutil we only have offsets and no
actual DIEs.
Although the patch suggests a lot of code has changed, this change is
pretty straightforward:
- We created an abstract class `AppleAccelTableData` to serve as an
interface for the different data classes.
- We created two implementations of this class, one for type tables and
one for everything else. There will be a third one for dsymutil that
takes just the offset.
- We use the supplied class to deduct the atoms for the header which
makes the structure of the table fully self contained, although not
enforced by the interface as was the case for the fully templated
approach.
- We renamed the prefix from DWARF- to Apple- to make space for the
future implementation of .debug_names.
This change is NFC and relies on the existing tests.
Differential revision: https://reviews.llvm.org/D42334
llvm-svn: 323653
Summary: This is the producer side for DWARF v5 string offsets tables. The reader/consumer
side was committed with r321295. All compile and type units in a module share a
contribution to the string offsets table. Indirect strings use the strx{1,2,3,4} index forms.
Reviewers: dblaikie, aprantl, JDevliegehere
Differential Revision: https://reviews.llvm.org/D42021
llvm-svn: 323546
In constructAbstractSubprogramScopeDIE there can be a potential mismatch
between `this` and the CU of ContextDIE when a scope is shared between
two DISubprograms belonging to a different CU. In that case, `this` is
the CU that was specified in the IR, but the CU of ContextDIE is that of
the first subprogram that was emitted. This patch fixes the mismatch by
looking up the CU of ContextDIE, and switching to use that.
This fixes PR35212 (https://bugs.llvm.org/show_bug.cgi?id=35212)
Patch by Philip Craig!
Differential revision: https://reviews.llvm.org/D39981
llvm-svn: 318289
Some passes might duplicate calls to llvm.dbg.declare creating
duplicate frame index expression which currently trigger an assertion
which is meant to catch erroneous, overlapping fragment declarations.
But identical frame index expressions are just redundant and don't
actually conflict with each other, so we can be more lenient and just
ignore the duplicates.
Reviewers: aprantl, rnk
Subscribers: llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D38540
llvm-svn: 315279
This fixes PR33157.
https://bugs.llvm.org//show_bug.cgi?id=33157
We might also think about disallowing duplicate dbg.declare intrinsics
entirely, but this may complicate some passes needlessly.
llvm-svn: 305244
Consistent with GCC and addresses a shortcoming with ThinLTO where many
imported CUs may end up being empty (because the functions imported from
them either ended up not being used (and were then discarded, since
they're imported as available_externally) or optimized away entirely).
Test cases previously testing empty CUs (either intentionally, or
because they didn't need anything more complicated) had a trivial 'int'
or similar basic type added to their retained types list.
This is a first order approximation - a deeper implementation could do
things like:
1) Be more lazy about construction of the CU - for example if two CUs
containing a single identical retained type are linked together, with
this change one of the two CUs will be produced but empty (since a
duplicate type won't be produced).
2) Go further and invert all the CU links the same way the subprogram
link is inverted - keep named CU lists of retained types, macros, etc,
and have those link back to the CU. Then if they're emitted, the CU is
emitted, but never otherwise - this would allow the metadata itself to
be dropped earlier too, though it seems unlikely that's an important
optimization as there shouldn't be many CUs relative to the number of
other entities.
llvm-svn: 304020
Turns out gold doesn't use the DW_AT_GNU_pubnames to decide whether to
parse the rest of the DIEs when building gdb-index. This causes gold to
trip over LLVM's output when there are DW_FORM_ref_addr present.
Gold does use the presence of a debug_gnu_pub{names,types} entry for the
CU to skip parsing the debug_info portion, so make sure that's included
even when empty (technically, when empty there couldn't be any ref_addr
anyway - it only came up when gmlt didn't produce any (even non-empty)
pubnames - but given what that reveals about gold's implementation, this
seems like a good thing to do for consistency).
llvm-svn: 303894
Turns out that the Fission/Split DWARF package format (DWP) is currently
insufficient to handle cross-CU (ref_addr) references. So for now,
duplicate any debug info needed in these situations:
* inlined_subroutine's abstract_origin
* inlined variable's abstract_origin
* types
Keep the ref_addr behavior in general, including in the split DWARF
inline debug info that can be emitted into the object files for online
symbolication.
Keep a flag to use the old (ref_addr) behavior for testing ways of
addressing this limitation in the DWP tool (& for those not using DWP
packaging).
llvm-svn: 302858
Summary:
Avoids tons of prologue boilerplate when arguments are passed in memory
and left in memory. This can happen in a debug build or in a release
build when an argument alloca is escaped. This will dramatically affect
the code size of x86 debug builds, because X86 fast isel doesn't handle
arguments passed in memory at all. It only handles the x86_64 case of up
to 6 basic register parameters.
This is implemented by analyzing the entry block before ISel to identify
copy elision candidates. A copy elision candidate is an argument that is
used to fully initialize an alloca before any other possibly escaping
uses of that alloca. If an argument is a copy elision candidate, we set
a flag on the InputArg. If the the target generates loads from a fixed
stack object that matches the size and alignment requirements of the
alloca, the SelectionDAG builder will delete the stack object created
for the alloca and replace it with the fixed stack object. The load is
left behind to satisfy any remaining uses of the argument value. The
store is now dead and is therefore elided. The fixed stack object is
also marked as mutable, as it may now be modified by the user, and it
would be invalid to rematerialize the initial load from it.
Supersedes D28388
Fixes PR26328
Reviewers: chandlerc, MatzeB, qcolombet, inglorion, hans
Subscribers: igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D29668
llvm-svn: 296683
This fixes PR31381, which caused an assertion and/or invalid debug info.
This affects debug variables that have multiple fragments in the MMI
side (i.e.: in the stack frame) table.
rdar://problem/30571676
llvm-svn: 295486