Previously, NaNs would be dropped in favor of bounded values which was
strictly incorrect. Now the min/max operation propagate this
information. Not all uses of min/max need this, but the given change
will help protect future additions, and this prevents the need for an
additional cmpf and select operation to handle NaNs.
Differential Revision: https://reviews.llvm.org/D120020
Reuse the higher precision F32 approximation for the F16 one (by expanding and
truncating). This is partly RFC as I'm not sure what the expectations are here
(e.g., these are only for F32 and should not be expanded, that reusing
higher-precision ones for lower precision is undesirable due to increased
compute cost and only approximations per exact type is preferred, or this is
appropriate [at least as fallback] but we need to see how to make it more
generic across all the patterns here).
Differential Revision: https://reviews.llvm.org/D118968
This is completely unused upstream, and does not really have well defined semantics
on what this is supposed to do/how this fits into the ecosystem. Given that, as part of
splitting up the standard dialect it's best to just remove this behavior, instead of try
to awkwardly fit it somewhere upstream. Downstream users are encouraged to
define their own operations that clearly can define the semantics of this.
This also uncovered several lingering uses of ConstantOp that weren't
updated to use arith::ConstantOp, and worked during conversions because
the constant was removed/converted into something else before
verification.
See https://llvm.discourse.group/t/standard-dialect-the-final-chapter/ for more discussion.
Differential Revision: https://reviews.llvm.org/D118654
This reduces the dependencies of the MLIRVector target and makes the dialect consistent with other dialects.
Differential Revision: https://reviews.llvm.org/D118533
Implement a taylor series approximation for atan and add an atan2 lowering
that uses atan's appromation. This includes tests for edge cases and tests
for each quadrant.
Reviewed By: NatashaKnk
Differential Revision: https://reviews.llvm.org/D115682
Using [1] for representing shape of a scalar is incorrect, and will break with vectors of size 1.
- remove redundant helper functions
- fix couple of style warnings
Reviewed By: cota
Differential Revision: https://reviews.llvm.org/D112764
Polynomial approximation can be extented to support N-d vectors.
N-dimensional vectors are useful when vectorizing operations on N-dimensional
tiles. Before lowering to LLVM these vectors are usually unrolled or flattened
to 1-dimensional vectors.
Differential Revision: https://reviews.llvm.org/D112566
This patch adds a polynomial approximation that matches the
approximation in Eigen.
Note that the approximation only applies to vectorized inputs;
the scalar rsqrt is left unmodified.
The approximation is protected with a flag since it emits an AVX2
intrinsic (generated via the X86Vector). This is the only reasonably
clean way that I could find to generate the exact approximation that
I wanted (i.e. an identical one to Eigen's).
I considered two alternatives:
1. Introduce a Rsqrt intrinsic in LLVM, which doesn't exist yet.
I believe this is because there is no definition of Rsqrt that
all backends could agree on, since hardware instructions that
implement it have widely varying degrees of precision.
This is something that the standard could mandate, but Rsqrt is
not part of IEEE754, so I don't think this option is feasible.
2. Emit fdiv(1.0, sqrt) with fast math flags to allow reciprocal
transformations. Although portable, this doesn't allow us
to generate exactly the code we want; it is the LLVM backend,
and not MLIR, who controls what code is generated based on the
target CPU.
Reviewed By: ezhulenev
Differential Revision: https://reviews.llvm.org/D112192
Use wider range for approximating Tanh to match results computed in Eigen with AVX.
Reviewed By: cota
Differential Revision: https://reviews.llvm.org/D112011
Precursor: https://reviews.llvm.org/D110200
Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.
Renamed all instances of operations in the codebase and in tests.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D110797
This is a bit cleaner and removes issues with 2d vectors. It also has a
big impact on constant folding, hence the test changes.
Differential Revision: https://reviews.llvm.org/D107896
The approximation relays on range reduced version y \in [0, pi/2]. An input x will have
the property that sin(x) = sin(y), -sin(y), cos(y), -cos(y) depends on which quadrable x
is in, where sin(y) and cos(y) are approximated with 5th degree polynomial (of x^2).
As a result a single pattern can be used to compute approximation for both sine and cosine.
Reviewed By: ezhulenev
Differential Revision: https://reviews.llvm.org/D104582
This doesn't change APIs, this just cleans up the many in-tree uses of these
names to use the new preferred names. We'll keep the old names around for a
couple weeks to help transitions.
Differential Revision: https://reviews.llvm.org/D99127
This updates the codebase to pass the context when creating an instance of
OwningRewritePatternList, and starts removing extraneous MLIRContext
parameters. There are many many more to be removed.
Differential Revision: https://reviews.llvm.org/D99028
Functions used only in `assert` cause warnings in release mode
Reviewed By: mehdi_amini, dcaballe, ftynse
Differential Revision: https://reviews.llvm.org/D98476